Tim Moore

Tim Moore standing in a freshly dug holeSoils and the Environment

Soil – environment relationships and the effect of human activities and climate and global change.

Professor Emeritus in the Department of Geography

Office: Burnside Hall 626
Phone: 514-398-4961
Fax: 514-398-7437

tim.moore [at] mcgill.ca (E-Mail)


Academic background

  • PhD Soil Science, University of Aberdeen (1971)

Research interests

My interests lie in the relationships between soil and the environment, particularly the regulation of fluxes of gases, nutrients and elements between the soil and the atmosphere, the biosphere and the hydrosphere and the effect of human activities and climate change.

For the past decade, most of my attention has focused on peatlands and wetlands and the controls on the cycling of carbon in these systems. Northern peatlands contain one third of the global soil carbon pool, store carbon dioxide (CO2) in accumulating peat, emit methane (CH4) to the atmosphere and are major sources of dissolved organic carbon (DOC); they also store and cycle nutrients such a nitrogen, phosphorus, calcium, magnesium and potassium. My work, in landscapes ranging from the Northwest Territories to Nova Scotia, has attempted to measure the magnitude of these fluxes and stores, to establish their important controls, to develop models and to examine the effect of changes, such as directly anthropogenic (for example, through the drainage or flooding of peatlands) or indirectly (for example, through climatic change and atmospheric nitrogen deposition) on carbon cycling. Thus, my work integrates aspects of atmospheric chemistry, plant ecology, hydrology, microbiology and soil science in a search to understand biogeochemical patterns in the landscape.


Current projects

  • The biogeochemistry of peatlands, through the examination of fluxes of the greenhouse gases CO2, CH4 and N2O, nutrient cycling and stoichiometry and plant-soil interactions.
  • Detection of graves using biogeochemistry.

Teaching:

GEOG 203 Environmental Systems 3 Credits
    Offered in the:
  • Fall
  • Winter
  • Summer



GEOG 305 Soils and Environment 3 Credits
    Offered in the:
  • Fall
  • Winter
  • Summer



GEOG 505 Global Biogeochemistry 3 Credits
    Offered in the:
  • Fall
  • Winter
  • Summer

Research Themes:
 

Peatland biogeochemistry

Mer Bleue (Fig. 1) was the eastern peatland within the Canadian Carbon Program (http://www.fluxnet-canada.ca) and an eddy covariance tower operated by Elyn Humphreys (Carleton University) and Peter Lafleur (Trent University) has measured CO2 exchange since 1998 providing an assessment of the seasonal and interannual variability and the influence of changes in climate and water table. Combination of CO2 exchange, CH4 flux and DOC export over 6 years provides an estimate of the interannual variability of the overall C flux in this system. The publications and theses of our Mer Bleue are listed at this link (Mer Bleue Publications and theses:).

Fig. 1. The Mer Bleue peatland in fall and the eddy covariance tower.

My work at Mer Bleue has involved studies of plant biomass and production and rates of decomposition of litter and peat, and CO2 and CH4 exchange from chambers covering the range of vegetation types from bog to beaver pond. Recent work involves the effect of beaver pond drainage at Mer Bleue on vegetation and CO2 and CH4 fluxes.

To evaluate the effect of nutrients on the bog, Jill Bubier (Mount Holyoke College) and I are conducting a long-term (18-year +) fertilization with N, P and K, and determining plant and CO2 flux response (Fig. 2). Added nutrients enhance shrub growth and shade out mosses, changing the ecosystem structure and CO2 exchange. The ecosystem converts from a sink to a source of CO2. Although there is an increased N concentration in shrub leaves and Sphagnum mosses in the fertilized plots, there is a weak response in leaf photosynthesis suggesting that N uptake is stored rather than being in a form enhancing photosynthesis. PhD student Meng Wang has observed that nutrient content in foliar tissues varies by species and treatment, with evidence of differential homeostasis between shrubs and mosses and that nutrient resorption during senescence of shrub leaves is affected by the fertilization and varies among elements. Ecological stoichiometry suggests that the vegetation at Mer Bleue is mainly co-limited by N and P and analysis of peat cores suggests that N is buried along with C but there are mechanisms which keep the P recycling close to the surface. PhD student Tanja Zivkovic is establishing rates on N2 fixation at Mer Bleue, with moisture content and N:P ratio primary controls.

Fig. 2 The experimental fertilization plots at Mer Bleue.

In collaboration with John Riley, Julie Talbot (Université de Montreal) and Meng Wang and I have exhumed data contained in a 1980's inventory of peatlands in Ontario, which involved 400 cores and the collection and analysis of over 1500 individual peat samples. This has provided evidence of consistent stoichiometric patterns of C:N:P:K:Ca:Mg as plant tissues decompose and peat forms in the profile. As with Mer Bleue, large amounts of N are buried, whereas P is recycled, with differences among bogs, fens and swamps. We have also examined patterns of Hg and Pb concentration, which show variations in surface concentration from northwest to southeast Ontario, within which are embedded 'hotpots' associated with population centres and industrial activities, and are looking at the distribution of other elements such as As, Cu, Zn, Mn, Fe, Al and S.

