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ABSTRACT

The Pareto-like tail of the size distribution of firms can arise from random growth of productivity or

stochastic accumulation of capital. If the shocks that give rise to firm growth are perfectly correlated

within a firm, then the growth rates of small and large firms are equally volatile, contrary to what is

found in the data. If firm growth is the result of many independent shocks within a firm, it can take

hundreds of years for a few large firms to emerge. This paper describes an economy with both types

of shocks that can account for the thick-tailed firm size distribution, high entry and exit rates, and

the relatively young age of large firms. The economy is one in which aggregate growth is driven by

the creation of new products by both new and incumbent firms. Some new firms have better ideas

than others and choose to implement those ideas at a more rapid pace. Eventually, such firms slow

down when the quality of their ideas reverts to the mean. As in the data, average growth rates in

a cross section of firms will appear to be independent of firm size, for all but the smallest firms.
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at www.luttmer.org. I thank Nathalie Pouokam for skillful research assistance. The views expressed herein

are those of the author and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal
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1. I

Why does the employment size distribution of US firms look like a Pareto distribution,

with the fraction of firms with more than n employees roughly equal to n−ζ? Why is
the tail index ζ ≈ 1.05 barely high enough for the distribution to have a finite mean?
More than half of all firms with any employees have no more than four employees. But

there are also almost a thousand firms with more than ten thousand employees each,

and these firms employ as much as a quarter of the US labor force. What accounts for

the large amount of heterogeneity in firm size? How does this heterogeneity evolve over

time? Some benchmark answers to these questions are needed for the systematic use of

firm-level data in the study of aggregate growth and fluctuations.

In the presence of decreasing returns or downward sloping firm demand curves, it

is possible that the highly skewed size distribution entirely reflects a highly skewed

productivity distribution. Such a productivity distribution can arise if productivity

growth is random and only sufficiently productive firms can survive. Given iso-elastic

cost functions or demand curves, random productivity growth gives rise to Gibrat’s law,

which holds that firm growth rates are independent of size. A stationary size distribution

results if employment at incumbent firms grows more slowly on average than aggregate

employment. This distribution has a tail index ζ just above 1 if cost parameters are

such that there is only a small gap between entrant and incumbent mean productivity

growth rates (Luttmer [2007]).1

This paper associates firm size not primarily with productivity differences, but with

organization capital (Prescott and Visscher [1980]) that can be accumulated through

investment over time. In the model, a firm produces one or more differentiated com-

modities using labor and commodity-specific blueprints. An entrepreneur can set up a

new firm by producing a start-up blueprint. After that, the firm can use labor and any

of its blueprints to attempt to produce more blueprints for new commodities. Individual

blueprints can also become obsolete. The arrival rates of these two types of events are

independent and independent across blueprints. Absent other sources of heterogeneity,

1The ζ = 1 asymptote is known as Zipf’s law. See Axtell [2001] for recent evidence on the firm
size distribution showing that ζ slightly above 1 fits the data well. Well-known empirical studies on
Gibrat’s law for firms, based on growth rate regressions that correct for selection, are Evans [1987] and

Hall [1987]. Sutton [1997] surveys the literature. Gabaix [1999] uses Gibrat’s law to interpret the city
size distribution and contains many useful references on the history of the subject. Rossi-Hansberg
and Wright [2007] develop a model of the firm size distribution in which there are many industries and
the firm size in any given industry follows a stationary process, instead of the non-stationary process
implied by Gibrat.
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this implies that the mean growth rate of a firm with more than a single blueprint is

independent of firm size–a weak version of Gibrat’s law. Averaging within the firm

implies that the variance of firm growth is inversely proportional to firm size, a vio-

lation of the strong form of Gibrat’s law according to which the entire distribution of

growth rates is independent of firm size. The economy exhibits balanced growth, and

increases in variety add to the aggregate growth rate, as in Romer [1990] and Young

[1998]. As long as there is entry, the size distribution will be stationary with a right tail

that behaves like n−ζ.
Independent within-firm replication avoids a problem that arises in economies with

only firm-wide productivity shocks. In Luttmer [2007], it takes a standard deviation

of firm employment growth of about 40% per annum to jointly account for the size

distribution and the 11% rate of firm entry observed in the data. This standard deviation

is within the range reported by Davis et al. [2007] for all firms, but implausibly high

for large firms. Here, large firms are very stable even when small-firm growth rates

are sufficiently volatile to be consistent with the observed entry and exit rates. In the

simplest version of the model, though, this is too much of a good thing and leads to a

rather dramatic counterfactual implication: the median age of firms with more than ten

thousand employees is implied to be about 750 years. Stationarity and the weak version

of Gibrat’s law force mean incumbent growth rates to be below the growth rate of the

aggregate labor force, only about 1% per annum, and averaging within the firm reduces

variance by too much for “lucky” firms to become large in a relatively short amount of

time.

Newly collected data show that the median age of firms with more than ten thousand

employees in 2008 was only about 75 years. With a 40% standard deviation of employ-

ment growth, an economy like Luttmer [2007] predicts about 100 years.2 But to account

for the relatively young age of large firms observed in the data, without assuming there

is a 30% chance that employment at WalMart will grow or shrink by more than 40%

over the next year, requires abandoning Gibrat’s law.

Suppose therefore that some new firms enter with an initial blueprint of a higher

quality than other blueprints in the economy. The resulting higher profits per blueprint

create an incentive to copy these blueprints at a higher rate if quality is inherited. If

copies stay within the firm, then these new firms will grow fast. If a firm’s quality

advantage is transitory, this rapid growth will come to an end eventually. A stationary

distribution with a tail index ζ above 1 results if there is positive entry along the balanced

2A new calibration is available at www.luttmer.org.
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growth path. A simple formula shows that this tail index will be close to 1 if firms with

high-quality blueprints grow at an equilibrium rate that is slightly below the sum of the

growth rate of the aggregate labor force and the hazard rate with which high-quality

firms lose their edge. Thus high-quality firms can grow fast if the period of rapid growth

is not expected to last too long. But there will be variation in how long firms are in

this rapid growth phase, and this variation allows for the appearance of young large

firms. This version of the organization capital interpretation of firm growth can match

the overall size distribution, the amount of entry and exit, as well as the relatively

young age of large firms. Furthermore, although Gibrat’s law does not hold, the mean

growth rates of surviving firms behave like they do in the data: roughly independent of

size for most firms and significantly higher for the smallest firms (Dunne, Roberts and

Samuelson [1989]).
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F I Selected Growth Histories

Figure I presents some corroborating evidence for the type of histories of firm growth

predicted by the model. It shows the employment histories of 25 of the nearly 1,000 large

firms that had more than ten thousand employees in 2008 (the data are described in

Appendix A). The average employment growth rate across all firms reported in Figure

I is almost 18% per annum, and there is considerable variation. In particular, firm

growth rates seem to be much above average when firms are relatively small, and decline

significantly when firms become large. The data shown in Figure I represent only a
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small sample from a population of slightly under a thousand large firms. In turn, this

population of large firms was selected over many years from the population of all firms

that were ever set up. In US data, the number of firms grows at an annual rate about

equal to the 1% growth rate of aggregate employment. Combined with an entry rate of

11%, a steady-state calculation implies that the number of firms that was ever set up

is roughly 11 times the current population of around 6 million firms.3 The thousand or

so firms with ten thousand or more employees are thus a highly selected sample from a

universe of about 66 million firms. In such a selected sample, one might conjecture, it

is not surprising to see that large firms tend to have a history of rapid enough growth

to match the age distribution, even though Gibrat’s law holds. The results presented in

this paper show that this conjecture is wrong when shocks tend to average out within a

firm. The strings of positive growth needed are too unlikely, and currently active large

firms should be about 750 years old if Gibrat’s law holds.

Related Literature This paper goes back to, interprets, and builds on the type of

growth process initially proposed by Yule [1925] and Simon [1955]. Yule [1925] was

concerned with the number of species in biological genera, and Simon [1955] with word

frequencies, city sizes and income distributions. In the context of cities, Krugman [1996,

p. 96] described the time it takes for cities to grow large in Simon’s model as an

unresolved problem. Simon and Bonini [1958], Ijiri and Simon [1964], and many others

since studied firm growth. Klette and Kortum [2004] describe an economy based on

the quality-ladder model of Grossman and Helpman [1991] in which firm size follows a

birth-death process, as in this paper. In their economy, incumbent firms cannot grow

on average because there is a fixed set of commodities and new entrants continuously

capture the markets for some of those commodities. This makes it impossible for large

firms to arise. This difficulty is resolved here by considering an economy in which the

number of commodities can grow over time, as in Romer [1990] and Young [1998]. Even

without growth in the number of markets, a thick-tailed size distribution can arise in the

Klette and Kortum [2004] economy if Gibrat’s law is relaxed along the lines described

in this paper.

