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1 Introduction

The flourishing of game theory in the late 1970s and 1980s provided experimental economists with

a wealth of opportunities to test its predictions under controlled laboratory conditions. Indeed,

many economics experiments consist of duplicating the assumptions of game-theoretic models and

then establishing that subjects’ play does not converge to equilibrium predictions, despite repeated

play and monetary incentives (see, e.g., Camerer, 2001; Davis and Holt, 1993; Kagel and Roth,

1995). Through nonparametric statistical tests and regression analysis, researchers conclude that

observed behavior differs significantly from the equilibrium outcomes of the model.

When departures from equilibrium play are observed, two approaches are typical. Sometimes,

subjects’ responses from questionnaires are analyzed in an attempt to glean information about their

motivations and intentions. More often, follow-up experiments (e.g., variations in the original game

in which one variable at a time is altered) are conducted to separate out competing explanations for

the observed deviations from equilibrium. Data from numerous follow-up experiments accumulates

and new theories are advanced to explain behavior and unify the body of evidence.

In this paper, to understand deviations from predicted outcomes in our market experiments,

we make use of subjects’ observed actions to infer repeated-game strategies that best describe their

play. Our goal is threefold: first, to develop an easily implementable technique to infer repeated-

game strategies from observed actions; second, to illustrate the usefulness of the technique for

categorizing subject behavior in a way that is intuitive and interpretable as a strategy thereby

providing new insights into the behavior of subjects in this environment; third, to evaluate the

success of different strategies.

The game we examine is a posted-offer market in which a monopolist faces a small number

of buyers, either two or four; monopolists are either informed or uninformed as to the number of

buyers in the market.1 According to the rules of the posted-offer market, the monopolist posts

a price and a quantity of a good to make available at that posted price. Observing the posted

price (but not the quantity), the randomly ordered buyers then proceed one at a time to make
1 The experiments test the role of buyer concentration on pricing in markets. This topic, and buyer countervailing

power more generally, have recently caught the attention of economists and antitrust policymakers due, in large part,
to the advent of mega-retailers. Ruffle (forthcoming) and Snyder (forthcoming) survey this literature.



privately the number of purchases that each desires. The take-it-or-leave-it nature of this market

institution limits buyer strategic behavior to the rejection of profitable purchases, that is, the

rejection of purchases at a price below the buyer’s valuation, referred to as demand withholding.

In a finitely repeated game, the unique subgame-perfect equilibrium strategy requires a rational

buyer to make all profitable purchases in every period; demand withholding therefore should not be

observed. However, withholding behavior has been observed, even intensely, in a number of studies

(see Ruffle, 2000, and the references therein); buyers withhold demand in the hope of bringing

prices down in subsequent periods.

We attempt to understand withholding behavior in this environment by inferring unobserved,

repeated-game withholding strategies from the observed withholding actions of buyers in 30-round

experiments. These buyer withholding strategies take the form of (possibly nested) if-then state-

ments. An example of a simple strategy would be to withhold two units of demand if the posted

price exceeds a threshold level, but to make all profitable purchases otherwise. To identify strategies

that best describe the observed behavior of each individual buyer, we combine a Bayesian proce-

dure with a technique from the binary classification tree literature (Devroye, Gyorfi and Lugosi,

1996). For the first time we are able to formulate repeated-game strategies that people may actually

be using in this environment. We report distributional information such as the probability that

a buyer’s strategy is of different complexities, the probability that the strategy contains certain

conditioning variables, the most likely strategy that generated the data and how well it fits the

observed decisions.

For about one-quarter of our buyers, we find that the equilibrium prediction of no withholding

is accurate. For the remaining three-quarters of the buyers we fit on an individual basis repeated-

game strategies that most accurately describe the variables upon which the buyer conditions her

withholding decisions.

We find evidence that subjects’ actions are consistent with strategies that condition on time,

price, and combinations of the two variables. Furthermore, the more complex the strategy (where

complexity is measured by the number of binary tests that comprise the withholding strategy),

the lower are market prices and monopolist profits. Among simpler strategies, we find that uncon-
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ditional and intense withholding early in the game is more effective against the monopolist than

strategies that trigger withholding above price thresholds or that intensify withholding over time.

Since buyer profits are not significantly correlated with these strategy characteristics, and since the

observed prices in these sessions were significantly below the monopoly price, the early withholding

strategy appears to be an effective counteracting response to monopoly power.

Our procedure builds on the work on identifying subject heterogeneity in experiments by El-

Gamal and Grether (1995), who used a Bayesian procedure to estimate decision rules in a population

of subjects faced with a static, individual choice task. Their goal was to discover whether people

are Bayesian, and they did this convincingly by assuming a functional form for the decision rule

and using their Bayesian technique to draw inference regarding the number and types of rules that

generated their data. By contrast, our application is to repeated-game strategies, which requires

both a different strategy model and computational technique for inference.2

Houser, Keane, and McCabe (2004) provide a method to draw inference regarding the number

and types of decision rules in a population of subjects playing a dynamic game. They estimate

a polynomial approximation of the value function (that is, the expected value of future payoffs)

in state variables similar to Geweke and Keane (1999, 2001), allowing individual decision rules to

differ by the parameters in their value functions. They illustrate their technique with a game that

subjects play against nature based on a model of school choice, and find evidence for interesting

behavioral types. This approach is very flexible because the researcher does not have to specify

a priori the functional form of the decision rules, rather, one simulates the rules to interpret the

behavior. Our application gains some efficiency (at the cost of flexibility) by specifying a strategy

model. Our strategy model is useful for a rather wide class of multi-player games, and it covers

both strategies predicted by theory and simpler rules of thumb. And for games in which if-then

statements can be useful characterizations of decision-making, it is rather simple to implement.3

The direct inference methodology in this paper is complementary to several existing approaches.
2 Other probabilistic choice models include Stahl and Wilson (1995) who study heterogeneity in levels of reasoning

in games solvable through iterated dominance specifying both the form and number of decision rules, and McKelvey
and Palfrey (1995) who introduce Quantal Response Equilibrium, which makes it possible to study subject behavior
in deviation from optimality (though not subject heterogeneity).

3 Houser, Keane, and McCabe note that the two types of procedures can be complementary: one could use their
procedure to identify subject types and then an El-Gamal and Grether-type procedure to describe the decision rules.

3



In the strategy method of Selten et al. (1997), strategy choices are made observable through elici-

tation; a second approach is to identify strategies by tracking the manner in which subjects collect

and process information (Costa-Gomes, Crawford and Broseta, 2001; Johnson, Camerer, Sen and

Rymon, 2001); in a third approach a probabilistic choice model is estimated from the data (e.g.,

El-Gamal and Grether, 1995; Engle-Warnick, 2003; Selten and Stoecker, 1986; Stahl and Wilson,

1995); a fourth approach is to report estimates of probabilistic choice models through a well-

specified econometric model (Manski, 2002; McKelvey and Palfrey, 1995); and of course there are

the classic approaches of experimental manipulation and protocol responses.

We view the posted-offer market as a laboratory environment well-suited for the display of our

method’s comparative advantages (and disadvantages). More familiar techniques like the strat-

egy method and the analysis of protocol responses are insightful in simple games. However, the

posted-offer institution is sufficiently complex and subjects’ behavior is often dynamic responding

to feedback during the play of the game that these familiar methods are inadequate.

We begin with a description of the experimental design and a summary of the main qualitative

results in sections 2 and 3. Sections 4 and 5 detail the strategy model followed by the inference

method. We present the results of strategy inference, beginning with estimates of the distributions

of the inferred strategies and ending with examples of specific best-fitting strategies in section 6.

Section 7 concludes.

2 Experimental Design and Procedure

In our experiments, subjects were randomly assigned to the role of buyer or seller, and randomly

grouped to form markets. Each market consisted of a single seller (i.e., a monopolist) and either

two or four buyers. We ask whether differences in buyer concentration can lead to differences in

pricing policies in markets, and our simple measure of buyer concentration is the number of buyers

that exist in the market.

The monopolists were given units of production to sell in the market, each with an associated

cost. The buyers were given units of demand to purchase, each with an associated valuation. To
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induce subjects to trade, they were told that the sellers would earn, in cash, the difference between

the selling price and the cost of each unit sold, and the buyers would earn, in cash, the difference

between the valuation and selling price on each unit purchased (see Smith, 1976, for the induced

value methodology). The cost of unsold units was not deducted from the monopolists’ profits.

Figures 1a and 1b display the monopolist’s induced marginal cost curve and the buyers’ induced

aggregate demand curve for the two-buyer and four-buyer treatments, respectively. The midpoint of

the competitive price range has been normalized to 0 and, for convenience, will be referred to as the

competitive price. All costs, valuations and prices will be expressed as deviations from this price.