Litter decomposition and ecological stoichiometry

Rates of litter decomposition in litter-bags over 5 or more years have been measured at a range of peatlands sites, in Canada, in New Zealand (Fig. 3) and North Carolina (Fig. 4) and this allows establishment of the range of controls (litter characteristics and environmental) on decomposition rate.

 

Kopuatia

Whangamarino

Fig. 3. Peatlands for litter decomposition studies, North Island, New Zealand.

Fig. 4. The pocosin peatlands, coastal North Carolina, used for litter decomposition studies, in collaboration with Duke University (Dr. Curt Richardson).

Work on forest litter decomposition also includes the CIDET (Canadian Intersite Decomposition Experiment) study in which 12 litter types were decomposed in litter-bags at 20 upland forest and 3 wetland sites across Canada, over a 12 year period. Patterns of decomposition rates and their climatic and litter tissue controls have been established. Analysis of N and P dynamics of the litters across all sites shows a general pattern of retention or loss controlled by litter C:N and C:P ratios as well as the site characteristics, with an overall ‘Redfield Ratio’ of 427C:17N:1P when only 20% of the original litter C remained. Interestingly, this is different from the peat ‘Redfield Ratio’ of 1481C:55N:1P.

Restored peatlands

Near Rivière du Loup (QC) and Shippagan (NB), we have examined the effect of drainage and harvesting of peat moss on the C cycle and whether vegetation restoration practices can bring back the peat to C cycling function similar to that before the peat was disturbed (Fig. 5). The conclusion is that it may take several decades for this to occur. A life-cycle analysis of C in the peat harvesting industry showed the importance what happens to the peat after it has been marketed, and we are now examining end-user fate of the C in peat moss.
Figure 10

Fig. 5. Peatland restoration in eastern Quebec and New Brunswick.

Detection of graves

To aid in the detection of clandestine graves, Moshe Dalva and I have examined patterns of CO2, CH4 and N2O gas concentration in pore air and emission to the atmosphere in soils in an animal graveyard of Parc Safari Africain and at experimental pig graves at the National Research Council near Ottawa. Although CH4 was useful at Parc Safari because the soils were wet, in the dry soil at the pig graves N2O provided the best evidence for buried cadavers, and lasted for several years.

Dissolved organic carbon (DOC) in forests

DOC plays an important role in the biogeochemistry of many ecosystems, and we have examined controls on rates of DOC production and consumption and fluxes in upland forests and peatlands supported by BIOCAP and NSERC.

Soil carbon and land-use change

There is strong evidence in changes in soil organic carbon associated with changes in land use. In 2001 in Sardinilla, Panama, a large old pasture was converted to a native tree plantation by Catherine Potvin (Biology, McGill) in collaboration with the Smithsonian Tropical Research Institute (Fig. 6). We established the soil organic carbon content of the pasture soils and resampled in 2011 and showed that the land-use change reduced the soil organic carbon mass in the surface layers. Carbon-13 allows an identification of the source of soil organic matter – pasture or trees. This loss, then, partially compensates for the increased carbon in plant biomass from pasture to plantation, and the site was resampled in 2017.


Figure 12

Fig. 6. The old pasture at Sardinilla, Panama, in 2001 and part of the native tree plantation, 2011.

Recent and Current Graduate Students and Post-doctoral Fellows

Ullah, S. 2006-9. Methane and nitrous oxide fluxes in forest soils. Post-doctoral Fellow. Currently Senior Lecturer, University of Birmingham, U.K.

Turgeon, J., 2008. Production and biodegradation of dissolved carbon, nitrogen and phosphorus from Canadian forest floors. Ph.D. Thesis.

Kothawala, D., 2009. Controls on the soil solution partitioning of dissolved organic carbon and nitrogen in the mineral horizons of forested soils. Ph.D. Thesis. Currently Post-doctoral Researcher, University of Uppsala, Sweden.

McEnroe, N., 2009. Carbon biogeochemistry of open water pools on an ombrotrophic raised bog, James Bay, Québec, Canada. Ph.D. Thesis. (co-supervision with N. Roulet).

Murphy, M., 2009. Getting to the root of the matter: variations in vascular root biomass and production in peatlands and responses to global change. Ph.D. Thesis. Currently Program Coordinator, River Watch, Ottawa.

Peichl, M., 2009. Carbon cycling in a white pine plantation chronosequence, southern Ontario. Ph.D. Thesis, McMaster University (strong supervision role with A. Arain). Currently Assistant Professor, Swedish University of Agricultural Sciences, Umeå, Sweden.