The models in this paper are highly tractable analytically, and inevitably stylized.

Lentz and Mortensen [2006] use a version of the Klette and Kortum [2004] economy

3The growth rate of the collection of all historical firms equals the entry rate times the fraction of all
historical firms that are currently active. In a steady state, it also equals the growth rate of the active
number of firms, which equals the growth rate of aggregate employment.
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with additional and more flexible sources of heterogeneity. They do not address the

thin-right-tail problem but estimate their model using panel data on Danish firms.4 The

Danish firm size data do not appear to exhibit the striking Pareto shape that is found

reliably in U.S. data. The small size of the Danish economy may well account for this–

there are as many firms in the U.S. as there are people in Denmark. When it comes

to examining the right tail of the size distribution, a model economy with a continuum

of firms could simply be a better abstraction for the U.S. than for a small country like

Denmark. In addition, small countries will have fewer very large firms if the replication

of blueprints across national boundaries or outside language areas comes at additional

costs.

Firms in this paper are organizations that operate in (monopolistically) competitive

markets and grow through continuous investment in new blueprints, at a level that is

proportional to the size of the firm. One can alternatively view a firm as a trading post or

network in which agents trade repeatedly. Gibrat’s law and the observed size distribution

arise if there is population growth and agents search for firms by randomly sampling other

agents and matching with the firm with which the agent sampled is already matched.

A simple version of such a model is described in Luttmer [2006]. Related models of

network formation are presented in Jackson [2006] and Jackson and Rogers [2007], and

the extensive literature cited therein. Deciding on the relative importance of these

alternative interpretations poses difficult identification problems.

Outline The economy and its balanced growth path are described in Section 2, to-

gether with two alternative formulations of the role of blueprints in production. The

stationary size and age distributions are derived in Section 3 and formulas are given

for the tail index ζ in the Gibrat and non-Gibrat cases (Propositions 3 and 4), and for

the mode of the age distribution of large firms when both Gibrat’s and Zipf’s law hold

(Section 3.5). Calibrations are in Section 4. All proofs and a description of the data are

in the appendix.

2. T E

Blueprints are costly to replicate or produce from scratch. In the baseline version of the

economy, a blueprint describes the idea for a particular final good. No two blueprints

are the same, whether produced by replication or from scratch. Final goods producers

4See also Seker [2007] for related work on Chilean establishments.
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are monopolistic competitors. Time is continuous and indexed by t ∈ [0,∞).

2.1 Consumers

There is a growing population of consumers measured by Ht = Heηt at time t. The

dynastic preferences of the representative consumer over aggregate consumption flows

Ct are determined by

E0
∞

0

e−ρtHt
(Ct/Ht)

1−γ

1− γ
dt .

The parameters η, ρ and γ are positive and γ = 1 is interpreted as logarithmic utility.

Markets are complete and consumers face standard budget constraints. The resulting

interest rate in consumption numeraire is related to the consumption growth rate via

rt = ρ+ γ
DCt
Ct
− η . (1)

Aggregate consumption is a CES composite of differentiated commodities, as in Dixit

and Stiglitz [1977],

Ct = C
1−1/σ
ω,t dNt(ω)

1/(1−1/σ)
,

where Nt(ω) is the measure of type-ω commodities and σ > 1 is the elasticity of substi-

tution. In the baseline specification, all commodity types are the same and all producers

choose to charge the same price pt. Consumers therefore set Cω,t = Ct(pt), which implies

that

Ct = Ct(pt)N
1/(1−1/σ)
t , (2)

where Nt = dNt(ω). Cost minimization implies that commodity demands are

Ct(p) =
p

Pt

−σ
Ct (3)

where Pt is the price index Pt = ptN
−1/(σ−1)
t . Note that the prices of differentiated

commodities and the composite good are quoted in some arbitrary numeraire. All other

prices will be expressed in units of the composite commodity.

2.2 Producers

Given a blueprint for a particular differentiated commodity, a producer can use l units of

labor to produce Ztl units of the commodity, where Zt = Zeθt evolves exogenously. The

marginal cost of one unit of a commodity is thus wt/Zt in units of composite good, and
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the constant elasticity demand curves (3) imply that producers set prices at a constant

markup over marginal cost, pt/Pt = (wt/Zt)/(1−1/σ). Combining this with (2) and (3)
determines the equilibrium real wage as a function of the state (Zt, Nt),

wt = (1− 1/σ)ZtN1/(σ−1)
t . (4)

The amount of labor needed to satisfy the resulting demand for a typical commodity is

lt = Ct(pt)/Zt. Using (3) and the prices pt/Pt set by producers, this gives

lt =
(1− 1/σ)Zt

wt

σ−1
(1− 1/σ)Ct

wt
. (5)

The markup 1/(1 − 1/σ) of price over marginal cost implies that profits measured in
units of the composite good will be wtlt/(σ − 1).

2.3 New Blueprints

The producer of a differentiated commodity needs a blueprint to produce. Blueprints

depreciate in a one-hoss-shay fashion at an average rate λt. New blueprints for distinct

differentiated commodities can be produced by using labor to replicate existing blue-

prints, or from scratch by entrepreneurs. The respective rates at which this occurs in

equilibrium are denoted by μt and νt. The number of new blueprints therefore evolves

according to

DNt = (νt + μt − λt)Nt. (6)

An initial condition determines N0.

2.3.1 Replication of Existing Blueprints

A new blueprint produced from an existing blueprint arrives following an exponentially

distributed waiting time with mean μt = f(it), where it is labor employed in the replica-

tion process. An existing blueprint is lost following an exponentially distributed waiting

time with mean λt = g(jt), where jt is labor used to “maintain” the blueprint. Note that

an existing blueprint generates revenues from its use in the production of a commodity,

and as an input in the production of new blueprints.5 The value qt of a blueprint must

5The model of how Wal-Mart has expanded since 1962 described in Holmes [2006] has this feature.
The key assumption here is that K-Mart cannot simultaneously look at a Wal-Mart blueprint to produce
a new blueprint of its own. As in Boldrin and Levine [1999, 2006], and unlike Luttmer [2007], spillovers
are assumed to be of secondary importance in this economy.
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satisfy the Bellman equation

rtqt = max
μ≤f(i)
λ≥g(j)

wt
lt

σ − 1 − [i+ j] + (μ− λ)qt +Dqt , (7)

together with a transversality condition. The blueprint production function f is in-

creasing and exhibits strictly decreasing returns to scale. The blueprint depreciation

function g is assumed to be strictly decreasing and convex. For simplicity, both f and

g are assumed to sufficiently smooth, with slopes that are unbounded near zero and

converge to zero for large i and j. The optimal levels of investment in new blueprints

and maintenance of existing blueprints are determined by

μt = f(it), λt = g(jt), qtDf(it) = −qtDg(jt) = wt. (8)

The technology assumptions ensure that μt and −λt are increasing in qt. Blueprints are
replicated more quickly and maintained better when their value is high.

2.3.2 New Designs by Entrepreneurs

New blueprints can also be designed from scratch by agents acting as entrepreneurs,

without the input of an existing blueprint. At any point in time, every agent in the

economy is endowed with one unit of effort that can be allocated to two tasks: supplying

labor or attempting to produce a blueprint. Every agent has a skill vector (x, y), where

x is the rate at which the agent can develop new blueprints and y is the amount of labor

the agent can supply per unit of time. Comparative advantage determines occupational

choice. Ignoring ties, agents with skill vectors that satisfy qtx > wty will choose to be

entrepreneurs who design blueprints, and agents with skill vectors that satisfy qtx < wty

will choose to be employees.

There is a time-invariant talent distribution T defined over the set of all possible skill

vectors, as in the Roy model of Rosen [1978]. This talent distribution has a finite mean.

For simplicity, it is assumed to have a density so that ties play no role. The resulting

per-capita supplies of entrepreneurial effort and labor are

E(qt/wt) =
qtx≥wty

xdT (x, y), (9)

L(qt/wt) =
qtx<wty

ydT (x, y), (10)

respectively. Clearly, the supply of entrepreneurial effort is increasing in qt/wt, and

the supply of labor is decreasing, both ranging between 0 and the mean skill in the
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population. If the talent distribution is Fréchet then the elasticity of E(qt/wt)/L(qt/wt)

with respect to qt/wt is constant (Luttmer [2008]).