In the actual experiments, a constant was added to all costs and valuations so that the subjects

traded in positive currency units. The supply and demand curves were induced by providing the

buyers with four units of demand, which were valued at +0.35, +0.20, +0.20, and +0.05 normalized

units of currency. The sellers in the two-buyer treatment were given eight units of production at a

cost of −0.85, −0.85, −0.85, −0.65, −0.65, −0.45, −0.45, and −0.05 normalized units of currency.

In the four-buyer treatment, the demand curves were identical, while the monopolist’s marginal

cost curve was altered to maintain the same monopoly price and competitive price equilibrium.4

[insert Figures 1a and 1b here]

The subjects played 30 rounds of a two-stage game. In the first stage, the monopolist is asked to

choose a price and a quantity of units to make available for sale at that price.5 In the second stage,

the randomly ordered buyers proceeded sequentially, each deciding how many units to purchase at

the posted price. The position of each buyer in the shopping queue was randomly determined in

each round.

At the end of the second stage, the monopolist learned the total number of units purchased by

the buyers and the profit earned from these sales. Buyers did not learn the number of units other

buyers purchased. In each round, subjects remained grouped in the same cohort, played the same

role in the game, and were given exactly the same individual marginal cost and demand curves.
4 See Engle-Warnick and Ruffle (2005) for further discussion and a more complete justification of the experimental

design.
5 The choice of quantity is in fact trivial: the monopolist should make available all units whose cost is less than

(or equal to) the selected price. With very rare exception, all sellers in all rounds chose such a quantity and therefore
we focus on the monopolists’ pricing behavior in all subsequent analysis.
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Note well the private nature of buyers’ purchasing and withholding decisions. Only the individ-

ual buyer knows how many units she purchased and how many profitable units she passed up. This

institutional detail makes it impossible for buyers to coordinate, even implicitly, their responses to

the monopolist. More importantly for the purposes of our paper, the independent nature of buyers’

actions allows us to infer individual buyer strategies.

The unique Nash equilibrium of the stage game involves the monopolist posting the monopoly

price (+0.20) in each round and the buyers accepting all profitable purchases at this price. Ac-

cording to our design, each buyer (again independent of treatment) is able to make three profitable

purchases at the monopoly price. The buyer earns a total of +0.15 (+0.15 on the first purchase

and 0 on the second and third purchases). The monopolist, on the other hand, sells six units in

the two-buyer treatment and earns +5.50, compared to 12 sales in the four-buyer treatment and

+6.40 in earnings.

When the game is repeated it is no longer a dominant strategy to accept passively all profitable

purchases because with future periods left in the game a buyer can punish the monopolist by

withholding profitable units of demand. This type of strategy is more costly to implement as

fewer periods remain in the game because the potential gain from lower prices diminishes. Thus,

while there is no cooperation in equilibrium in the complete-information game, the incomplete

information framework in Kreps et al. (1982) for finitely repeated games may be relevant. Our

contribution is to search for empirical evidence of this type of strategic behavior.

The curves of the relevant treatment as well as the individual buyers’ demand curves were made

common knowledge by providing each subject with a table of costs and values of all subjects and

by reading aloud the contents of the table. The market structure in these two treatments was

also common knowledge so that the monopolist (and the buyers) knew precisely how many (other)

buyers were in the market.6

All experimental sessions were computerized and conducted at Ben-Gurion University. At the

end of the experiment, subjects were paid a 15 NIS (New Israeli Shekel) showup payment in addi-
6 The results of these “informed” two-buyer and four-buyer treatments led us to design two additional treatments

in which the monopolist only was uninformed of the number of buyers in the market. These treatments, in which the
monopolist was not told the number of buyers in the market, will be referred to as “uninformed” treatments.
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tion to their experimental earnings.7 Average seller earnings (including the showup payment) were

121 NIS compared to 67 NIS for the buyers. Sessions lasted on average one hour and thirty min-

utes. Seven two-buyer (informed) sessions were conducted along with eight four-buyer (informed)

sessions. All subjects were economics or business majors and had taken at least an introductory

course in microeconomics. Participation was restricted to one session only per subject.

3 Experimental Results

We conducted first the pair of two-buyer and four-buyer treatments in which the monopolist in each

session was informed of the precise number of buyers she faced. Prices in both of these informed

treatments were typically well below the monopoly price. Moreover, as Figure 2 shows, prices in

the two-buyer, informed treatment are significantly lower than prices in the four-buyer informed

treatment. What is more, buyers in the two-buyer, informed sessions achieved these lower prices

without withholding more than those in the four-buyer, informed sessions: the average per buyer,

per period number of units withheld is identical in the two treatments.8

[insert Figure 2 here]

Given the controls built into the experimental design, there are two possible explanations why

prices in the two-buyer, informed treatment are lower, despite identical levels of withholding in

the two treatments. First, the monopolist may simply price more cautiously when confronted with

two buyers than when faced with four. Since the monopolist earns zero on sales lost to demand

withholding, she may choose to post lower prices in the two-buyer sessions for fear of provoking

their withholding. To explore this hypothesis, we conducted a second pair of “uninformed” treat-

ments with identical marginal cost and demand parameters to those employed in the “informed”

treatments. The sole difference between the “uninformed” and the previous pair of “informed”

treatments was that in the former, the monopolist was not told how many buyers she faced; in-

stead, she was told in both the two-buyer and four-buyer uninformed treatments that she faced “a
7 At the time these experiments were conducted 4 NIS was equivalent to approximately $1 U.S.
8 Since our focus is on the development and application of the strategy inference technique, we present just enough

of the experimental results by treatment to appreciate the application of the technique. Engle-Warnick and Ruffle
(2005) provide a detailed analysis and discussion of the experimental results by treatment.
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small number of buyers, but more than one”. We conducted eight two-buyer, uninformed sessions

and seven four-buyer, uninformed sessions.

The most striking result in the uninformed treatments is that the disappearance in the initial

and middle rounds of the price gap between the two-buyer and four-buyer informed treatments,

as seen in Figure 3. This suggests that the observed difference in initial pricing in the informed

treatments is, at least in part, due to the monopolist pricing more cautiously when confronted with

only two buyers.

[insert Figure 3 here]

A second possible explanation for lower prices in the two-buyer, informed treatment is a difference

in the quality of withholding between the treatments. For instance, perhaps the buyers in the

two-buyer sessions condition their decisions to withhold on different variables than those in the

four-buyer sessions, and these strategies are more effective in bringing prices down. The strategy

inference technique developed in the next two sections will allow us to address this hypothesis.

4 The Strategy Model

We model buyer strategies as binary classification trees (see Breiman, Friedman, Olshen and Stone,

1984, for a variety of applications), and introduce the strategy model by way of example with an

actual inferred buyer strategy, shown in Figure 4. This strategy contains three relational nodes,

which are represented by filled circles. Relational nodes are binary tests that consist of a variable,

a relation, and a coefficient. The relational node at the top of the tree (called the root node) tests

whether the price at time t, P (t), is less than or equal to 0.01. The strategy also contains four

action nodes at the bottom of the tree, each marked by an empty circle. The left column of values

below each action node lists each possible buyer decision; “0” represents the decision to withhold

zero units of demand, “1” to withhold one unit, and “+” to withhold more than one unit.9 The
9 There is a theoretical reason for limiting the choices to 0, 1 and more than 1 unit of demand withheld. We

endowed each buyer with “market power” by making it possible to lower profitably the market-clearing price by
unilaterally withholding two units of demand. A buyer who withholds 0 units of demand is thus a passive price-taker,
a buyer who withholds 1 unit is not passive but does not exercise market power, and a buyer who withholds 2 or
more units exercises market power. Holt (1989) proposes an analogous definition of seller market power, which we
adapt to buyers.
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corresponding right column indicates the number of rounds (out of a total of 30) in which the buyer

made each of the corresponding decisions: at the right-most action node this buyer withheld no

units zero times, one unit zero times, and more than one unit five times.

[insert Figure 4 here]

The tree in Figure 4 thus defines both the functional form of an actual strategy and classifies

the observed actions of an actual buyer. Evaluation of the expression begins with the root node.

If the expression P (t) ≤ 0.01 is true, then evaluation proceeds down to the root node’s left-hand

descendant node, which is the tree’s left-most action node. If the expression P (t) ≤ 0.01 is false,

then evaluation proceeds down to the root node’s right descendant node, which is a nested relational

node that specifies the test P (t) ≤ 0.04. Taken together these two relational tests represent the

compound expression IF P (t) > 0.01 AND P (t) ≤ 0.04. If this compound expression is true, then

evaluation proceeds to the tree’s left-center action node, and if P (t) > 0.01 AND P (t) > 0.04 a

third relational node labelled t ≤ 10 is reached. Evaluation proceeds at this point as before.