Juutinen, S. 2008-10. Carbon cycling in fertilized bogs. Post-doctoral Fellow (co-supervision with J. Bubier). Currently Research Scientist, University of Helsinki.

Chong, M., 2010. The microclimatic response to increasing shrub cover, and its consequent control on Sphagnum carbon dioxide exchange in an ombrotrophic bog. M.Sc. Thesis.

Alfonso, A., 2012. Organic nitrogen use by different plant functional types in a boreal peatland. M.Sc. Thesis.

Lai, D., 2012. Spatial and temporal variations of carbon dioxide and methane fluxes measured by autochambers at the Mer Bleue bog. Ph.D. Thesis. (co-supervision with N. Roulet). Currently Assistant Professor, Chinese University of Hong Kong.

Murphy, M. 2010-13. Root dynamics in peatlands. Post-doctoral Fellow. Currently Program Coordinator, River Watch, Ottawa.

Larmola, T. 2011-13. Carbon and nitrogen cycling in fertilized bogs. Post-doctoral Fellow. (co-supervision with J. Bubier). Currently Research Scientist, University of Helsinki.

De Young, A., 2014. Nitrous oxide and methane production and emission from the Mer Bleue bog and Mont Saint Hilaire forested swamp. M.Sc. Thesis. Currently financial analyst.

Goud, E., 2014. Short-term effects of a lowered water table on carbon cycling and plant community structure in a temperate bog margin. M.Sc. Thesis (co-supervision with N. Roulet). Currently Ph.D. student, Cornell University.

Lalonde, M., 2014. The hyperspectral determination of Sphagnum water content in a bog. M.Sc. Thesis (co-supervision with M. Kalacska). Currently financial analyst.

Wang, M., 2014. The C:N:P:K stoichiometry in an ombrotrophic peatland. Ph.D. Thesis. Currently Associate Professor, Northwest A&F University, Yangling, Shaanxi, China.

Pinsonneault, A., 2016. Substrate and enzymatic controls on temperate peatland carbon cycling. Ph.D. Thesis (co-supervision with N. Roulet). Currently PDF, Smithsonian Environmental Research Centre, MD, USA.

Brault, M-O., 2017. Introducing weathering into the UVic climate model. Ph.D. Thesis (co-supervision with L. Mysak, N. Roulet and D. Matthews).

Arsenault, J. in prep. Biogeochemistry of peatland pools at Grande Plée Bleue bog. M.Sc. thesis, Université de Montréal (co-supervision with J. Talbot).

Harris, L., in prep. Ecology and biogeochemistry of Hudson Bay Lowland peatlands. Ph.D. Thesis (co-supervision with N. Roulet).

Živković, T., in prep. Nitrogen fixation in peatlands. Ph.D. Thesis.

Lu, L., in prep. The cascade of dissolved organic matter in a bog. M.Sc. thesis.

Publications in Refereed Journals and Conference Proceedings (2008 to present)

Moore, T. 2021. Soils of Quebec. pp 470-480 in Digging into Canadian Soils: An Introduction to Soil Science ed. M. Krazic, F. Walley, A. Diochon, M. Pare, and R. Farrell. Canadian Society of Soil Science.

Loisel, J., A.V. Gallego-Sala, M.J. Amesbury, G. Magnan, G. Anshari, D. Beilman, J.C. Benavides, J. Blewett, P. Camill, D.J. Charman, S. Chawchai, A. Hedgpeth, T. Kleinen, A. Korhola, D. Large, C.A. Mansilla, J. Muller, S. van Bellen, J.B. West, Z. Yu, J.L. Bubier, M. Garneau, T. Moore, A.B.K. Sannel, S. Page, M. Valiranta, M. Bechtold, V. Brovkin, L.E.S. Cole, J.P. Chanton, T.R. Christensen, M.A. Davies, F. De Vleeschouwer, S.A. Finkelstein, S. Frolking, M. Gałka, L. Gandois, N. Girkin, L.I. Harris, A. Heinemeyer, A.M. Hoyt, M.C. Jones, F. Joos, S. Juutinen, K. Kaiser, T. Lacourse, M. Lamentowicz, T. Larmola, J. Leifeld, A. Lohila, A.M. Milner, K. Minkkinen, P. Moss, B.D.A. Naafs, J. Nichols, J. O’Donnell, R. Payne, M. Philben, S. Piilo, A. Quillet, A.S. Ratnayake, T. Roland, S. Sjogersten, O. Sonnentag, G.T. Swindles, W. Swinnen, J. Talbot, C. Treat, A.C. Valach, and J. Wu. 2021. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change 11: 70-77. Doi: 10.1038/s41558-020-00944-0.