2.4 Equilibrium

Given a per-capita supply of entrepreneurial effort E(qt/wt) and a stock of blueprints

Nt, the rate νt at which new blueprints are added by entrepreneurs is determined by

νtNt = HtE(qt/wt). (11)

Labor market clearing requires that

(lt + it + jt)Nt = HtL(qt/wt). (12)

The equilibrium is determined by (1)-(12), an initial condition for N0, and a transver-

sality condition for qtNt.

Because the product market distortion arising from monopolistic competition is the

same in all markets and at all times, and because agents supply their time inelastically, it

turns out that the equilibrium allocation is Pareto efficient. It is possible to characterize

the equilibrium dynamics in terms of only one state and one costate variable, and use

a phase diagram to construct an equilibrium that converges over time to a balanced

growth path.6

2.5 Balanced Growth

A key feature of the balanced growth path is that the allocation of labor per blueprint is

constant at some (i, j, l). Population growth then implies that the measure of blueprints

is given by Nt = Neηt for some N . Because of (4) and (5), wages and per-capita

consumption grow at the rate κ = θ + η/(σ − 1). The term η/(σ − 1) measures gains
from variety, as in Young [1998]. By (1), the implied interest rate is r = ρ+γκ. The flow

profits from producing a commodity is wtl/(σ − 1). It follows that [qt, wt] = [q, w]eκt.
The Bellman equation (7) then implies that wages and blueprint prices must satisfy the

present-value condition
q

w
=

l
σ−1 − (i+ j)
r − κ− (μ− λ)

, (13)

6The rate at which blueprint capital is accumulated in this economy depends intricately on the
shape of the production and depreciation functions f and g, and the shape of the talent distribution.
Adjustment to the balanced growth path may be slow and asymmetric. A detailed analysis is beyond
the scope of this paper.
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where (i, j) and (μ,λ) satisfy

μ = f(i), λ = g(j), (q/w)Df(i) = −(q/w)Dg(j) = 1. (14)

Holding fixed l, these conditions imply that q/w is equal to the maximum subject to

[μ,λ] = [f(i), g(j)] of the right-hand side of (13), as long as this is finite.7 The fact

that the aggregate number of blueprints grows at the rate η implies that new blueprints

must be added by entrepreneurs at the rate ν = η − (μ − λ). If E(q/w) is positive,

then the entrepreneurial supply of blueprints (11) determines the steady-state supply of

blueprints via
N

H
=

E(q/w)

η − (μ− λ)
. (15)

Alternatively, E(q/w) = 0 and η = μ − λ. Along a balanced growth path, the labor-

market clearing condition (12) implies a derived demand for blueprints equal to

N

H
=
L(q/w)

i+ j + l
. (16)

The balanced growth conditions (13)-(16) determine (i, j, l), (μ,λ), q/w, and N/H. The

level of wages follows from (4) and aggregate consumption can be obtained from (5),

wages, and l.

Given a positive q/w that is not too large, the conditions (13)-(14) can be solved for

the labor allocation (i, j, l) and the resulting blueprint creation and destruction rates μ

and λ. It is not difficult to verify that (i, j, l) and μ − λ are increasing in q/w. Since

E(q/w) is increasing in q/w, this implies a steady-state supply of blueprints (15) that is

increasing in q/w. Since L(q/w) is decreasing in q/w, the derived demand for blueprints

(16) is decreasing in q/w. There can therefore be at most one price q/w that clears the

market for blueprints in steady state.

The replication technologymust be assumed to satisfy f(0)−g(0) < η or else η ≥ μ−λ
cannot hold. The assumption r−κ > η ensures that η ≥ μ−λ implies r−κ > μ−λ. The
fact thatE(q/w) and L(q/w) go to zero as q/w goes to, respectively, zero and infinity, can

now be used to argue that (13)-(16) does in fact have a solution. It remains to show that

the decision problem of blueprint owners is well defined. This follows because blueprint

owners cannot obtain unbounded profits by replicating more quickly than r−κ. The fact
that f(i)− g(j) is increasing and concave implies that, at the proposed equilibrium, the

7That is, if and only if l is low enough to ensure that maxi,j{f(i) − g(j) : i + j ≤ l/(σ − 1)} does
not exceed r − κ. The value of a blueprint is infinite for l outside this range.
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flow cost of doing so would exceed the flow revenues wl/(σ−1) per blueprint. Together,
these results establish the following proposition.

P 1 Suppose that ρ+ γκ > κ+ η and η > f(0)− g(0). Suppose that the
talent distribution is such that E(q/w) > 0 for all strictly positive q/w. Then (13)-(16)

defines the unique balanced growth path, and η > μ− λ.

A balanced growth path with E(q/w) = 0 can arise if the talent distribution has bounded

support. In such an equilibrium, new blueprints are only produced using replication from

an initial stock of blueprints.

2.6 Alternative Blueprint Interpretations

In the setup considered so far, different blueprints specify distinct differentiated com-

modities that are produced subject to constant returns and are sold to all consumers.

The equilibrium conditions for this economy also apply to an economy in which con-

sumers live in many different locations and blueprints are location specific. With minor

modifications, the same framework can be used as well to consider competitive final

goods markets and blueprints containing the specifications for production facilities or

plants that are subject to decreasing returns. The following discussion elaborates on

these two interpretations. They are benchmarks. Hybrid formulations are more plausi-

ble, but also less analytically tractable.

2.6.1 Sales Offices or Stores

Suppose that at any point in time, consumers are evenly distributed across many loca-

tions. In each location, there are many consumers who can only buy from local stores.

Preferences are as in (2), with Nt now denoting the measure of stores in a particular

location. An entrepreneur can create a blueprint for a store in a randomly selected lo-

cation. The store sells a new differentiated product. The blueprint can then be copied

to operate stores selling the same differentiated product in randomly selected new loca-

tions. There is an economy-wide market for labor services, or, equivalently, output is

produced where workers live and can be shipped to stores at no cost.

Because there are many locations, replicated blueprints are always assigned to new

locations, and every new store sells a commodity that is new to the market in which it

is introduced. Assuming there is a very large number of blueprints that can be copied,

every location receives a constant flow of new stores, and stores are uniformly distributed
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across locations. As a result, new stores face the same market conditions everywhere.8

With this, the analysis proceeds as before.

2.6.2 Jobs, Production Lines, Plants

Instead of assuming that the output of every producer is unique, suppose there is one

competitive market for final goods. A blueprint defines a particular job, production

line or plant that is subject to decreasing returns to scale. Each plant can use lt units

of labor to produce output ZtF (1, lt) for some constant returns to scale production

function F . Growth in variety is no longer a source of consumption growth. Along a

balanced growth path, wages grow at the same rate as Zt, the amount of labor used per

blueprint is constant, and the number of blueprints grows at the population growth rate

η. In contrast to the Dixit-Stiglitz formulation used elsewhere in this paper, no constant

elasticity assumptions are needed. The production function F is general, even though Zt
is not labor-augmenting in the usual sense. In units of blueprints, the per-capita capital

stock is constant. But the market value of the capital stock and the cost of producing

new capital grows at the same rate as Zt, wages, and output per capita.

3. T D F S A

The economy described up to now has agents who consume, supply labor, and act as

entrepreneurs. Everyone can own blueprints and there are no firms. A transaction cost

argument can be used to motivate a definition of what firms are in this economy.

Consider an entrepreneur who has just developed a new blueprint. To hire labor to

produce the associated commodity and develop further copies of the same blueprint, the

entrepreneur can set up a firm at no cost. This defines a firm entry. Claims to firms

can be traded freely. But there is a cost, potentially very small, involved in firms hiring

entrepreneurs to develop new blueprints from scratch, in selling blueprints to firms, and

in merging firms. There are no cost advantages to any of these transactions, and so they

8There must be many more stores than locations. Imagine markets are non-overlapping intervals of
length 1/A in [0, 1], where A ∈ N. Each one of the Amarkets has τA consumers and there are σA2 stores
that are randomly assigned to points in [0, 1]. The ratio of stores to consumers is σ/τ . As A becomes
large, the proportion of all stores assigned to the region [0, x] converges to x. If the number of stores
were σA instead, then the number of stores in different markets would remain random and converge
to a Poisson distribution. Market conditions would vary across locations, and strategic considerations
would come into play in each market.
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will not occur in equilibrium.9 A firm will therefore only gain new blueprints through

“organic growth,” by replicating its existing blueprints. A firm only loses blueprints as

they depreciate at the rate λ.10 Exit occurs when a firm has lost all its blueprints.