The grammar implicit in constructing the strategies is quite general: since the boolean operators

AND and NOT (> is the same as NOT ≤) are both included in this grammar, without loss

of generality, any boolean expression may be the result of combinations of relational and action

nodes. It is the case that every decision in the data will always fall to exactly one action node,

hence the strategy is a plan of action for all observed contingencies in the repeated game.10

The binary tree representation of the strategy lends itself well to behavioral interpretation. The

buyer whose actions are represented in Figure 4 never withheld demand whenever the posted price

was low enough (below 0.01), increased withholding intensity to one unit of demand for intermediate

prices (prices within the range 0.01 to 0.04), and after round 10 withheld demand intensely for high

prices (above 0.04).

The class of strategies we consider consists of no more than four relational nodes. We restrict the

number of relational nodes to four due to the impracticality of further classifying thirty decisions

with more relational nodes since the amount of data at each terminal node drops exponentially.
10 We abstract from semantics and refer to these decision rules as strategies, noting well the fact that in many

cases, including our application, we observe only a single history of each repeated game and thus cannot reconstruct
the rule that a subject would have used for any possible contingency.
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In practice this restriction was not binding as the probability of four-node strategies in the data

turned out to be very low and 89/90 buyers’ inferred strategies consist of strictly less than four

relational nodes.

We selected the round number, t; the round t price, P (t); the difference in price from one round

to the next, ∆P (t); and the withholding decision in the previous round, W (t − 1). We allowed

any coefficient actually realized during the experimental session. Since ∆P (t) never occurred in

any inferred strategy, and in the few instances that W (t − 1) did appear, it did not contribute to

a useful interpretation of what the subjects may have been doing, we focus on t and P (t) in the

subsequent analysis.

The current round price is perhaps the most obvious variable upon which to base one’s with-

holding decisions. We included the round number to allow the strategies to vary with time. The

appearance of time in an inferred strategy may suggest that the subject adopted one strategy at

a certain point in the game and later discarded it for another strategy. That subjects may in-

tentionally vary their demand withholding over time may be seen in the numerous buyers who,

independent of prevailing prices, withheld early to signal toughness, and then later in the session,

as the expected future gains from withholding dwindled, ceased to withhold.11

Due to the vast number of logically possible repeated-game strategies, the solution to the

inference problem always requires a reduction of the dimensionality of the problem. We performed

this reduction in at least three ways: we limited the types of demand withholding strategies through

the experimental design itself (buyers do not see the choices of other buyers and the number

of conditioning variables available to the buyers are few); we modeled the strategy choices as

withholding 0, 1 or more than 1 unit of demand (recall the theoretical reason from footnote 9 for

doing so); and we limited the maximum number of relational nodes to four.12

11 We do not include multi-period punishment strategies of the variety that withhold demand for a fixed length
of time independent of what happens during the punishment phase because the posted-offer institution renders such
forms of punishment ineffective: the monopolist is unaware that it is the same buyer who withheld, say, two units in
each of the last four periods. In principle, however, it is possible to include multi-period punishments by adding a
length of implementation variable at the bottom of the tree (this length is implicitly set to one round in our model).

12 Other successful studies have followed dimension reduction strategies as well. El-Gamal and Grether (1995)
approach the problem through the a priori specification of functional forms of decision rules. Houser, Keane and
McCabe (2004) do so through experimental design. Their subjects gain experience playing a game against a known
stationary stochastic process, thus the subjects’ strategies are assumed to be stationary, and the stochastic process
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5 The Bayesian Inference Method

The inference task is to find an unobserved strategy that best describes the observed actions of a

subject. A difficulty is that adding complexity to a strategy will always weakly improve its ability to

describe the data, but we lack a theory to guide us in selecting the appropriate level of complexity

for a strategy; thus we need a method that tells us when additional complexity does not improve the

fit of the strategy enough to be worthwhile. We approach this problem with a Bayesian estimation

of repeated-game strategies analogous to the procedure in El-Gamal and Grether (1995), and adopt

their notation.13 We assign priors to each of the assignment problems inherent in constructing a

strategy, and update by observing a sequence of decisions by an individual in a repeated game.

5.1 Defining the Assignment Problem

Let us illustrate the assignment problem by constructing a single strategy. To begin, we select

the universe of n conditioning variables (an operation we call assignment zero). To construct a

complete strategy requires three further assignments: (1) the number k of relational nodes, (2) the

conditioning variable at each relational node, and (3) the configuration of the relational nodes in

the tree representation of the strategy.

The first assignment, the number of relational nodes, can in theory be any nonnegative integer,

k. In Figure 5, we choose k = 2 for illustrative purposes.

[insert Figure 5 here]

The second assignment involves choosing k variables for use in the k distinct relational nodes.

Anticipating the fact that no two relational nodes that contain the same variable will have the same

provides power for strategy inference. In neither of these cases did simplification inhibit what was learned about
decision making in economic markets.

13 In their application to an individual choice problem, a subset of k decision rules is selected from a set of n
candidate decision rules, denoted C, to best-fit the actions of a population of subjects in an experiment. There are
three assignments to be made in this problem: (1) the number of decision rules k that should be used to best-fit the
data, (2) the specific decision rules to take from the candidate set C to best-fit the data, and (3) the best assignment
of these k specific decision rules to each individual subject. El-Gamal and Grether (1995) approach the problem by
forming priors over each of these assignments, and then finding the posterior mode estimate of their joint assignment.
Our approach extends their technique by inferring repeated-game strategies on a subject-by-subject basis. We also
report the estimate of the posterior distribution for each individual’s strategy.
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coefficient, we construct a candidate set C of k · n elements that contains k replications of each of

the n explanatory variables. We draw without replacement from this set of variables to select the

relational nodes. The example in Figure 5, in which k = 2 and n = 2, has C = {P1(t), P2(t), t1, t2}.
Ignoring order until the third assignment, it is easy to see that there are six possible ways to choose

two elements from this set of relational nodes, as shown in Figure 5.

The third assignment is to take the k variables from the second assignment and configure them

into a strategy. The lower part of Figure 5 shows the four ways that this can be done. Notice that

both the configuration of the tree and the location of the variables within the configuration vary.

5.2 Forming Priors Over the Three Assignments

We first define the prior for k, the number of relational nodes in the strategy. In theory k can be

any nonnegative integer (where k = 0 represents no binary tree), however we impose the restriction

k ∈ {0, 1, 2, 3, 4}, and specify a Poisson distribution for the prior P (k) truncated at k = 4. The

Poisson distribution allows us to weight strategies with fewer relational nodes more heavily while

varying only one free parameter, which is intuitively appealing if one believes that more complex

strategies are less likely (see Denison, Mallick, and Smith, 1998 for priors in binary regression trees

and Camerer, Ho, and Chong, 2001 for heterogeneity in bounded reasoning):

P (k) =
λk

eλx!∑4
j=0

λj

eλj!

,

where λ is the mean of the distribution. Thus the specification of this prior amounts to the

specification of the mean λ of the number of relational nodes. We will report the sensitivity of the

inference results to a range of λ.

We assign an uninformative (i.e., uniform) prior over the selection of k decision nodes from the

set C of k · n nodes for use as strategy components. For this we need to calculate the number of

such possible choices that exist. The calculation is straightforward: the number of combinations of

k · n objects taken k at a time is

Sk
n =




k · n
k


 =

k · n!
k!(k · n− k)!

.
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In the previous example there are 6 ways to select k = 2 relational nodes from the set of n = 2

candidate nodes.

We also assign an uninformative prior over the possible configurations of the selected relational

nodes. In general, for the chosen k relational nodes, there are k ways to select the first node of a

decision tree (by choosing one of the k nodes). Now whenever a relational node is added to a tree,

two action nodes are also added, but since the new relational node uses one of the existing action

nodes, the net addition to the number of action nodes is one. Thus after selecting the first node,

k−1 variables remain for assignment at one of two action nodes. Repeating at the third level, k−2

variables remain for assignment at one of three action nodes. This process continues until only one

variable remains for assignment at k action nodes. The number of tree configurations that can be

formed from k decision nodes is thus given by,

T k =
k∏

j=1

j · (k − (j − 1)).

In summary, to construct a strategy we select the number of nodes, k, to be used in the formation

of a strategy; we hypothesize a set of n candidate relational node variables, and choose k specific

nodes from them; and we then construct all possible trees from k nodes using the chosen variables.