Błędzki, L.A, J.L. Bubier, T.R. Moore and S. Juutinen 2020. Nutrient addition increases rotifer abundance and diversity in a temperate bog. Fundamental and Applied Limnology 194: 77-83 doi.org/10.1127/fal/2020/1302.

Harris, L.I., N.T. Roulet and T.R. Moore 2020. Short-term drainage reduces the resilience of a boreal peatland. Environmental Research Communications 2: 065001 doi:org/10.1088/2515-7620/ab9895.

Harris, L.I., N.T. Roulet and T.R. Moore 2020. Mechanisms for the development of peatland surface patterns in the Hudson Bay Lowland. Ecosystems 23: 741–767. doi:org/10.1007/s10021-019-00436-z.

Harris, L.I., T.R. Moore, N.T. Roulet and A.J. Pinsonneault 2020. Limited effect of drainage on peat properties, porewater chemistry, and peat decomposition proxies in a boreal peatland. Biogeochemistry 151: 43-62. doi:10.1007/s10533-020-00707-1.

MacDonald, G., J. Talbot, T. Moore, J. Arsenault, S. McCourt, A. Goertzen, M-É. Kessler-Nadeau, K. Manaugh, R. Maranger, B. Robinson 2020. Geographic versus institutional drivers of nitrogen footprints: A comparison of two urban universities. Environmental Research Letters 15: 045008. doi: org/10.1088/1748-9326/ab70bf.

Seward, J., M.A. Carson, L.J. Lamit, N. Basiliko, J. Yavitt, E. Lilleskov, C. Schadt, D. Solance Smith, J. Mclaughlin, N. Mykytczuk, S. Williams-Johnson, N. Roulet, T. Moore, L. Harris and S. Bräuer 2020. Peatland microbial community composition is driven by a natural climate gradient. Microbial Ecology 80: 593-602. doi:org/10.1007/s00248-020-01510-z.

Moore, T.R. and J.L. Bubier 2020. Plant and soil nitrogen in an ombrotrophic peatland, southern Canada. Ecosystems 23: 98-110. doi:org/10.1007/s10021-019-00390-w.

Arsenault J., J. Talbot, T.R. Moore, M-P. Beauvais, J. Franssen and N.T. Roulet 2019. The spatial heterogeneity of vegetation, hydrology and water chemistry in a pool-covered peatland. Ecosystems 22: 1352–1367. doi:org/10.1007/s10021-019-00342-4.

Moore, T.R., K-H. Knorr, L. Thompson, C. Roy and J.L. Bubier 2019. The effect of long-term fertilization on peat in an ombrotrophic bog. Geoderma 343: 176-186. doi:org/10.1016/j.geoderma.2019.02.034.

Arroyo-Mora, J.P., M. Kalacska, R. Soffer, T.R. Moore, N. Roulet, G. Ifimov, G. Leblanc and D. Inamdar 2018. Airborne hyperspectral evaluation of maximum gross photosynthesis, gravimetric water content and carbon uptake efficiency of the Mer Bleue ombrotrophic peatland. Remote Sensing 10: 565. doi:org/10.3390/rs/10040565.

Arsenault, J., J. Talbot and T.R. Moore 2018. Environmental controls of C, N and P biogeochemistry in peatland pools. Science of the Total Environment 631-632: 714-722. doi:org/ 10.1016/j.scitotenv.2018.03.064

Błędzki, L.A, J.L. Bubier, A.M. Ellison and T.R. Moore 2018. Rotifers are a missing source of nitrogen and phosphorus in temperate northeastern American bogs. Fundamental and Applied Limnology 191: 277-287. doi:10.1127/fal/2018/1133.

Goud, E.M., C. Watt and T.R. Moore 2018. Plant community composition along a peatland margin follows alternate successional pathways after hydrologic disturbance. Acta Oecologia 91: 65-72.  doi:org/10.1016/j.actao.2018.06.006.

Harris, L.I., T.R. Moore, N.T. Roulet and A.J. Pinsonneault 2018. Lichens: a limit to peat growth? Journal of Ecology 106: 2301-2319. doi:10.1111/1365-2745.12975.

Hodgkins, S.B., C.J. Richardson, R. Dommain, H. Wang, P.H. Glaser, B. Verbeke, B.R. Winkler, M. Missilmani, N. Flanagan, M. Ho, A.M. Hoyt, C.F. Harvey, A.R. Cobb, V.I. Rich, S.R. Vining, M.A. Hough, T.R. Moore, P.J.H. Richard, F.B. De La Cruz, J. Toufaily, R. Hamdan, W.T. Cooper and J.P. Chanton 2018. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications 9: 3640. doi:10.1038/s41467-018-06050-2.