The measure of firms with n blueprints at time t is denoted by Mn,t. The aggregate

measure of blueprints is therefore

Nt =
∞

n=1

nMn,t. (17)

Over time, the change in the number of firms with one blueprint is

DM1,t = λ2M2,t + νNt − (μ+ λ)M1,t, (18)

where μ, λ, and ν = η − (μ − λ) are equilibrium rates that are constant along the

balanced growth path. The number of firms with one blueprint increases because firms

with two blueprints lose one, or because of entry. The number declines because firms

with one blueprint gain or lose a blueprint. Similarly, the numbers of firms with more

than one blueprint evolve according to

DMn,t = μ(n− 1)Mn−1,t + λ(n+ 1)Mn+1,t − (μ+ λ)nMn,t, (19)

for all n−1 ∈ N. The joint dynamics of Nt and {Mn,t}∞n=1 is fully described by (17)-(19).

3.1 The Stationary Size Distribution

Along the balanced growth path, Nt grows at the rate η and a stationary firm size

distribution exists if (17)-(19) has a solution that satisfies DMn,t = ηMn,t for all n ∈ N.
Given that Nt and Mn,t grow at the common rate η, one can then define

Pn =
Mn,t
∞
n=1Mn,t

for all n ∈ N. This is the fraction of firms with n blueprints. It is analytically more
convenient to use the fraction of all blueprints held by firms of size n. This is given by

Qn =
nMn,t
∞
n=1 nMn,t

9Of course these transactions do occur in the data. This is a familiar and important failure of the
type of model described in this paper. Chatterjee and Rossi-Hansberg [2006] provide an interesting

model of firm size in which adverse selection makes it difficult for firms to hire entrepreneurs.
10Bernard, Redding and Schott [2006] document the importance of turnover in the mix of products

sold by U.S. manufacturing firms. They report that less than 1% of product adds and drops are
associated with mergers or acquisitions.
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for all n ∈ N. With these definitions, (18) becomes

ηQ1 = λQ2 + ν − (μ+ λ)Q1, (20)

and (19) implies
1

n
ηQn = μQn−1 + λQn+1 − (μ+ λ)Qn, (21)

for n− 1 ∈ N. Note that these equations only depend on the parameters μ/η and λ/η.

The stationary distribution cannot depend on the units in which time is measured.

P 2 Suppose that η, μ, λ, and ν = η − (μ − λ) are positive. Define the

sequence {βn}∞n=0 by the recursion βn = 1/(1− (μβn−1/λ)+(η+μn)/λn) and the initial

condition β0 = 0. This sequence is monotone and converges to min{1,λ/μ}. The only
non-negative and summable solution to (20)-(21) is given by

Qn =
ν

μ

∞

k=0

1

βn+k

n+k

m=n

βm

n+k

m=1

μβm
λ
. (22)

If μ 9= λ then

Qn ∼
ν

|μ− λ|

n−1

m=1

μβm
λ

(23)

Here, (23) means that the ratio of the left- and right-hand sides converges to 1 as n

becomes large. If ν = 0 then the only non-negative and summable solution to (20)-(21) is

identically zero, implying that there does not exist a stationary distribution in this case.

If ν > 0, then (22) adds up to 1 by construction and defines a stationary size distribution

{Pn}∞n=1 via Qn ∝ Pn/n. The mean firm size can be written as 1/( ∞
n=1Qn/n), and

this is also finite by construction. Appendix B proves these results and gives an explicit

solution for Qn in the more general case that arises when the size distribution of entrants

is non-degenerate.

When λ > μ, the properties of the right-hand side of (23) are very different from

what they are when μ > λ. If λ > μ, then Qn is bounded above by a multiple of the

geometrically declining sequence (μ/λ)n. On the other hand, if μ > λ then μβn/λ ↑ 1,
and hence the right-hand side of (23) declines at a rate that is slower than any given

geometric rate. The following proposition gives a further characterization of the right

tail of the distribution.
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P 3 Suppose that η > μ − λ > 0. Then the right tail probabilities Rn =
∞
k=n Pk of the stationary firm size distribution satisfy

lim
n→∞

n 1− Rn+1
Rn

= ζ,

where ζ = η/(μ− λ). That is, Rn is a regularly varying sequence with index −ζ.

This means that limn→∞R[xn]/Rn = x−ζ for any x > 0. An implication is that nθRn → 0

for all θ < ζ and nθRn →∞ for all θ > ζ. Even though this does not describe precisely

what happens to nζRn for large n, the parameter ζ will continue to be referred to as

the tail index of the size distribution.11 The limiting tail index ζ = 1 associated with

Zipf’s law arises when the rate ν = η − (μ − λ) at which blueprints are introduced

by entrepreneurs converges to zero. Appendix B shows that Proposition 3 holds more

generally if the size distribution of entrants has a right tail that is regularly varying with

an index smaller than −ζ.
For comparison, consider the economy of Klette and Kortum [2004]. There, η = 0 and

μ < λ. This turns (20)-(21) into a linear difference equation with constant coefficients

that is easy to solve. The resulting firm size distribution is R.A. Fisher’s logarithmic se-

ries distribution, which has Pn ∝ (μ/λ)n /n. As a result, right tail probabilities converge
to zero even more quickly than a geometric sequence. To generate a thick right tail,

firms must grow on average, and in the economy described here this requires population

growth. A tail index ζ close to 1 can only arise if growth in the number of blueprints

is mostly due to incumbents rather than new entrants. It is critical that firms grow

exponentially. If firms accumulate new blueprints at some constant rate μ, instead of

μn, then the size distribution would be Poisson-like, with a geometrically bounded right

tail.

3.2 Firm Entry and Exit Rates

The flow of blueprints introduced by new firms is νNt. Each new firm starts with one

blueprint, and so νNt is also the flow of new firms that enters per unit of time. The firm

entry rate as a fraction of the number of incumbent firms, denoted by ε, is therefore equal

to νNt divided by the number of firms in the economy,
∞
n=1Mn,t = Nt/

∞
n=1 nPn. An

alternative way to calculate the firm entry rate ε is to note that the only firms that can

11See Bojanic and Seneta [1973] for the definition of regularly varying sequences and some of its
implications. Bingham, Goldie and Teugels [1987] is a useful source on the general topic of regular
variation.
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exit in this economy are firms with one remaining blueprint. The proportion of such

firms is P1, and they exit at a rate λ. The resulting balance ε − λP1 of firms entering

and exiting per unit of time must equal the rate η at which the number of firms grows

over time. These two calculations can be summarized as

ε = ν
∞

n=1

nPn = η + λP1. (24)

Just like the blueprint entry rate ν + μ = η + λ ≥ η, the firm entry rate can be no

less than the population growth rate, and this lower bound is attained only when firms

never lose blueprints and therefore never exit. The two equations given in (24) and

Q1 = P1/
∞
n=1 nPn imply ε/η = ν/(ν−λQ1). Together with (22) this yields an explicit

formula for the firm entry rate relative to the population growth rate. In turn this

implies an explicit formula for the mean firm size ε/ν.

3.3 Firm Type Transitions

The data shown in Figure I suggest that some firms initially grow at rates that far

exceed the bound μ − λ < η implied by Proposition 1, and that these growth rates

decline with firm size and age. A simple way to account for this slow-down and examine

its implications for the stationary size distribution is as follows. Suppose there are

high- and low-quality blueprints. High-quality blueprints imply a productivity ZHeθt

and low quality blueprints imply a productivity ZLeθt, where ZH > ZL. Entrepreneurs

produce high-quality blueprints with probability α ∈ (0, 1] and low-quality blueprints
with probability 1 − α.12 Incumbent firms replicate blueprints as before, preserving

their quality. But high-quality firms transition to become low-quality firms following

independent and exponentially distributed waiting times with a mean 1/δH. When

such a transition happens, all blueprints of the firm turn into low-quality blueprints,

permanently. Any new blueprints created by the firm thereafter will be of low quality.

Low-quality firms can also exit randomly at a rate δL, irrespective of the number of

blueprints that make up the firm.

One possible interpretation for these kinds of firm type transitions is that some

aspect of the environment for which the initial blueprint of a firm was created changes

permanently. Outside the formal model described here, a relative decline in the quality

of a firm’s blueprints could arise from competing firms catching up. An alternative
12Alternatively, one can assume that entrepreneurs have potentially different skills for producing high-

and low-quality blueprints. Relative prices and comparative advantage then determine the quality mix
of start-up blueprints.
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interpretation for the decline in firm growth rates is that blueprints are location-specific

and that firms initially implement blueprints in the most profitable locations.

Along a balanced growth path, the present-value condition (13) must be modified

to account for the loss in value that occurs when a blueprint transitions from one type

to another. The incentives to replicate and maintain continue to be determined by

(14). Let q = αqH + (1 − α)qL, where qH and qL are the respective prices of high- and

low-quality blueprints. The steady-state number of high-quality blueprints is NH/H =

αE(q/w)/(η+δH−[μH−λH]). Low-quality blueprints are produced by entrepreneurs, by
incumbent replication, and because a flow of high-quality blueprints depreciate in quality.