Thus the total number of strategies with k nodes that can be formed from n candidate variables is

the product of the two preceding results:

Uk
n = Sk

n · T k =
(k · n)!

k!(k · n− k)!
·

k∏

j=1

j · (k − (j − 1)).

In our previous example, there are 6 · 4 = 24 possible ways to construct a strategy with k = 2

decision nodes from a set of n = 2 relational nodes.

Thus the prior probability distributions are as follows: the prior probability of k relational nodes

P (k) is given by the Poisson distribution truncated at k = 4, the prior probability of selecting any

k relational nodes from a set of n variables is 1/Sk
n, and the prior probability of any particular

arrangement of k relational nodes into a strategy is 1/T k.14

14 Our assumption regarding the error rate in strategy implementation will be that each possible rate is equally
likely; this makes the procedure simpler to implement. Chipman, George and McCulloch (2001) provide a Markov
Chain Monte Carlo method assuming a multinomial distribution for the errors; we tested our data using their software
and found similar strategies.
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5.3 Building the Likelihood Function

For the probability model, let xt = (x(1)
t , . . . , x

(d)
t ) = (P (t), t) be the set of explanatory variables

observed at time t. Let yt = W (t) ∈ {0, 1, +} be the action taken by the subject at time t. The

set of actions corresponds to the decisions to withhold 0, 1, or more than one unit of demand in a

given round.

We consider a class of strategies called binary decision trees, which consist of a set of relational

nodes and a set of action nodes. Each relational node is a test of the form x
(i)
t ≤ α

(i)
j , where α

(i)
j is

a coefficient. The set of coefficients that was actually realized in the experiment for each variable

constitutes the set of admitted coefficients. If the evaluation of the test is true (false) then a left

(right) descendant node is reached. Descendant nodes of relational nodes may be either relational

nodes or action nodes. Action nodes specify an action to take and have no descendant nodes. Hence

a relational test may be followed by a subsequent (i.e., nested) relational test, or it may be followed

by the specification of an action to take.

A strategy g ∈ G can be thought of as a possibly nested if-then statement that always specifies

an action to take conditional on realizations of variables determined to be important to decision-

making. Every data point yt, xt, when dropped through the decision tree, always reaches exactly

one action node. Thus we can compare the actions specified by the strategy with every action

observed in the data. It follows that we interpret the strategy as a plan of action for every possible

observed contingency in the game.

Let Dg|xt denote the action specified by the strategy given the observed data at time t. Define

the variable

xg,t =





1 if yt = Dg|xt

0 otherwise.

That is, xg,t = 1 if the action specified by the strategy agrees with the action taken by the subject.

Summing the number of actions that agree with the strategy yields Xg =
∑T

t=1 xg,t.

A subject takes the action specified by a strategy with probability 1− ε, and randomizes with

equal probability among each possible action with total probability ε whenever she deviates from the

strategy. As in El-Gamal and Grether (1995), a strategy g ∈ G and error rate ε define a probability
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function fg,ε : X → [0, 1], where the index k represents the number of relational nodes contained by

the function. Noting again the private nature of both individual buyers’ withholding decisions and

the monopolist’s quantity sold effectively rules out dependence among different buyers’ withholding

decisions, we specify the likelihood function for each individual buyer:

ĝ, ε̂ = arg max
g,ε

fg,ε(x1, . . . , xT ) = (1− 2ε

3
)Xg × (

2ε

3
)T−Xg .

The estimate for ε̂ is found by forcing the rule to make the decision that occurs most often at

each action node, summing the number of decisions in the data that do not agree with the strategy

specification, and then dividing by the total number of decisions made.

5.4 Computing the Posterior Mode Estimate

The posterior mode estimate of the joint assignment of the number of nodes, the specific nodes,

the arrangement of the nodes in the tree, and the error is:

k̂, ŝk
n, t̂k = arg max

k,s,t,ĝ
{Xĝ log(1− 2ε̂

3
) + (T −Xĝ) log(

2ε̂

3
)− log(P (k))− log(Sk

n)− log(T k)}.

The first two terms specify the fitness of the strategy, while each of the last three terms corre-

sponds to a prior probability for one of the three assignment problems. The priors have the effect

of penalizing the likelihood function for the model complexity, since each of the three terms is a

decreasing function of the number of relational nodes in the strategy. We therefore force a tradeoff

between strategy fitness and complexity, where strategy complexity is crudely approximated by the

number of relational nodes. A possible outcome of this tradeoff is that the degenerate strategy

with no conditioning nodes at all is inferred from the decisions of the subject. Our conservative

approach to strategy inference as implied by the triple penalty for each additional relational node

implies that those strategies that are inferred perform well at categorizing the subject’s withholding

behavior.
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5.5 Computational Strategy

We compute the posterior likelihood for each possible strategy formulation for k ∈ {0, 1, 2, 3, 4} for

each buyer.15 We report the posterior probability for each of the possible values of k, as well as

the probability that each explanatory variable along with its impact on withholding occurs in the

strategy. For robustness we report these results as a function of the mean, λ, of the Poisson prior

for k, where λ varies from 1 to 3 in increments of 0.1. We report summary statistics for the modal

strategies inferred at a selected value of the mean, and we report the modal strategy for all subjects

in selected experimental sessions.

6 Strategy Inference Results

We present the results in three subsections. First, we present inference results aggregated across

experimental treatments. Second, we present posterior distributions for each buyer in the form of

strategy characteristic statistics such as, for example, the probability that the buyer’s strategy con-

tains k nodes, k = 0, 1, 2, 3, 4, and that it contains specific strategy characteristics or components.

We also explore correlations between specific strategy characteristics and market outcomes. Third,

we display inferred strategies that correspond to the posterior mode estimate for each subject in

selected sessions.16 For the purposes of introducing this strategy inference method and for brevity

we focus primarily on buyer strategies.

6.1 Aggregate Results on Strategy Complexity and Strategy Composition

6.1.1 Strategy Complexity

On average, the complexity of the inferred strategies is greater than the degenerate case of zero

relational nodes, and is relatively insensitive to its prior. Figure 6 presents the number of relational
15 An exhaustive search is possible due to our limitation of k ≤ 4; the number of possible strategies was typically

on the order of 100,000. Our approach is not however limited to cases in which an exhaustive search is possible. The
software for estimation was programmed in Ox 3 Professional (Doornik, 2001) and is available upon request from the
authors.

16 In fact, we computed the modal strategy for all subjects in all sessions. Due to space restrictions, we present
the modal strategies for all buyers in two specific sessions in section 6.4.
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nodes in the strategy that corresponds to the posterior mode estimate, averaged across all subjects

in all treatments. This measure attests to the relative stability of the number of nodes in the

inferred modal strategies to changes in the prior mean number of nodes: it varies by only 0.6

nodes, from 0.9 to 1.5, as the prior mean number of relational nodes varies from one to three. (We

varied the prior from one to three because we limited non-zero probabilities between zero and four

nodes.) The expected number of relational nodes (computed as the weighted average of strategy

size over all possible strategies) is similarly stable: Figure 6 also shows that the expected number of

relational nodes varies by only 0.6 nodes, from 1.6 to 2.2, as the prior varies from one to three. The

fact that the average strategy size for both of these measures consists of more than one relational

node despite the triple cost of complexity suggests the inferred repeated-game strategies fit well

buyers’ decisions.

[insert Figure 6 here]

Figures 7a and 7b display the average number of relational nodes in the modal strategies accord-

ing to the experimental treatment variable. Figure 7a reveals that modal strategies are slightly

more complex in the informed experimental treatments. This result was unexpected as it is the

information given to the monopolist, not the buyers, that is being manipulated. One conjecture is

that since the monopolist does not know how many buyers she faces in the uninformed treatments,

buyers feel they must adopt simpler, more transparent strategies and stick with them to signal

clearly to the monopolist what is unacceptable; whereas buyers in the informed treatments have

the luxury to be able to fine tune (i.e., make more complex) their withholding behavior. Strategy

complexity as a function of the number of buyers does not reveal a similarly evident relationship,

as shown in Figure 7b.

[insert Figures 7a and 7b here]

6.1.2 Strategy Composition

For a look at the composition of the buyer strategies, Figures 8a and 8b display the probability

that the buyer strategies contain a relational node that increases and decreases withholding with
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time respectively. We denote these node types “Time +” and “Time -”, respectively, and similarly

define the node types “Price +” and “Price -”. For example, the t ≤ 10 relational node in Figure 4

is a Time + node because the buyer increases her withholding after round 10. Each of the graphs

in Figures 8a and 8b corresponds to one of the four treatments. Figures 9a and 9b present the

identical statistics for relational nodes that condition on price.