Juutinen, S., T.R. Moore, J.L. Bubier, S. Arnkil, E. Humphreys, B. Marincak, C. Roy and T. Larmola 2018. Long-term nutrient addition increased CH4 emission from a bog through direct and indirect effects. Nature Scientific Reports 8: 3838. doi:10.1038/s41598-018-22210-2.

Kalacska, M., J.P. Arroyo-Mora, R.J. Soffer, N.T. Roulet, T.R. Moore, E. Humphreys, G. Leblanc, O. Lucanus and D. Inamdar 2018. Estimating peatland water table depth and net ecosystem exchange: A comparison between satellite and airborne imagery. Remote Sensing 10: 687. doi:org/10.3390/rs/10050687.

Malhotra, A., T.R. Moore, J. Limpens and N.T. Roulet 2018. Post-thaw variability in litter decomposition best explained by microtopography at an ice-rich subarctic peatland. Arctic, Antarctic and Alpine Research 50: (1) e1415622 (10 pp.) doi: 10.1080/15230430.2017.1415622.

Moore, T.R., M. Abraham, M. Kalácska, M.T. Murphy and C. Potvin 2018. Changes from pasture to a native tree plantation affect soil organic matter in a tropical soil, Panamá. Plant & Soil 425: 133-143. doi:10.1007/s11104-018-3574-0.

Moore, T.R., A. Alfonso and B.R. Clarkson 2018. Plant uptake of organic nitrogen in two peatlands. Plant & Soil 433: 391-400. doi:10.1007/s11104-018-3851-y.

Moore, T.R., D. Large, J. Talbot, M. Wang and J. Riley 2018. The stoichiometry of carbon, hydrogen and oxygen in peat. JGR Biogeosciences 123: 3101-3110. doi:org/10.1029/2018JG004574.

Wang, M., J. Talbot and T.R. Moore 2018. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Science of the Total Environment 621: 1255–1263. doi:10.1016/j.scitotenv.2017.10.103.

Coomes, O.T., T.R. Moore and S. Breau 2017. The price of journals in geography. Professional Geographer 69: 251-262. doi:10.1080/00330124.2016.1229624.

Dalva, M., T.R. Moore, M. Kalacska and G. Leblanc 2017. Nitrous oxide, methane and carbon dioxide patterns and dynamics from an experimental pig mass grave. Forensic Science International 277: 229-240. doi:10.1016/j.forsciint.2017.05.013.

Goud, E.M., T.R. Moore and N.T. Roulet 2017. Plant species affect the rate and spatial distribution of peatland carbon flux. Functional Ecology 31: 1824-33. doi:10.1111/1365-2435.12891.

Moore, T.R., J.A. Trofymow, C.E. Prescott, B.D. Titus and the CIDET Working Group 2017. Can short-term litter-bag measurements predict long-term decomposition in northern forests? Plant & Soil 416: 419-426. doi:10.1007/s11104-017-3228-7.

Talbot, J., T.R. Moore, M. Wang, C. Ouellet Dallaire and J.L. Riley 2017. Distribution of lead and mercury in Ontario peatlands. Environmental Pollution 231: 890-898. doi:org/ 10.1016/j.envpol.2017.08.095. 

Živković, T., K. Disney and T.R. Moore 2017. Variations in nitrogen and phosphorus and 15N content of Sphagnum mosses along a climatic and atmospheric deposition gradient, eastern Canada. Botany 95: 829-839. doi: 10.1139/cjb-2016-0314.

Juutinen, S., T.R. Moore, A.M. Laine, J.L. Bubier, E-S. Tuittila, A. De Young and M. Chong 2016. Responses of mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: height growth, ground cover, and CO2 exchange. Botany 94: 127-138 doi:10.11319/cjb-2015-0183.

Moore, T.R. and O.T. Coomes 2016. Publishing journal articles in Canadian geography. The Canadian Geographer 60: 23-31. doi:10.1111/cag.12252.

Pinsonneault, A.J., T.R. Moore, N.T. Roulet and J-F. Lapierre 2016. Biodegradability of vegetation-derived dissolved organic carbon in a cool temperate ombrotrophic bog. Ecosystems 19: 1023-1036. doi:10.1007/s10021-016-9984-z.

Pinsonneault, A.J., T.R. Moore, N.T. Roulet 2016. Effects of long-term fertilization on belowground stoichiometry and microbial enzyme activity in an ombrotrophic bog. Biogeochemistry 129: 149-164. doi:10.1007/s10533-016-0224-6.

Pinsonneault, A.J., T.R. Moore and N.T. Roulet 2016. Temperature is the dominant control on the enzyme-latch across a range of temperate peatland types. Soil Biology and Biochemistry 97: 121-130 doi:10.1016/j.soilbio.2016.03.006.