This implies NL/H = [(1− α)E(q/w) + δHNH/H]/(η + δL − [μL − λL]). Write (iI, jI, lI)

for the allocation of labor to a type-I blueprint. As long as the talent distribution for

entrepreneurs is unbounded, E(q/w) is positive and the labor market clears if

L(q/w)

E(q/w)
=

(1− α)(iL + jL + lL)

η + δL − (μL − λL)
+

α

η + δH − (μH − λH)
iH + jH + lH +

δH(iL + jL + lL)

η + δL − (μL − λL)
.

As in the case of (15)-(16), labor market clearing forces η+ δH > μH− λH and η+ δL >

μL − λL in any equilibrium in which entrepreneurs contribute to the supply of new

blueprints.

One can verify that ZH > ZL implies iH > iL, jH > jL, lH > lL and qH > qL. While

their quality advantage lasts, high-quality firms have stronger incentives to replicate and

maintain blueprints than low-quality firms. High-quality firms choose to grow faster than

low-quality firms. This can account for the thick tail of the size distribution.

P 4 Suppose some firms enter as high-quality firms and transition to low-

quality firms at a positive rate δH. Low-quality firms also exit randomly at a rate δL.

Then, along the balanced growth path, μH − λH > μL − λL, η + δH > μH − λH and

η + δL > μL − λL. The stationary size distribution has a tail index ζ given by

ζ = min
η + δH

[μH − λH]+
,

η + δL
[μL − λL]+

The right tail of the size distribution declines geometrically if this is infinite.

The actual size distribution and a proof of Proposition 4 are implied by the results in

Appendix B. If ζ = (η+δH)/(μH−λH), then large firms arise because of the rapid growth
of new firms. This can generate a thick tail even if there is no population growth.
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3.4 Firm Age and Size

The age distribution among large firms is a useful tool for assessing alternative interpre-

tations of the firm size distribution. This age distribution can be constructed from the

size distributions of cohorts of firms that are the same age.

3.4.1 The Size Distribution of a Cohort

Consider a cohort of firms initially with k ∈ N blueprints and in a common growth

phase. While in this initial growth phase, firms of size n ∈ N gain blueprints at the rate
μn and lose blueprints at the rate λn. Firms in this cohort also transition randomly into

a new growth phase at a rate δ. Let T−1,k(a) denote the fraction of firms in the cohort
that have made this transition by age a. Define Tn,k(a) to be fraction of firms that have
n ∈ N blueprints at age a and have not made the transition. Let T0,k(a) represent the
firms in the cohort that have exited as a result of losing their last blueprint. Only firms

that have not yet exited can transition into a new growth phase,

DT−1,k(a) = δ [1− T−1,k(a)− T0,k(a)] . (25)

Exit occurs when a firm loses its last blueprint, and hence

DT0,k(a) = λT1,k(a). (26)

The number of firms with n blueprints and still in the original growth phase by age a

must satisfy

DTn,k(a) = μ(n− 1)Tn−1,k(a) + λ(n+ 1)Tn+1,k(a)− [δ + (μ+ λ)n]Tn,k(a) (27)

for all n ∈ N. Note that the −δTn,k(a) term is not scaled by n, reflecting the assumption
that the transition to a new growth phase is independent of size.

P 5 For any μ > 0 and λ ≥ 0 define γ(a) = (e(μ−λ)a − 1)/(e(μ−λ)a − λ/μ).

Fix some k ∈ N. Then (25)-(27) together with the initial condition Tk,k(0) = 1 gives

T−1,k(a) = δ
a

0

e−δb 1− λ

μ
γ(b)

k

db

and

T0,k(a) = λk
a

0

e−δb 1− λ

μ
γ(b)

λ

μ
γ(b)

k−1
[1− γ(b)] db,

18



as well as

Tn,k(a) = e−δa
min{n,k}

m=1

k

m

n− 1
m− 1 1− λ

μ
γ(a)

m
λ

μ
γ(a)

k−m
[1− γ(a)]m γn−m(a),

for all n ∈ N.

For δ = 0 and k = 1 this solution can be found in Klette and Kortum [2004]. The

probability generating function for δ = 0 and k ∈ N is in Kendall [1948]. Using the

fact that γ(a) goes to zero as age goes to zero one can verify that Tk,k(a) ↑ 1 as age
goes to zero. The solution for T0,k(a) follows directly from T1,k(a) and integrating (26).
Summing Tn,k(a) over all n ∈ N gives 1−T−1,k(0)−T0,k(0) = e−δa(1−[γ(b)λ/μ]k) and then
T−1,k(0) follows from integrating (25). The proof of Proposition 5 can be completed by

computing the derivative of Tn,k(a) and checking (27) for any n ∈ N. Appendix C gives
a more constructive proof based on the observation that, conditional on no transition,

a firm with n blueprints gains and loses blueprints with the same probabilities as does

the aggregate of n independent firms with one blueprint each.

If δ = 0, then T0,k(a) → min{1,λ/μ} as the age of a cohort grows without bound.
If μ < λ then virtually all of a cohort of firms will have exited the economy after a

sufficiently long time. On the other hand, if μ > λ then a fraction 1−λ/μ of any cohort

of firms survives and grows forever, giving rise to a thick-tailed size distribution.

3.4.2 Age Given Size

Now consider the setup of Proposition 4, with a fraction α of a cohort of new firms

entering with high-quality blueprints. Write TH,n,k(a) and TL,n,k(a) for the solutions to
(25)-(27) associated with the parameters (μH,λH, δH) and (μL,λL, δL), respectively. Let

n = −1 now represent the absorbing state low-quality firms enter into at a rate δL. Then
the cohort size distribution {pn(a)}∞n=−1 at age a is given by

pn(a) = (1− α)TL,n,1(a) + α TH,n,1(a) + δH
a

0

∞

k=1

TL,n,k(b)TH,k,1(a− b) db (28)

for all n+ 1 ∈ N. For n = −1 the term αTH,n,1(a) drops out since high-quality firms do
not transition directly into the state n = −1. The infinite sum on the right-hand side of
(28) can be calculated explicitly, as reported in Appendix C. The first two terms on the

right-hand side of (28) account for the firms that are still in their original growth phase.

A flow δHTH,k,1(a− b) of high-quality firms with k blueprints transition to become low-
quality firms at age a−b. Adding up over all sizes and ages and accounting for subsequent
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firm growth gives the third term. Note well that only a fraction 1 − p−1(a) − p0(a) of
the cohort survives until age a as active firms.

Along a balanced growth path, the measure of entering firms is growing at a rate η.

Consider the population of all firms that have ever entered up to a particular point in

time, including those that have since exited. The exponential rate η at which the size of

entering cohorts grows implies that this population has an exponential age distribution

with density ηe−ηa. Because {pn(a)}∞n=−1 includes firms that have exited, the joint
density of age and size is ηe−ηapn(a) among all firms that have ever entered. The age
density among all firms of size at least K is therefore

hK(a) =
e−ηa ∞

k=K pk(a)∞
0
e−ηb ∞

k=K pk(b)db
. (29)

In particular, for K = 1 this defines the age density among all surviving firms.

3.5 Gibrat and Zipf–A Convenient Special Case

Consider again the economy in which all firms have the same growth parameters μ and

λ. Suppose η and λ are bounded away from zero and let μ−λ approach η from below so

that the rate ν at which blueprints are introduced by entrepreneurs goes to zero. This

is exactly when the tail index ζ = η/(μ − λ) approaches 1 from above. In this limit,

the recursion (21) for Qn ∝ nPn can be written as Pn = λ
μ
(Pn+1 +Xn+1) together with

Xn+1 =
n−1
n+1

Xn for all n− 1 ∈ N. This implies Xn+1 = 2X2/[n(n+ 1)] for all n ∈ N.
Iterating forward on the recursion for Pn and requiring the resulting Pn to add up to 1

yields

Pn =
1

ln(μ/η)

∞

k=n

(λ/μ)k+1−n

k(k + 1)
.

The implied right tail probabilities satisfy

lim
K→∞

K
∞

k=K

Pk = lim
K→∞

1

ln(μ/η)

∞

m=0

K

K +m

λ

μ

m+1

=
1

ln(μ/η)

1

μ/λ− 1

by the dominated convergence theorem. Thus the right tail probabilities satisfy Zipf’s

law–they behave like 1/K.