[insert Figures 8a and 8b here]

These figures reveal important differences between the experimental treatments. Most notably,

Figure 8a shows that nodes decreasing withholding with time are more likely to occur in strategies

in the two-buyer, informed treatment than in the four-buyer, informed treatment. Figure 8b shows

that the opposite is true for increasing withholding with time, namely, that buyers in the four-

buyer, informed treatment are more likely to increase their withholding with time than buyers in

the two-buyer, informed treatment. This marked difference in the strategies employed by buyers

in the two-buyer and four-buyer informed treatments points to a possible explanation for the lower

observed prices in the two-buyer, informed sessions: decreasing withholding over time appears to

be a more effective strategy against the monopolist than increasing withholding over time. We will

have more to say about this hypothesis in the next two subsections.

In addition, Figure 9a shows that decreasing withholding with price is equally highly unlikely in

all treatments; this intuitive result is reassuring since we do not expect subjects to buy more units

(i.e., decrease their withholding) as the price increases. Figure 9b shows that increasing withholding

with price is more likely to occur when monopolists are informed.

[insert Figures 9a and 9b here]

6.2 Strategy Characteristics for Individual Buyers

In this subsection we examine more closely the inferred strategy characteristics at the subject level

by reporting the estimates of the posterior distributions of inferred strategies for individual buyers.

Since it is impractical to present this analysis over the entire range of prior means of relational

nodes (i.e., 1 - 3), we choose the midpoint of the range, two, for the analysis. The good news is
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that all of the strategy complexity and strategy composition results from the previous subsection

were shown to be insensitive to the prior mean number of relational nodes.

Table 1 displays the results for the two-buyer, informed treatment, and Tables 2, 3, and 4

contain identical information for the remaining three treatments. Each row reports the strategy

characteristics and observed game variables for a different buyer. From left to right the tables reveal

the session and subject identification numbers, the median session price from the last five rounds,

the mean seller and buyer per round profits, the breakdown of each buyer’s observed withholding

decisions (i.e., the number of rounds in which the buyer withhold 0, 1 and multiple units of demand),

the number of relational nodes inferred in the modal strategy (labeled “size”), the error rate of

the modal strategy (to be discussed below), and the posterior probability that the buyer’s strategy

contains 0, 1, 2, 3, and 4 relational nodes (which sum to 1). The last set of columns report the

posterior probability that the strategy contains the conditioning nodes Time - , Time +, Price -

and Price +. These may sum from zero (when the posterior probability of a zero node strategy is

one) to four (when only strategies that contain at least one of each of the four nodes have non-zero

posterior probabilities).

Table 1 reveals the richness of information regarding buyer heterogeneity that can be gleaned

from a strategy inference procedure. Overall, for three-quarters of the buyers in the experiments

the modal strategy is a non-degenerate strategy with at least one relational node. There is much

heterogeneity among these subjects with respect to the size of the inferred modal strategy (between

1 and 4 relational nodes) and the posterior probabilities of the strategy characteristics. That

the inferred modal strategies differ across buyers both in terms of the strategy characteristics

and in size despite the common prior for all buyers suggests that the strategies are not being

overwhelmed by the prior and that they describe the buyers’ decisions well. Further evidence that

the strategies fit the decisions well can be seen by the error rate, which appears in the “modal

strategy characteristics” column of Tables 1–4. Across all treatments, the average error rate is

approximately 0.16, meaning that strategies on average classify correctly 84% or 25/30 of the

buyer’s observed withholding decisions. By comparison, if we fit each buyer with a single relational

node, best-fit strategy (either withhold 0, withhold 1 or withhold more than 1 unit), the average
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error rate is 0.33, implying that the extra complexity our inference method permits cuts the error

rate by 50%.

[insert Tables 1–4 here]

In the two-buyer, informed treatment, the Time - variable appears far more frequently than

any other conditioning variable in the inferred modal strategies of buyers: for 9/14 subjects, the

probability that their strategy contains a Time - node exceeds 0.8. By contrast, there is not a single

buyer who conditions on Time + with probability greater than 0.8. Two subjects increase their

withholding with an increasing price (Price +) with probability greater 0.8. For non-degenerate

strategies, error rates vary from 0.033 for a two-relational node strategy to 0.367 for a one-relational

node strategy. The actions of four buyers varied so little that we could only construct the degenerate

zero-node strategy. Notice that although Buyer 2 in Session 1 shows considerable variance in her

withholding actions — she withheld one or more units in 13 rounds — her apparently somewhat

random withholding pattern did not admit the inference of a non-degenerate modal strategy. As a

result, the error rate for this buyer is 0.433. As a matter of fact, Session 1 was the lone session in

this treatment for which we failed to infer a non-degenerate strategy for both buyers.

In the four-buyer, informed treatment (Table 3), there is a noticeable shift from Time - nodes

to Time + nodes in comparison with the two-buyer, informed treatment. Ten out of 32 buyers

condition on Time - with probability greater than 0.8. This same fraction conditions on Time +

(compared to no buyers in the two-buyer, informed treatment). Figures 8a and 8b confirm that

this treatment is an outlier both in terms of the high posterior probability that an average buyer’s

strategy contains a Time + node and the low posterior probability that it contains Time -. In

addition, six buyers employ Price + with probability greater than 0.8. We inferred non-degenerate

modal strategies for two or more buyers in all eight sessions.

In the two-buyer, uninformed treatment (Table 2), strategies again vary by complexity and

composition. Indeed the patterns of strategy complexity and composition are broadly very similar

to those in the two-buyer, informed treatment. Again there is a single session (Session 29) in which

we failed to infer a strategy for both buyers.
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In the four-buyer, uninformed treatment (Table 4), there are far fewer Price + nodes with

probability close to 0.8 or greater (only two). High posterior probabilities are more spread out

among Time -, Time + and Price - nodes: for instance, with probability greater than or equal to

0.8, 17/28 buyers condition on Time - and four buyers condition on Time +.

6.3 Strategy Effectiveness against the Monopolist

We investigated correlations between strategy characteristics and session price, and seller and buyer

profits. The results aggregated across all treatments are presented in Table 5. Cells marked in bold-

face represent statistical significance at the 10% level according to the Spearman Rank Coefficient

Test (two-tailed test). The table reveals that both the modal and expected strategy size are nega-

tively and significantly correlated with the median session price: the more complex the strategies

used by buyers, the lower the session prices. Similarly, strategy complexity is negatively and sig-

nificantly correlated with seller profit, but correlation between complexity and buyer profit is not

significant. It seems that the lower prices that buyers achieve through withholding roughly compen-

sate them for the foregone profit from the withholding. A further indication of the effectiveness of

withholding strategies is given by the positive (0.380) and significant correlation between inferring

a degenerate strategy (P(Zero Nodes) in Table 5) and session price.

[insert Table 5 here]

Correlating the different conditioning nodes with session price suggests that the most effective

strategy component against seller pricing is Time - . In fact, Time - is the only strategy component

significantly (and negatively) correlated with price: when strategies decrease withholding over time,

session price (and seller profits) tend to be significantly lower. The only strategy component that

is significantly correlated with buyers’ profits is Price - . The negative correlation between the two

highlights the obvious fact that if a buyer increases her purchases (i.e., decreases her withholding)

when the price increases, her profits will be relatively low.

To investigate further relationships between strategy components and market outcomes we ran

regressions with the median session price from the last five rounds of the game, the average seller
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profit, and average buyer profit as dependent variables. Possible independent variables were the

probability that strategies contained Time -, Time +, Price +, and Price - nodes, the size of

the modal strategies, and dummies for the two-buyer and informed sessions. All variables were

averaged across the individual values for each buyer found in Tables 1–4. We used the software

package PcGets (Hendry and Krolzig, 2001) to test down to the final model presented below, and

for simplicity report results from one-stage estimation.17

The results are displayed in Table 6. The table presents the estimated coefficients with standard

errors in parentheses. All coefficients are significant at least at the 5% level.

[insert Table 6 here]

The table reveals that two buyers, the probability of a Time - node, and the probability of a

Price + node all negatively influence the market price, as measured by the median price from the

last five rounds. All three effects are of similar magnitude. Not surprisingly, these same three

variables negatively affect seller profits. Concerning buyer profits, only the number of buyers has

a significant effect: median buyer profits are 0.3 NIS per round higher in the two-buyer than the

four-buyer treatments. This follows from lower prices in the two-buyer sessions, while the quantity

of demand withholding does not differ between treatments.

The results provide insight into the effectiveness (and lack thereof) of various withholding

strategies. Increasing complexity and decreasing withholding over time (i.e., early withholding) are

negatively correlated with seller prices and seller profits. These characteristics are not significantly

correlated with buyer profit, even though buyers forego profitable purchases by employing these

strategies. Combining this evidence with the existence of remarkably low session prices paints a

picture of strategies that influence the monopolist pricing decision at no discernible cost to the

buyers.