Smyth, C.E., B. Titus, J.A. Trofymow, T.R. Moore, C.M. Preston, C.E. Prescott and CIDET Working Group 2016. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant & Soil 409: 459–477. doi:10.1007/s11104-016-2972-4.

Wang M., T. Larmola, M.T. Murphy, T.R. Moore and J.L. Bubier 2016. Stoichiometric response of shrubs and mosses to long-term nutrient (N, P and K) addition in an ombrotrophic peatland. Plant & Soil 400: 403-416 doi:10.​1007/​s11104-015-2744-6.

Dalva, M., T.R. Moore, M. Kalacska, G. Leblanc and A. Costopoulos 2015. Nitrous oxide, methane and carbon dioxide dynamics from experimental pig graves. Forensic Science International 247: 41-47. doi:10.1016/j.forsciint.2014.12.002.

Kim, Y., S. Ullah, N.T. Roulet and T.R. Moore 2015. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems. Science of the Total Environment 511: 381-392 doi:10.1016/j.scitotenv.2014.12.065.

Kalacska, M., M. Lalonde and T.R. Moore 2015. Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: scaling from leaf to image. Remote Sensing of Environment 169: 270-279. doi:10.1016/j.rse.2015.08.012.

Wang, M., T.R. Moore, J. Talbot and J.L. Riley 2015. The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles 29: 113–121 doi:10.1002/2014GB005000.

Wu, Y., C. Blodau, T.R. Moore, J.L. Bubier, S. Juutinen and T. Larmola 2015. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modelling analysis. Biogeosciences 12: 79-101. doi:10.5194/bg-12-79-2015. (Revised version of Wu et al. 2014).

Bridgham S.D, T.R. Moore, C.J. Richardson and N.T. Roulet 2014. Greenhouse forcing and soil carbon sequestration in freshwater wetlands: a comment on Mitsch et al. (2013). Landscape Ecology 29: 1481-1485. doi:10.1007/s10980-014-0067-2.

Brown, M.G., E.R. Humphreys, T.R. Moore, N.T. Roulet and P.M. Lafleur 2014. Evidence for a non-monotonic relationship between ecosystem-scale peatland methane emissions and water table depth. JGR-Biogeosciences 119: 826-835. doi:10.1002/2013JG002576.

Camino Serrano, M., B. Gielen, S. Luyssaert, B. Guenet, S. Vicca, B. De Vos, N. Cools, W. Borken, B. Ahrens, N. Clarke, E. Graf-Panatier, T. Nieminen, L. Schwendenmann, T. Moore, B. Clarkson, M. Nilsson, A. Don, M. Morris, P. Ciais and I. Janssens 2014. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochemical Cycles 28: 497-509. doi:10.1002/2013GB004726.

Clarkson, B.R., T.R. Moore, N.B. Fitzgerald, D. Thornburrow, C.H. Watts and S. Miller 2014. Water table regime regulates litter decomposition in restiad peatlands, New Zealand. Ecosystems 17: 317-326. doi:10.1007/s10021-013-9726-4.

Kim, Y., S. Ullah, T.R. Moore and N.T. Roulet 2014. Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter: the role of flooding, oxygen concentration, and temperature. Biogeochemistry 118: 35-48. doi:10.1007/s10533-013-9903-8.

Kross, A.S.E., N.T. Roulet, T.R. Moore, P.M. Lafleur, E.R. Humphreys, J.W. Seaquist, L.B. Flanagan and M. Aurela 2014. Phenology and its role in carbon dioxide exchange processes in northern peatlands. JGR-Biogeosciences 119: 1370-1384. doi:10.1002/2014JG002666.

Lai, D.Y.F., T.R. Moore and N.T. Roulet 2014. Spatial and temporal variations of methane flux measured by autochambers in a temperate ombrotrophic peatland. JGR-Biogeosciences 119: 864–880. doi:10.1002/2013JG002410.

Lai, D.F.Y., N.T. Roulet and T.R. Moore 2014. The spatial and temporal relationships between CO2 and CH4 exchange in a temperate ombrotrophic bog. Atmospheric Environment 89C: 249-259. doi:10.1016/j.atmosenv.2014.02.034.

Loisel, J., Z. Yu, D.W. Beilman, P. Camill, J. Alm, M.J. Amesbury, D. Anderson, S. Andersson, C. Bochicchio, K. Barber, L.R. Belyea, J. Bunbury, F. M. Chambers, D.J. Charman, F. De Vleeschouwer, B. Fiałkiewicz-Kozieł, S.A. Finkelstein, M. Gałka, M. Garneau, D. Hammarlund, W. Hinchcliffe, J. Holmquist, P. Hughes, M.C. Jones, E.S. Klein, U. Kokfelt, A. Korhola, P. Kuhry, A. Lamarre, M. Lamentowicz, D. Large, M. Lavoie, G. MacDonald, G. Magnan, M. Makila, G. Mallon, P. Mathijssen, D. Mauquoy, J. McCarroll, T.R. Moore, J. Nichols, B. O’Reilly, P. Oksanen, M. Packalen, D. Peteet, P.J.H. Richard, S. Robinson, T. Ronkainen, M. Rundgren, A. Britta, K. Sannel, C. Tarnocai, T. Thom, E.-S. Tuittila, M. Turetsky, M. Valiranta, M. van der Linden, B. van Geel, S. van Bellen, D. Vitt, Y. Zhao and W. Zhou 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24: 1028-1042. doi:10.1177/0959683614538073.