This limiting distribution does not have a finite mean. At the same time as the rate

ν at which blueprints are introduced by entrepreneurs goes to zero, the average number

of blueprints per firm ε/ν grows without bound. The entry rate of new firms satisfies

ε = η+λP1, and this converges to a positive value. A calculation yields ε = λ/ ln(μ/η),
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and then η = μ− λ gives
ε

η
=

μ/η − 1
ln(μ/η)

. (30)

In situations where most blueprints are created by incumbent firms, this allows one to

infer μ and λ simply from the population growth rate η and the firm entry rate ε.

Given only one growth phase, the expression (29) for the density of age given a size of

at least K reduces to hK(a) ∝ e−ηa ∞
k=K Tk,1(a) = e−ηa[1− (λ/μ)γ(a)]γK−1(a), where

γ(a) is given in Proposition 5. This simplifies further for the Zipf limit η = μ− λ, and

then an easy calculation shows that the mode amode of this density satisfies

ηamode = ln 1 +
K − 1
μ/η

(31)

for all K ∈ N. The Zipf asymptote of the Yule process corresponds to η = μ and λ = 0,

which yields amode = ln(K)/η. This is just the time it takes to reach size K for a firm

that grows deterministically at a rate η. Formula (31) shows that the modal age of large

firms converges to zero as μ/η increases without bound. But then (30) implies the firm

entry also grows without bound. This will be the tension that makes it hard to hold on

to Gibrat’s law.

4. U.S. E F

U.S. Internal Revenue Service statistics contain more than 26 million corporations, part-

nerships and non-farm proprietorships. Business statistics collected by the U.S. Census

consist of both non-employer firms and employer firms. In 2002 there were more than

17 million non-employer firms, many with very small receipts, and close to 6 million

employer firms.

Here, Census data on employer firms assembled by the U.S. Small Business Adminis-

tration (SBA) will be considered. For employer firms, part-time employees are included

in employee counts, as are executives. But proprietors and partners of unincorporated

businesses are not (Armington [1998, p. 9]). This is likely to create significant distor-

tions in measured employment for small firms. The SBA reports firm counts for 24 size

categories, ranging from 1 to 4 employees to 10, 000 and more employees, as well as the

number of employer firms that have no employment in March but some employment

at other times during the year. Over the period 1989-2006, SBA data show that the

number of firms grows roughly at the population growth rate of about 1% per annum,

in line with the theory presented here and in Luttmer [2007].
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Newly collected data on the age of firms with more than 10,000 employees in 2008

will also be used. Two measures of firm age are reported. One is based on the date

a firm was incorporated. Corporate restructuring can cause this measure of age to

be much below the age of the underlying organization that constitutes the firm. An

alternative measure uses the earliest date a firm or any of its components are known to

have been in operation. A more detailed description of how this data was collected is

given in Appendix A. Clearly, the complicated genealogy of many large corporations is

not captured by the models described in this paper.

4.1 Gibrat Implies 750 Year Old Firms

Panels (i) and (ii) of Figure II show the fitted employment size distribution assuming

there is only one growth phase. The fractions #{firms with employment ≤ x}/#{all
firms} and #{firms with employment ≥ x}/#{all firms} observed in the data are dis-
played after merging the category of employer firms with no employment in March with

the category of 1 to 4 employees. The right tail of the size distribution, shown in panel

(ii), is clearly well approximated by x−ζ , and the slope of the log tail probabilities with
respect to x is about ζ ≈ 1.05. Note that this estimate does not depend on the units
in which firm size is measured. The formula for the tail index ζ combined with a 1%

population growth rate implies that incumbent firms grow at a rate μ−λ = η/ζ ≈ .95%
per annum.

To decompose μ − λ, consider first the Yule process obtained by setting λ = 0

and μ = .0095. The only remaining free parameter is then the number of employees per

blueprint i+j+l. To see how this parameter can be identified, write � = i+j+l and recall

that Rn is the fraction of firms with n or more blueprints. The fraction of firms with at

least x ∈ {�n : n ∈ N} employees is then Rx/�. The vertical axis of panel (ii) of Figure II
shows ln(Rx/�) and the horizontal axis shows ln(x) = ln(�)+ln(x/�). Thus an increase in

employment per blueprint moves the model prediction [ln(x), ln(Rx/�)] to the right by the

change in ln(�), for every ln(Rx/�). Since the empirical counterparts to [ln(x), ln(Rx/�)]

are pretty much on a straight line for all firms with more than 10 employees, the choice

of � will simultaneously either fit or fail to fit all right tail probabilities for firms with

more than 10 employees. The close fit of the right tail shown in panel (ii) is obtained

by setting i+ j+ l = 2. Panel (i) shows that the left tail is also well approximated. The

stationary size distribution of a Yule process fits the empirical size distribution quite

well. But a Yule process predicts no exit and a firm entry rate equal to ε = η, or about

1% per annum. Instead, the SBA reports a firm entry rate of about 11% per annum

over the period 1989-2006. Actual firms do decline and exit, and entry rates are much
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higher than the population growth rate.

To match the evidence on firm entry along with the shape of the right tail of the size

distribution, one can increase μ and λ subject to the constraint μ−λ = η/ζ ≈ .0095 until
the implied entry rate ε reaches the .11 value observed in the data. Solving the ζ ↓ 1
approximation (30) of the firm entry rate for μ/η gives μ = .4216 and λ = .4116.

Fitting a tail index ζ = 1.05 and an entry rate ε = .11 yields the very similar estimates

μ = .4095 and λ = .4000. Choosing the number of employees per blueprint to match

the right tail probabilities now implies i+ j+ l = .20. The associated left and right tails

are shown in panels (i) and (ii) of Figure II. The increased transition probabilities μ and

λ raise the variance (μ + λ)/n of the growth rate of a firm with n blueprints, and this

implies that surviving firms are more likely to have many blueprints. Fitting the right

tail of the employment distribution therefore requires fewer employees per blueprint than

in the case of a Yule process. But then the left tail of the size distribution no longer

fits well. The higher variance cuts down, too much, on the number of small firms–they

either exit or grow large.

The age distributions displayed in the upper panel of Figure III show a much more

dramatic failure of the one-phase model of firm growth. At μ = .4095, λ = .4000 and i+

j+ l = .20, the median age of firms with more than 10,000 employees is about 750 years.

The Yule process fitted above implies a median large firm that is a couple of centuries

older still. In the data, the median age of these large firms is only about 75 years. Given

Gibrat’s law, all firms grow at the same average rate μ − λ, and this cannot exceed η,

or about 1% per year. Deterministic growth would imply that it takes ln(50, 000)/.01 ≈
1,082 years to reach the size of 10,000 employees. The ζ ↓ 1 approximation (30) for the
entry rate gives μ/η ≈ 42.16 and then the approximation (31) for the mode of the age
distribution of large firms gives amode = 100× ln(1+49, 999/42.16) ≈ 708 years. Adding
variability lowers the age of the typical large firm, but the amount of variability that

can be added is constrained by the entry and exit evidence.

SBA data for the period 1989-2006 show that the annual exit rate of firms with 500

or more employees is about 2.5%. As calibrated so far, the model implies this number

should be essentially zero. The annual growth rate of a firm with 500 employees has

a standard deviation of only (.4095 + .4000)/2500 ≈ .018 and firms only exit after

losing all blueprints. To account for the observed exit of large firms, suppose a firm may

not only exit after losing its last blueprint, but also randomly at a rate δ = .02. The

approximation ζ ↓ 1 then implies that surviving firms grow at a rate μ−λ = η+δ of about

3% per year. The entry approximation (30) obtained by replacing η with η + δ yields
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μ/(η+δ) ≈ 9.1, and hence μ ≈ .2730 and λ ≈ .2430. With a tail index ζ = 1.05 instead of
ζ = 1, this becomes μ = .2700 and λ = .2415. Given that random exit now accounts for

2% of the 10% exit rate, randomness at the blueprint level must be lower than before.

As a result, there will be more small firms, and adjusting the number of employees

per blueprint to match the right tail of the size distribution now gives i + j + l ≈ .6.
Thus a firm with 10,000 employees has about 16,667 blueprints, and the approximation

(31) then implies amode = ln(1 + 16, 666/9.16)/.03 ≈ 250, a drastic improvement over
the calibration without random exit. The entire age distribution is shown in Figure

III. Deterministic growth conditional on survival would give ln(50, 000)/.03 ≈ 361 or

ln(16, 667)/.03 ≈ 324, and so much of the reduction in age is simply due to the fact

that survivors can now grow at a 3% annual rate instead of a 1% annual rate. But this

calibration still predicts that the median US firm is older than the US itself.