One plausible explanation for the effectiveness of early withholding is that it signals the buyers’

unwillingness to accept existing prices. The monopolist thus responds by lowering her price to
17 PcGets automatically selects a final (i.e., specific) model that is congruent with data evidence by starting with a

congruent general model, eliminating statistically insignificant variables, and checking the validity of the reductions
with diagnostic tests. We used PcGets to remove subjectivity in our choice of the final model to present.

22



increase sales and profits. If buyers do not withhold early on, feeling encouraged, the monopolist

may raise her price and continue to do so until she is met with resistance.

6.4 Strategies in Selected Sessions

6.4.1 Buyer Strategies

The actual modal strategies inferred in the individual sessions reflected the heterogeneity described

by the posterior distributions reported in Tables 1-4. We selected two sessions with highly in-

terpretable results to complement visually the distributional and statistical results reported in the

previous subsection. We present the modal strategies inferred in both a two-buyer, informed session

and a four-buyer informed session. We chose informed sessions because they constitute the most

likely conditions in which the buyers can convey a clear message to the sellers through strategic

withholding. The contrast between a two-buyer and a four-buyer session illustrates the relative

effectiveness of withholding strategies employed by buyers in the two-buyer sessions.

The strategies inferred in two-buyer session 2B7 are presented in Figure 10, and the price series

is shown in Figure 11. The modal strategy contains three relational nodes for Buyer 1 and one

relational node for Buyer 2. Buyer 1 did not withhold through period 5, but became price sensitive

thereafter: whenever the price exceeded −0.30, he withheld multiple units of demand nine out

of eleven times (Price +). Whenever the price was less than −0.30, he withheld a single unit of

demand up to period 24 and zero units after period 24 (Time -). Buyer 2 withheld multiple units

of demand 16 times in the first 21 periods and purchased all profitable units thereafter eight out

of nine times (Time -). Notice from Figure 11 that prices in Session 7 vary substantially up to

period 21; thus, Buyer 2’s unconditional withholding strategy up to period 21 is not an artifact of

a lack of variation in the explanatory price variable. The intense early withholding in the game

combined with one buyer’s sensitivity to an already low price (−0.30) appears to have driven the

monopolist’s price down to a remarkably low level in this session.

[insert Figures 10 and 11 here]

The strategies inferred in four-buyer session 4B10 are presented in Figure 12, with the price
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series shown in Figure 13. Buyer 3 did not withhold demand on even a single instance. The three

remaining buyers exhibited behavior consistent with sensitivity to a price threshold. The inferred

price thresholds of 0.04, 0.03 0.00, −0.02 and −0.03 all fall within the competitive price tunnel,

well below the monopoly price of 0.20. Two of these three buyers’ strategies (Buyers 1 and 4) also

contain a time relational node that reflects unconditional demand withholding early in the game.

Again from Figure 13 one can see that this is not for want of price variance. Like Session 2B7, the

willingness to withhold demand early combined with price sensitivity appears to have kept pricing

far below the monopoly price, and in the region of the competitive range.

[insert Figures 12 and 13 here]

6.4.2 Seller Strategies

A natural question to ask is what strategies might the monopolist be employing. To answer this,

we ran the inference procedure on the sellers, allowing the seller strategies to condition on the

number of sales lost to withholding at time t− 1 and the round number. We report the best-fitting

strategies from Sessions 7 and 10 in Figure 14. The strategies are interpreted in the same way as

the buyer strategies; seller decisions are represented by a “-” indicating the decision to lower the

price from time t − 1 to time t, a “0” indicating no change in the price, and a “+” indicating an

increase in the price.

The left-hand portion of Figure 14 reveals that the seller in two-buyer Session 7 tends to lower

the price in response to demand withholding in excess of one unit. The right-hand portion of Figure

14 presents the inferred strategy of the relatively active seller in Session 10: if more than three

units of demand are withheld the monopolist lowers the price, otherwise the modal decision is to

increase the price. And these are not isolated examples: the best-fitting strategy is non-trivial for

the majority of the sellers in our experiments.

[insert Figure 14 here]
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7 Conclusions

In this paper, we apply a Bayesian inference method that estimates repeated-game strategies for

individuals based on their observed play. The method is quite general: the researcher need only

have access to the set of possible conditioning variables and their realized levels observed by the

decision makers and the actual decisions made. With this in hand, the researcher must formulate a

logical way in which to construct strategies for the purpose of forming priors as well as a probability

model to compute a likelihood and the computation of Bayes’ rule. The method is easy to use and

supplements classical methods of inference in informationally deficient environments.

The potential output from the application of this inference method is also quite general: the

researcher can report many different outputs, depending on the question of interest, including the

posterior mode estimate of the strategy, the probability distribution over all of the different possible

strategies, the probability of specific strategy components and even, if desired, the probability of

combinations of different components occurring in the strategy.

We apply this method to 30-round, posted-offer monopoly experiments to infer unobserved,

repeated-game strategies from the observed actions of buyers and sellers. As a first application of

this technique, the posted-offer market is well suited: buyers independently make their purchase

decisions with their only available, non-trivial action being the rejection of a profitable purchase,

referred to as demand withholding. On the basis of buyers’ independently made and observable

withholding decisions and sellers’ pricing responses, we are able to infer repeated-game strategies

for individual buyers and sellers.

From our application, we report active, repeated-game, demand withholding strategies for three-

quarters of the buyers in the experiments, while inferring the passive price-taking strategy for the

remaining one-quarter of the buyers. The inferred withholding strategies are diverse in their degrees

of complexity and in the variables upon which withholding is conditioned. In comparing these

diverse strategies, certain regularities emerge. More complex strategies seem to lead to lower seller

prices and lower seller profits, apparently at no overall cost the buyers. Equally interesting, we find

evidence for the relative effectiveness of certain strategy characteristics compared to others. For
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instance, withholding that decreases with time (early withholding) is more successful in bringing

down prices than withholding that increases over time or withholding triggered by a price threshold.

Higher buyer concentration induces the more successful strategy.

The results from our procedure are robust, conservative and plausible. They are robust because

they hold for a wide range of priors. They are conservative because our procedure imposed a triple

penalty for strategy complexity. They are plausible because they are not dominated by the priors;

in fact, we observed much heterogeneity across subjects’ inferred strategies. This work serves as a

non-invasive and complementary approach to better understanding strategic responses to market

conditions. Nothing in our technique interferes with the subjects’ decision-making processes and

the results are both intuitive and interpretable.
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Session Buyer Price Seller Buyer 0 1 + Size Error 0 1 2 3 4 Time - Time + Price - Price +
1 0.735 30 0 0 0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.707 17 4 9 0 0.433 0.009 0.131 0.548 0.218 0.094 0.946 0.158 0.340 0.004
1 1.185 29 1 0 0 0.033 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.033 3 5 22 2 0.100 0.000 0.025 0.319 0.306 0.351 0.719 0.238 0.920 0.341
1 0.990 14 6 10 1 0.367 0.003 0.091 0.526 0.248 0.132 0.962 0.053 0.145 0.351
2 1.287 14 12 4 2 0.233 0.001 0.063 0.429 0.303 0.204 0.990 0.050 0.101 0.269
1 0.467 22 1 7 2 0.167 0.009 0.113 0.493 0.292 0.094 0.899 0.220 0.270 0.189
2 0.578 30 0 0 0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.689 29 1 0 0 0.033 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.516 15 4 11 1 0.333 0.003 0.100 0.598 0.194 0.104 0.891 0.045 0.215 0.598
1 1.545 26 4 0 2 0.033 0.001 0.013 0.207 0.386 0.394 0.990 0.000 0.214 0.922
2 0.858 11 5 14 1 0.367 0.003 0.059 0.333 0.309 0.297 0.935 0.450 0.115 0.474
1 1.235 10 9 11 3 0.161 0.002 0.019 0.195 0.292 0.493 0.968 0.784 0.027 0.874
2 0.937 11 2 17 1 0.200 0.000 0.035 0.439 0.291 0.234 0.995 0.358 0.256 0.476

Each row reports the observed game variables (median price from the last five rounds, "Price", mean seller and buyer per round profit) and the strategy characteristics for a different buyer 
according to session. The "Number of Decisions" column indicates the breakdown of a buyer's observed withholding decisions. "Size" indicates the number of relational nodes in the inferred 
modal strategy, while Error indicates the fraction of decisions this strategy does not categorize correctly. The next set of columns reports the posterior probability that the buyer's strategy  
contains 0, 1, 2, 3, and 4 relational nodes. These sum to one. The last set of columns report the posterior probability that the strategy contains the different conditioning variables.  These may 
sum from zero (when the  posterior probablity of a zero node is one) to four (when only rules that contain at least one of each of the four nodes have non-zero posterior probability).