Peichl, M., A.M. Arain, T.R. Moore, J.J. Brodeur, M. Khomik, S. Ullah, N. Restrepo-Coupé, J. McLaren and M.R. Pejam 2014. Carbon and greenhouse gas balances in an age-sequence of temperate pine plantations. Biogeosciences 11: 5399-5410. doi:10.5194/bg-11-5399-2014.

Sharp, C.E., J.M. Graham, M.B. Stott, T.R. Moore, S.E. Grasby,  M. Strack and P.F. Dunfield 2014. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environmental Microbiology 6: 1867-78 doi:10.1111/1462-2920.

Talbot, J., N.T. Roulet, O. Sonnentag and T.R. Moore 2014. Increases in aboveground biomass and leaf area 85 years after drainage in a bog. Botany 92: 713-721 doi:10.1139/cjb-2013-0319.

Turetsky, M.R., A. Kotowska, J. Bubier, N.B. Dise, P. Crill, E. Hornibrook, K. Minkinnen, T.R. Moore, I.H. Myers-Smith, H. Nykänen, D. Olefeldt, J. Rinne, S. Saarnio, N. Shurpali, J.M. Waddington, J. White, K. Wickland and M. Wilmking 2014. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology 20: 2183-2197. doi:10.1111/gcb.12580.

Wang, M. and T.R. Moore 2014. Carbon, nitrogen, phosphorus and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems 17: 673-684. doi:10.1007/s10021-013-9726-4.

Wang, M., T.R. Moore, J. Talbot and P.J.H. Richard 2014. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat. Environmental Research Letters 9:024003. doi:org/10.1088/1748-9326/9/2/024003.

Wang, M., M.T. Murphy and T.R. Moore 2014. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in an ombrotrophic peatland. Oecologia 174: 365-377. doi:10.1007/s00442-013-2784-7.

Wu, H., C. Peng, T.R. Moore, D. Hua, C. Li, Q. Zhu, M. Peichl, M.A. Arain and Z. Guo 2014. Modeling dissolved organic carbon in temperate forest soils: TRIPLEX-DOC model development and validation. Geoscientific Model Development 7: 867-88. doi:10.5194/gmd-7-867-2014.

Wu, Y., C. Blodau, T.R. Moore, J.L. Bubier, S. Juutinen and T. Larmola 2014. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modeling analysis. Biogeosciences Discussions 11: 10271-10321. doi:10.5194/bgd-11-10271-2014.

Basiliko, N., K. Henry, V. Gupta, T.R. Moore, B.T. Driscoll and P.F. Dunfield 2013. Controls on bacterial and archaeal community structure and links to greenhouse gas production in natural, mined, and restored Canadian peatlands. Frontiers in Terrestrial Microbiology 4: 215. doi:10.3389/fmicb.2013.00215.

Bu, Z-J., X-X Zheng, H. Rydin, T. Moore and J. Ma 2013. Facilitation vs. competition: does interspecific interaction affect drought responses in Sphagnum? Basic & Applied Ecology 14: 574-584. doi: 10.1016/j.baae.2013.08.002.

Coomes, O.T., T.R. Moore, J. Paterson, S. Breau, N. Ross and N.T. Roulet 2013. Academic performance indicators for departments of geography in the U.S. and Canada. The Professional Geographer 65: 433-450. doi: 10.1080/00330124.2012.697798.

Kalacska, M., J.P. Arroyo-Mora, J. de Gea, E. Snirer, C. Herzog and T.R. Moore 2013. Videographic analysis of Eriophorum vaginatum spatial coverage in an ombrotrophic bog. Remote Sensing 5: 6501-6512. doi: 10.3390/rs5126501.

Larmola, T., J.L. Bubier, C. Kobyljanec, N. Basiliko, S. Juutinen, E. Humphreys, M. Preston and T.R. Moore 2013.Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology 19: 3729-3739. doi: 10.1111/gcb.12328.

Basiliko, N., H. Stewart, T.R. Moore and N.T. Roulet 2012. Do root exudates enhance peat decomposition? Geomicrobiology Journal 29: 374-378. doi: org/10.1080/01490451.2011.568272.