4.2 Rapid Initial Growth

As Figure I suggests, many large firms became large during relatively short periods of

growth at rates far exceeding the sum of the population growth rate and the exit rate

of large firms. This can account for the fact that the median large firm is only 75 years

old. Proposition 4 indicates how this can also be made consistent with the observed

right tail of the size distribution. Firms can grow initially at a high rate μH − λH and

then transition at a rate δH to a regime with a growth rate μL − λL that must be

below η + δL. If the tail index is determined by the effects of initial rapid growth, then

ζ = (η+ δH)/(μH−λH). Given ζ ≈ 1.05 and η ≈ .01, this implies that μH−λH must be

close to δH. An initial phase with very rapid growth is possible as long as this phase is

of sufficiently short average duration. The realized durations of the high-growth regime

are exponentially distributed, implying that some firms grow rapidly for much longer

than the average duration. This results in relatively young large firms.

Allowing for an initial growth phase adds the parameters α, μH, λH, δH and iH +

jH + lH. This gives more than enough flexibility to match the observed median age of

large firms. The theory of Section 2 implies iH + jH + lH > iL + jL + lL but is silent on

the magnitude of the difference. Measured employment per blueprint may not reflect

effective labor used per blueprint if workers differ in ability. Panels (iii) and (iv) of

Figure II and the lower panel of Figure III show the size and age distributions for a

benchmark calibration in which a single employee is assigned to every blueprint. A

fraction α = .4 of new firms start out as high-growth firms. In the low-growth regime,

the rates at which firms gain and lose blueprints are μL = λL = .2500, and firms in this
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regime exit randomly at a rate δL = .02.13 In the high-growth regime, firms also lose

blueprints at the rate λH = .2500, but they gain blueprints at the higher rate μH = .3825.

Firms transition from the high-growth to the low-growth regime at a rate δH = .125,

resulting in a tail index ζ = (η + δH)/(μH − λH) ≈ 1. 02. These parameters imply an
exit rate of about 11% and Figures II and III show that these parameters closely match

the observed size and age distributions. Holding fixed the other parameters, increasing

the fraction α of high-growth new firms lowers the entry rate below, and increases the

number of large firms above what is observed in the data. Jointly changing (μH, δH) to

(μH + ∆, δH + ∆) changes the exit rate and the size distribution very little but shifts

the age distribution of large firms. At δH = δL = .02, the age distribution is essentially

that of the one-regime economy, while the median age of large firms can be as low as 50

years when δH = .25.
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F IV Growth Rates by Firm Size

But what about Gibrat’s law? Many researchers find that Gibrat’s law is a good approx-

imation for firms that are not too small (e.g., Hall [1987] and Evans [1987]). Figure IV

shows the mean and standard deviation of the growth rates of surviving firms conditional

13The US Bureau of Labor Statistics reports monthly job separation rates for the 2000s that add up
to around 50% on an annual basis. The parameter values λH = λL = .25 can be interpreted to mean
that half of these separations do not correspond to job destruction, but to worker replacement.
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on employment size. The mean growth rates are shown for three horizons: instantaneous,

one year, and five years. Survivorship bias affects the instantaneous mean only for firms

with one employee. The probability of the multiple blueprint losses it takes to induce

exit is second order for firms with more than one employee. For the longer horizons com-

monly used in empirical studies this is no longer true, and surviving small firms grow

much faster on average than the unconditional mean. But this effect declines rather

quickly with size, and mean growth rates do not show much variation with size overall

(the horizontal scale is logarithmic).

Over short intervals of time, the variance of surviving firm growth rates in phase

I ∈ {H,L} is (μI + λI)/n for firm with n > 1 blueprints and μI for firms with one

blueprint. The calibration implies that this adds up to a standard deviation among all

surviving firms of about 41% per annum. This is well within the range of standard

deviations reported in Davis et al. [2007]. For firms with more than one blueprint, the

calibration implies a standard deviation of a firm with n blueprints is about .80/
√
n in

the high-growth phase and .71/
√
n in the low-growth phase. This makes for very volatile

growth rates among small firms. But for firms with more than 10,000 employees, these

standard deviations will be less than 1% per annum. Even for a model without aggregate

shocks, this is probably too small.

As emphasized by Klette and Kortum [2004], the empirical evidence suggests that

the variance of firm growth rates declines more slowly than 1/n. Hymer and Pashigian

[1962] compared standard deviations of firm growth rates across size quartiles and found

that firms in the largest quartile were significantly more volatile than predicted by the

1/n rule. More recently, Stanley et al. [1996] and Sutton [2002] find that the variance

of the growth rate of Compustat firms behaves like 1/n1/3, and tentative interpretations

are given in Stanley et al. [1996] and Sutton [2002, 2007]. However, most firms are not

publicly traded and are not covered by Compustat, and it is possible that these studies

miss a rapid decline in variance that happens for small n.

5. C

Skewed firm size distributions are interpreted as reflecting skewed productivity distribu-

tions in Hopenhayn [1992], Atkeson and Kehoe [2005], and Luttmer [2007], among many

others. The current paper attributes size differences not only to productivity differences

but also to stochastic variation in the number of markets in which a firm operates, as in

Klette and Kortum [2004], Lentz and Mortensen [2006], and Arkolakis [2006]. Bounded

productivity differences may give rise to unbounded size differences. In Lucas [1978], all
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variation in firm size is determined by heterogeneity in managerial talent. In Holmes

and Schmitz [1995], Gabaix and Landier [2008] and Tervi
..
o [2008], both firm-specific

productivity and managerial productivity play a role. Much remains to be done to sort

out the relative importance of each of these aspects of firm heterogeneity.

Figure I and the relative young age of large firms are interpreted here using a two-

phase pattern of growth in which some new firms start out with a high-quality blueprint

and become firms with all low-quality blueprints after some random time. This is an

abstraction that helps to illustrate the type of growth mechanism that can explain the

size and age distribution of large firms. One expects more gradual declines in relative

quality to work as well. A natural extension would allow for start-up blueprints that are

initially of uncertain quality. This would bring in the selection considerations emphasized

by Jovanovic [1982].

If blueprints are location specific, and locations are known to differ in how profitable

they can be, then firms with new ideas will initially implement these in the more prof-

itable locations, and only then expand, at a slower pace, into less attractive locations.

This could be an alternative interpretation of the growth patterns shown in Figure I,

although it remains to be seen how this can account for the observed size distribution.

One possibility is suggested by static models of Pareto-like size distributions. A well-

known example is the Beckmann [1958] model of hierarchies of cities. More recently,

Hsu [2007] describes an equilibrium model of hierarchies of firms and cities that produces

Zipf’s law. These static models could be viewed as long-run equilibrium conditions for

a dynamic economy, and then the rapid initial growth shown in Figure I would simply

reflect the fact that setting up a large firm is not quite instantaneous but still very fast.

Firms can grow along many margins. They can introduce new goods, build new

plants, open new sales offices, hire new workers, win new customers, acquire whole new

divisions. The framework sketched in this paper can be extended to incorporate these

elements and arrive at a richer description of firm growth and heterogeneity. A close

examination of the early histories of large U.S. corporations, such as those shown in

Figure I and the ones described in Appendix A, shows that mergers, acquisitions, and

spin-offs are by no means infrequent. Along the lines of Jovanovic and Rousseau [2002],

it is possible to interpret a small acquisition as the production of a new blueprint, but

other interpretations are perhaps more natural. Spin-offs can give rise to firms that enter

with a relatively large initial size, instead of the common minimum size assumed in this

paper. It would be interesting to know if an account can be given of these aspects of

firm growth that is consistent with the observed size distribution.
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A F E A D

The employment histories shown in Figure I were collected from Compustat, historical

Moody’s Manuals, and corporate web sites. Most employment histories are incomplete.

Abbott Laboratories, Dow Chemical, IBM, and Procter and Gamble were founded in

the 19th century, and all other companies shown in Figure 1 during the 20th century.

The firm age data used in Section 4 were collected from several sources. Large firms

are taken to be all Compustat firms headquartered in the US with more than 10,000

employees, and firms in the same size category that appear on a list of large privately

held US companies published by Forbes magazine, both in 2008. Compustat and Forbes

tend to use a broad measure of firm employment. Employment at foreign subsidiaries is

included, and franchisee employees appear to be counted as employees of the franchisor.

The number of large firms obtained in this way is 813, which is somewhat less than the

953 firms with more than 10,000 employees reported by the SBA for 2006. In part this

may be because firms headquartered outside the US are not included here. For example,

Shell Oil Company is incorporated in the US but is a wholly-owned subsidiary of an

English company headquartered in The Netherlands.

The date of incorporation of publicly traded firms was taken from the synopsis section

of the Mergent Online database. For all firms, the foundation date is the date of the

earliest reference to the company or its known predecessor companies that can be found

in the company history section of the Mergent Online database, or on company web sites.