Session Buyer Price Seller Buyer 0 1 + Size Error 0 1 2 3 4 Time - Time + Price - Price +
1 0.673 14 4 12 2 0.167 0.000 0.002 0.267 0.342 0.389 0.593 0.953 0.175 0.724
2 0.914 24 2 4 2 0.100 0.003 0.043 0.357 0.360 0.237 0.839 0.373 0.585 0.259
1 0.892 25 5 0 2 0.100 0.009 0.107 0.433 0.274 0.178 0.981 0.173 0.207 0.005
2 0.753 19 1 10 1 0.267 0.002 0.080 0.445 0.293 0.179 0.974 0.181 0.035 0.265
1 0.823 7 13 10 2 0.333 0.008 0.122 0.545 0.245 0.080 0.861 0.686 0.029 0.185
2 1.402 28 1 1 0 0.067 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.620 17 8 5 1 0.367 0.005 0.096 0.510 0.261 0.128 0.700 0.766 0.329 0.176
2 0.508 10 9 11 4 0.167 0.005 0.071 0.398 0.263 0.263 0.874 0.425 0.031 0.577
1 0.475 12 5 13 2 0.233 0.000 0.018 0.352 0.302 0.328 0.991 0.556 0.388 0.276
2 0.633 16 6 8 3 0.100 0.000 0.001 0.026 0.439 0.534 1.000 0.662 0.105 0.181
1 0.736 17 12 1 1 0.233 0.000 0.115 0.558 0.248 0.080 0.969 0.085 0.024 0.223
2 0.746 30 0 0 0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 1.100 30 0 0 0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.035 26 1 3 0 0.133 0.016 0.183 0.504 0.223 0.074 0.984 0.000 0.000 0.000
1 0.106 5 1 24 0 0.200 0.008 0.129 0.509 0.255 0.099 0.895 0.134 0.487 0.022
2 0.426 13 2 15 2 0.133 0.000 0.013 0.330 0.411 0.245 0.626 0.458 0.480 0.915

Each row reports the observed game variables and the strategy characteristics (see the caption of Table 1 for an explanation) for a different buyer in the two-buyer uninformed treatment. 
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Session Buyer Price Seller Buyer 0 1 + Size Error 0 1 2 3 4 Time - Time + Price - Price +
1 0.679 15 5 0 2 0.050 0.002 0.039 0.451 0.384 0.125 0.350 0.951 0.896 0.046
2 0.438 5 8 7 1 0.400 0.023 0.253 0.630 0.087 0.007 0.568 0.457 0.383 0.223
3 0.560 9 8 3 0 0.550 0.020 0.224 0.650 0.099 0.007 0.674 0.238 0.425 0.270
4 0.635 19 0 1 0 0.050 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.291 5 3 12 2 0.050 0.000 0.008 0.729 0.255 0.008 0.276 0.990 0.008 0.976
2 -0.483 18 2 0 0 0.100 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.318 12 3 5 2 0.150 0.001 0.018 0.401 0.258 0.322 0.422 0.928 0.609 0.536
4 0.327 20 0 0 0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.489 6 6 18 2 0.167 0.000 0.025 0.397 0.375 0.203 0.992 0.150 0.288 0.396
2 0.725 15 11 4 3 0.167 0.001 0.015 0.263 0.302 0.420 0.361 0.571 0.449 0.923
3 0.781 30 0 0 0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.694 14 8 8 2 0.233 0.000 0.024 0.297 0.154 0.525 0.942 0.000 0.245 0.871
1 0.562 14 6 10 1 0.433 0.009 0.152 0.567 0.205 0.067 0.979 0.106 0.105 0.092
2 0.760 9 19 2 2 0.200 0.002 0.071 0.562 0.271 0.095 0.925 0.698 0.267 0.012
3 0.738 12 14 4 2 0.300 0.005 0.086 0.548 0.271 0.091 0.913 0.831 0.104 0.039
4 0.580 11 6 13 1 0.367 0.006 0.105 0.568 0.216 0.105 0.947 0.220 0.077 0.453
1 0.615 13 4 3 2 0.150 0.003 0.053 0.675 0.236 0.033 0.982 0.000 0.498 0.011
2 0.574 6 10 4 1 0.400 0.030 0.270 0.605 0.091 0.004 0.552 0.770 0.139 0.121
3 0.736 18 2 0 0 0.100 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.738 19 1 0 0 0.050 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.328 10 3 7 3 0.050 0.001 0.009 0.153 0.829 0.008 0.042 0.991 0.002 0.950
2 0.321 4 5 11 2 0.150 0.003 0.102 0.680 0.201 0.015 0.825 0.706 0.016 0.315
3 0.316 15 2 3 1 0.150 0.012 0.261 0.598 0.124 0.004 0.725 0.834 0.150 0.000
4 0.334 9 4 7 2 0.100 0.001 0.022 0.813 0.161 0.003 0.095 0.995 0.013 0.873
1 0.224 15 0 15 2 0.033 0.000 0.000 0.307 0.404 0.289 0.829 1.000 0.099 0.412
2 0.238 30 0 0 0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.207 11 5 14 2 0.133 0.000 0.037 0.418 0.346 0.199 0.443 1.000 0.080 0.625
4 0.234 24 4 2 1 0.133 0.002 0.086 0.513 0.296 0.104 0.903 0.707 0.306 0.002
1 0.528 15 10 5 3 0.033 0.000 0.000 0.001 0.821 0.178 0.132 0.999 0.999 0.988
2 0.518 20 6 4 1 0.233 0.002 0.079 0.504 0.281 0.134 0.708 0.923 0.312 0.032
3 0.424 10 10 10 3 0.200 0.003 0.033 0.303 0.374 0.287 0.699 0.980 0.270 0.075
4 0.495 8 12 10 2 0.300 0.006 0.100 0.517 0.243 0.135 0.769 0.344 0.022 0.667

Each row reports the observed game variables and the strategy characteristics (see the caption of Table 1 for an explanation) for a different buyer in the four-buyer informed treatment. 
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Session Buyer Price Seller Buyer 0 1 + Size Error 0 1 2 3 4 Time - Time + Price - Price +
1 0.499 19 8 3 2 0.200 0.001 0.019 0.418 0.326 0.235 0.718 0.379 0.548 0.501
2 0.414 19 5 6 2 0.200 0.001 0.018 0.329 0.344 0.307 0.964 0.296 0.342 0.178
3 0.554 28 2 0 0 0.067 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.481 19 7 4 2 0.267 0.002 0.040 0.356 0.275 0.326 0.857 0.317 0.482 0.317
1 0.240 27 2 1 0 0.100 0.013 0.156 0.471 0.259 0.101 0.975 0.000 0.173 0.000
2 0.235 28 2 0 0 0.067 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.195 21 2 7 2 0.167 0.002 0.029 0.425 0.375 0.170 0.995 0.498 0.150 0.000
4 0.207 18 7 5 0 0.400 0.008 0.098 0.482 0.289 0.124 0.984 0.325 0.146 0.000
1 0.767 21 7 2 2 0.167 0.004 0.053 0.395 0.330 0.219 0.988 0.409 0.203 0.006
2 0.593 3 14 13 1 0.200 0.000 0.080 0.524 0.265 0.131 1.000 0.000 0.195 0.092
3 0.800 23 6 1 1 0.100 0.000 0.068 0.429 0.339 0.163 0.821 0.997 0.274 0.000
4 0.819 29 1 0 0 0.033 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.498 3 19 8 1 0.300 0.006 0.103 0.520 0.205 0.166 0.902 0.288 0.448 0.126
2 0.582 18 3 9 1 0.333 0.007 0.123 0.551 0.222 0.096 0.951 0.057 0.274 0.174
3 0.422 9 4 17 2 0.233 0.003 0.073 0.534 0.260 0.129 0.882 0.157 0.064 0.594
4 0.450 3 10 17 3 0.161 0.001 0.041 0.375 0.302 0.280 0.955 0.709 0.345 0.238
1 0.542 11 6 13 1 0.400 0.003 0.083 0.480 0.294 0.140 0.578 0.935 0.263 0.136
2 0.732 29 1 0 0 0.033 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.725 25 5 0 2 0.067 0.001 0.018 0.296 0.384 0.302 0.852 0.554 0.595 0.299
4 0.701 10 19 1 1 0.133 0.000 0.081 0.557 0.276 0.086 0.797 0.076 0.154 0.994
1 0.400 21 0 9 1 0.033 0.000 0.046 0.306 0.375 0.274 1.000 0.000 0.348 0.001
2 0.284 15 3 12 1 0.400 0.006 0.100 0.542 0.240 0.113 0.925 0.179 0.273 0.224
3 0.294 6 6 18 3 0.200 0.002 0.032 0.256 0.382 0.328 0.983 0.454 0.113 0.502
4 0.030 0 1 29 0 0.033 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.440 14 6 10 1 0.200 0.000 0.031 0.246 0.321 0.401 0.579 0.998 0.592 0.000
2 0.644 13 14 3 3 0.100 0.000 0.001 0.078 0.491 0.430 0.450 0.946 0.561 0.788
3 0.703 28 2 0 0 0.067 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.702 28 2 0 0 0.067 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Each row reports the observed game variables and the strategy characteristics (see the caption of Table 1 for an explanation) for a different buyer in the four-buyer uninformed treatment. 
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Price Seller Profit Buyer Profit Dependent Variable Constant 2-Buyer Time - Price +
-0.333 -0.420 -0.027 0.149 -0.113 -0.130 -0.170
0.071 0.009 0.315 (0.043) (0.03) (0.066) (0.077)