Chong, M., E. Humphreys & T.R. Moore 2012. Microclimatic response to increasing shrub cover and its effect on Sphagnum CO2 exchange in a bog. Ecoscience 19: 89-97. doi: 10.2980/19-1-3489.

Dalva, M., M. Kalácska, T.R. Moore and A. Costopoulos 2012. Detecting graves with methane. Geoderma 189-90: 18-27.

Kothawala, D.N., C. Roehm, C. Blodau and T.R. Moore 2012. Selective adsorption of dissolved organic matter to mineral soils. Geoderma 189-190: 334-342.

Lai, D.Y.F., N.T. Roulet, E.R. Humphreys, T.R. Moore and M. Dalva 2012. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 9: 3305-3322 doi: 10.5194/bg-9-3305-2012.

Laine, A., J. Bubier, T. Riutta, M. Nilsson, T.R. Moore, H. Vasander and E-S. Tuitilla 2012. Abundance and composition of plant biomass as potential controls for mire net ecosystem CO2 exchange. Botany 90: 63-74.

Limpens, J. G. Granath, R. Aerts, M., M.P.D. Heijmans, L.J. Sheppard, L. Bragazza, B. Williams, H. Rydin, J. Bubier, T. Moore, L. Rochefort, E.A.D. Mitchell, A. Buttler, L.J.L. van den Berg, U. Gunnarsson, A-J. Francez, R. Gerdol, M. Thormann, P. Grosvernier, M.M. Wiedermann, M.B. Nilsson, M.R. Hoosbeek, S. Bayley, J-F. Nordbakken, M.P.C.P. Paulissen, S. Hotes, A. Breeuwer, M. Ilomets, H.B.M. Tomassen, I. Leith and B. Xu 2012. Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytologist 195: 408-418.

Bubier, J.L, R. Smith, S. Juutinen, T.R. Moore, R. Minocha, S. Long and S. Minocha 2011. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia 167: 355-368. doi: 10.1007/s00442-011-1998-9.

Limpens, J., G. Granath, U. Gunnarsson, R. Aerts, S. Bayley, L. Bragazza, J. Bubier, A. Buttler, L.J.L. van den Berg, A-J. Francez, R. Gerdol, P. Grosvernier, M.M.P.D. Heijmans, M.R. Hoosbeek, S. Hotes, M. Ilomets, I. Leith, E.A.D. Mitchell, T. Moore, M.B. Nilsson, J-F. Nordbakken, L. Rochefort, H. Rydin, L.J. Sheppard, M. Thormann, M.M. Wiedermann, B.L. Williams and B. Xu 2011. Climatic modifiers of the response to N deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytologist 191: 496-507.

Moore, T.R., A. De Young, J. Bubier, E. Humphreys, P. Lafleur and N.T. Roulet 2011. A multi-year record of methane flux at the Mer Bleue bog, southern Canada. Ecosystems 14: 646-657. doi: 10.1007/s10021-011-9435-9

Moore, T.R., A.J. Trofymow, C.E. Prescott, B. Titus and CIDET Working Group 2011. Nature and nurture in the continuum of C, N and P from litter to soil organic matter in Canadian forests. Plant & Soil 339: 163-175.

Pelletier L., M. Garneau and T R. Moore 2011. Variation in CO2 exchange over three summers at the microform scale in a boreal bog, Eastmain region, Quebec, Canada. JGR-Biogeosciences 116: G03019, doi: 10.1029/2011JG001657.

Potvin, C., N. Buchmann, J. Monteza. T.R. Moore, M. Murphy, Y. Oelmann, M. Scherer-Lorenzen, B.L. Turner, W. Wilcke, S. Wolf, L. Mancilla and F. Zeugin 2011. An ecosystem approach to biodiversity effects: carbon pools in a tropical tree plantation. Forest Ecology & Management 261: 1614-1624.

Ullah, S. and T.R. Moore 2011. Biogeochemical controls on methane, nitrous oxide and carbon dioxide fluxes from deciduous forest soils in eastern Canada. JGR-Biogeosciences 116: G03010, doi: 10.1029/2010JG001525.

Wendel, S., T.R. Moore, J. Bubier and C. Blodau 2011. Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO2 concentrations in a northern bog. Biogeosciences 8: 585-595. doi: 10.5194/bg-8-585-2011.

Wu, J., N.T. Roulet, T.R. Moore, P. Lafleur and E. Humphreys 2011. Dealing with microtopography of an ombrotrophic bog for simulating ecosystem-level CO2 exchanges. Ecological Modelling 222: 1038–1047.

Xing, Y., J. Bubier, T. Moore, M. Murphy, N. Basiliko, S. Wendel and C. Blodau 2011. The fate of 15N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry 103: 281-296. doi: 10.1007/s10533-010-9463-0.

Back to top