-0.437 -0.550 -0.043 5.630 -0.610 -1.810 -2.740
0.013 0.002 0.458 (0.363) (0.228) (0.483) (0.854)

-0.327 -0.356 -0.041 0.480 0.306
0.198 0.109 0.597 (0.063) (0.089)
0.380 0.488 0.080
0.023 0.005 0.204 OLS regressions of median session price from the last five rounds of the game ("Price"), average

-0.484 -0.579 0.044 seller profit, and average buyer profit on a dummy variable for two-buyer sessions ("2-Buyer"), and
0.004 0.003 0.746 the posterior probability estimates of different strategy characteristics. We used the software package 

-0.006 0.023 -0.190 PcGets to select a final regression specification, thereby eliminating subjectivity in the choice of a model.
0.960 0.966 0.021
0.038 -0.356 -0.141
0.693 0.067 0.078

-0.415 -0.352 0.038
0.157 0.063 0.479

Spearman rank correlations between the posterior probability estimates of 
various strategy characteristics (rows) and market outcomes aggregated 
across all sessions (columns). Each cellreports the correlation coefficient 
(top entry) and the p-value (bottom entry). Significant results appear in bold.

P(Price-)

Table 5: Strategy Characteristics and Market Outcome Correlations

P(Price+)

All Sessions

Modal Size

Expected Size

Error

P(Zero Nodes)

P(Time-)

P(Time+)

Buyer Profit

Independent Variables

Table 6: Regressions of Market Outcomes on Strategy Characteristics

Price

Seller Profit



            The monopolist’s marginal cost and the buyers’ demand curve in the two-buyer sessions. All costs 
            and valuations are expressed as deviations from the competitive price range’s midpoint, which is 
            normalized to 0. The competitive price range consists of the interval –0.05 and 0.05. Each of the 
            two symmetric buyers possesses four units of demand, the first unit of which is valued at +0.35, 
            the second and third units have values of +0.20 each, and the fourth unit has a value of +0.05.

            The monopolist’s marginal cost and the buyers’ demand curve in the four-buyer sessions. The 
            competitive price range and individual buyers’ demand curves are identical to the two-buyer 
            treatment. All costs and valuations are expressed as deviations from the midpoint of the 
            competitive price range.   

Figure 1b: Four-Buyer Treatment Parameters

Figure 1a: Two-Buyer Treatment Parameters



 Time series plot of the median posted price for the two-buyer informed and the four-buyer informed treatments.
 The median price is computed per round from the pooled prices of all of the sessions in each treatment.

   Time series plot of the median posted price for the two-buyer uninformed and the four-buyer uninformed 
   treatments. The median price is computed per round from the pooled prices of all of the sessions in each
   treatment.

Figure 2: Time Series Plot of Median Price in Informed Sessions

Figure 3: Time Series Plot of Median Price in Uninformed Sessions
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An actual inferred buyer withholding strategy containing three
relational nodes (two prices thresholds and a time node). The
behavioral interpretation of this strategy suggests the buyer never
withheld demand when the price was low enough (below 0.01),
increased withholding to one unit for intermediate prices (between
0.01 and 0.04), and withheld demand intensely after round 10 for
high prices (above 0.04).

Assignment 0: the set of possible conditioning variables: {P(t), t}

Assignment 1: k, the number of relational nodes
Choices: k ∈  {0,1,2,3,4}

Example choice: k = 2

Assignment 2: Select k = 2 variables from Variable Set C = {P1(t), P2(t), t1, t2}
Choices:  {P1(t), P2(t)}, {P1(t), t1}, P1(t), t2} {P2(t), t1}, {P2(t), t2}, {t1, t2}

Example choice: {P1(t), t1}

Assignment 3: Node Configuration Choices:

An illustration of the assignment problems involved in constructing a single strategy. We form priors over 
each possible assignment.  We construct each possible strategy up to the number of relational nodes k=4.
We compute the likelihood of each strategy, and then estimate the posterior probability of each strategy.
From this inbformation, we report estimates of the probability that a strategy is of a certain complexity, or
contains specific elements.

Figure 4: An Example Strategy

Figure 5: Constructing a Strategy
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     The average number of relational nodes in the posterior modal and posterior expected strategies 
     (pooled across all subjects in all treatments) when the prior mean number of nodes varies
     between 1 and 3.

Figure 6: Average Complexity of the Modal and Expected Strategies
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     The average number of relational nodes in the posterior modal strategies for the informed (two- 
     buyer and four-buyer) and uninformed (two-buyer and four-buyer) treatments, when the prior
     mean number of nodes varies from 1 to 3.

     The average number of relational nodes in the posterior modal strategies for the two-buyer 
     (informed and uninformed) and four-buyer (informed and uninformed) treatments, when the prior
      mean number of nodes varies from 1 to 3.

Figure 7a: Average Strategy Complexity by Informational Treatment

Figure 7b: Average Strategy Complexity by Number of Buyers
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     The posterior probability that the buyers' strategies (pooled by treatment) contain the relational node 
     that decreases withholding with time (Time -), when the prior mean number of relational nodes is allowed 
     to vary between 1 and 3.

     The posterior probability that the buyers' strategies (pooled by treatment) contain the relational node 
     that increases withholding with time (Time +), when the prior mean number of relational nodes is allowed 
     to vary between 1 and 3.

Figure 8b: Average Probability That Strategies Contain Time+ Relational Node

Figure 8a: Average Probability That Strategies Contain Time- Relational Node
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     The posterior probability that the buyers' strategies (pooled by treatment) contain the relational node 
     that decreases withholding with price (Price -), when the prior mean number of relational nodes is allowed 
     to vary between 1 and 3.

     The posterior probability that the buyers' strategies (pooled by treatment) contain the relational node 
     that increases withholding with price (Price +), when the prior mean number of relational nodes is allowed 
     to vary between 1 and 3.

Figure 9a:Average Probability that Strategies Contain Price- Relational Node

Figure 9b: Average Probability that Strategies Contain Price+ Relational Node
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Figure 10: Buyer Strategies in Two-Buyer Informed Session 7

The modal strategies inferred for each buyer in this two-buyer session. Buyer 1's strategy reflects 
price sensitivity after period 5. Buyer 2 is an intense early withholder.

     units sold and the number of sales lost to demand withholding by period, respectively.

Buyer 1 Buyer 2

Figure 11: Time Series of Prices in Two-Buyer Informed Session 7

     The monopolist's posted prices in each of the 30 rounds. The series "Q and "W" indicate the number of  
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Figure 12: Buyer Strategies in Four-Buyer Informed Session 10

The modal strategies inferred for each buyer in this four-buyer session. For Buyer 3, the degenerate 
strategy of making all profitable purchases in every period is the modal strategy. Price thresholds 
appear in the other strategies. Buyers 1 and 4 display early, unconditional demand withholding.

     The monopolist's posted prices in each of the 30 rounds. The series "Q and "W" indicate the number of  
     units sold and the number of sales lost to demand withholding by period, respectively.
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Figure 13: Time Series of Prices in Four-Buyer Informed Session 10
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Two-Buyer Informed, Session 7 Four-Buyer Informed, Session 10

The modal strategies inferred for the sellers in Sessions 7 and 10. Session 7 seller strategy reflects
a price reduction whenever more than one unit of demand is withheld.  Session 10 seller increases
the price when 3 or less units are withheld, and lowers the price otherwise.

Figure 14: Seller Strategies
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