In cases where this information is not available or does not appear to refer to the earliest

times of the company, three additional sources were consulted: Dun and Bradstreet’s

Million Dollar Database, Hoover’s Company Reports, and the International Directory

of Company Histories. In the case of privately held companies, Hoover’s is the primary

source. In a few cases, company age data were found in the Encyclopedia Britannica or

in books available in the Google Books online library.

The Mergent Online database contains extensive records on now defunct corporations

that were sometimes used to further trace back the origins of a company. Corporate web

sites of large companies often include extensive company histories that tend to emphasize

the very old roots of the firm. Occasionally, the foundation date is taken to be the date its

founding entrepreneur first started a business in the same industry, even if the company

that eventually became large was not the first company started by the entrepreneur.

In the data collected here, mergers are an important source of firm growth that is not

accounted for by the models in this paper. In many cases, a company history includes

the year in which the oldest known component of a firm was founded. But in some
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industries, notably the health care industry, such information is almost non-existent.

The models in this paper also do not allow for spinoffs. In the data set constructed

here, a company that was already large at the time of its spinoff is taken to be founded

at the time its parent was founded, when this information is available. Clearly, future

empirical and theoretical work needs to account explicitly for mergers and spinoffs. The

company age data together with the source for each age observation are available at

www.luttmer.org.

B P P 2, 3 4

Throughout this appendix, let θ, μ 9= λ and θ − (μ− λ) be positive, and take {An}∞n=1
to be non-negative, not identically zero, and summable. Let Y0 = 0 and consider the

difference equation

1

n
θYn = λYn+1 + μYn−1 − (λ+ μ)Yn +

μAn
n

(32)

for all n ∈ N. Define β0 = 0 and

1

βn
= 1 +

θ + μn

λn
− μβn−1

λ
(33)

for all n ∈ N. Then the second-order difference equation (32) is equivalent to the pair
of first-order difference equations

Yn = Zn + βnYn+1, Zn =
μβn
λ

Zn−1 +
An
n

(34)

for all n ∈ N, combined with the initial condition Z0 = 0.

Lemma A1 The sequence {βn}∞n=0 increases monotonically from 0 to min{1,λ/μ}. If
μ > λ then limn→∞ n(1 − μβn/λ) = θ/(μ − λ). If μ < λ then limn→∞ n(1 − βn) =

θ/(λ− μ).

The proof can be given using diagrams for the recursions that define βn, n(1−μβn−1/λ)
and n(1−βn−1), respectively. Note that n =∞ in (33) yields a quadratic equation that

is solved by β∞ ∈ {1,λ/μ}.
It is convenient to define two integrating factors,

Bn =
1

βn

n

k=1

βk, Cn−1 =
μ

λ

n−1
Bn
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for all n ∈ N. Note that B1 = C0 = 1, Cn/Cn−1 = μβn/λ, and (34) can be written as

BnYn = BnZn + Bn+1Yn+1 and Zn/Cn = Zn−1/Cn−1 + An/(nCn−1). We are interested
only in solutions to (32) that are non-negative and summable. Since Bn ≤ 1, this

implies that any such solution must satisfy limn→∞Bn+1Yn+1 = 0. Given this boundary
condition, (34) implies that

Yn =
1

Bn

∞

k=0

Bn+kCn+k

n+k

j=1

Aj
jCj−1

(35)

for all n ∈ N. The following lemma collects some facts that are useful in determining
the properties of Yn.

Lemma A2 Let {an}∞n=1 be a positive sequence. If limn→∞ an+1/an = ρ ∈ (0, 1) then

lim
n→∞

nan

n

k=1

1

kak
= lim

n→∞
1

an

∞

k=0

an+k =
1

1− ρ
. (36)

Alternatively, if limn→∞ n(1− an+1/an) = δ ∈ (0,∞) then

lim
n→∞

an

n

k=1

1

kak
= lim

n→∞
1

an

∞

k=0

an+k
n+ k

=
1

δ
(37)

and Raabe’s test says that {an}∞n=1 is summable if δ > 1 and not if δ < 1.

A version of (37) for regularly varying functions is discussed as part of Karamata’s

Theorem in Bingham, Goldie and Teugels [1987]. See Bojanic and Seneta [1973] for

regularly varying sequences.

Suppose now that all An are positive and that limn→∞ n(1−An+1/An) = ζA ∈ (0,∞]
is well defined. Also write γ = limn→∞An+1/An in situations in which this limit is well
defined. Define ζC = limn→∞ n(1 − Cn+1/Cn). By Lemma A1, ζC = θ/(μ − λ) > 1 if

μ > λ and ζC = ∞ if μ < λ. The large-n behavior of Yn can be inferred from the fact

that (35) can be represented as

Yn = Tn

∞

k=0

wn,kxn+k (38)

where Tn equals either An or Cn, and

lim
n→∞

∞

k=0

wn,k = ω, lim
n→∞

xn = ξ (39)
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for some ω and ξ in [0,∞). This implies that limn→∞ Yn/Tn = ωξ.

WhenCn declines more slowly than An, the following representation works

Tn = Cn, wn,k =
Bn+kCn+k
BnCn

, xn =
n

j=1

Aj
jCj−1

. (40)

As long as μ 9= λ, Lemma A1 implies Bn+1Cn+1/(BnCn)→ min{λ/μ,μ/λ} ∈ (0, 1) and
then (36) gives ω = 1/(1−min{λ/μ,μ/λ}). If μ/λ > 1 and ζC < ζA ≤ ∞ then Raabe’s

test implies that xn converges to some ξ <∞. The same is true if γ < μ/λ < 1.

When μ > λ and An declines more slowly than Cn, consider the representation

Tn = An, wn,k =
An+kBn+k
AnBn

, xn =
An
Cn

−1 n

j=1

Aj
jCj−1

.

Now Lemma A1 implies An+1Bn+1/(AnBn) → λ/μ ∈ (0, 1) and (36) gives ω = 1/(1 −
λ/μ). Since ζA < ζC, (37) implies ξ = 1/(ζC − ζA).

When μ < λ and An declines more slowly than Cn, consider

Tn = An, wn,k =
1

n+ k

An+kBn+k
AnBn

, xn =
nCn
An

n

j=1

Aj
jCj−1

.

Lemma A1 implies n(1 − Bn+1/Bn) → θ/(λ − μ) > 0 and Cn/Cn−1 → μ/λ ∈ (0, 1).
Furthermore, n(1−An+1Bn+1/(AnBn))→ ζA+θ/(λ−μ) > 0 and thus (37) implies ω =

1/[ζA+θ/(λ−μ)]. If ζA <∞ then (Cn+1/An+1)/(Cn/An)→ μ/λ ∈ (0, 1). Alternatively,
if ζA = ∞ and μ/λ < γ < 1 then (Cn+1/An+1)/(Cn/An) → [μ/λ]/γ ∈ (0, 1). In either
case, (36) implies that xn converges to some ξ < ∞.
Finally, note that the representation (38)-(40) also works and limn→∞ Yn/Cn ∈ (0,∞)

if An > 0 for only finitely many n.

Proposition A1 Consider the cases (i) An > 0 for finitely many n, (ii) limn→∞An+1/
An = γ, and (iii) limn→∞ n(1−An+1/An) = ζA ∈ (0,∞]. Then limn→∞ Yn/Cn ∈ (0,∞)
in case (i), in case (ii) if 1 > μ/λ > γ, and in case (iii) if ζA > ζC. Alternatively,

limn→∞ Yn/An = 0 in case (ii) if 1 > γ > μ/λ, and limn→∞ Yn/An ∈ (0,∞) in case (iii)
if ζA < ζC.

If we add the restriction ζA > 1 when An > 0 for all n, then Raabe’s test implies that

the solution (35) is in fact summable in all cases. One can generate many more solutions

by adding a positive constant to BnYn, but these cannot be summable.
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Proposition A2 Suppose An > 0 for finitely many n, or limn→∞ n(1− An+1/An) =
ζA > 1. Then

∞

n=1

Yn =
1

θ − (μ− λ)

∞

n=1

μAn,
∞

n=1

1

n
Yn =

1

θ

∞

n=1

μAn
n
− λY1

Proof It follows from min{ζA, ζC} > 1 that nYn → 0. Recall Y0 = 0 and write (32)

as

θYn = λ [(n+ 1)Yn+1 − nYn − Yn+1]− μ [nYn − (n− 1)Yn−1 − Yn−1] + μAn

for all n ∈ N. Adding up over all n and using limn→∞ nYn = 0 gives the first sum. The
second sum follows from directly summing (32).

With these results in place, Proposition 2 follows from taking θ = η, A1 = (η−(μ−λ))/μ
and An+1 = 0 for n ∈ N. Proposition 3 then follows since part (37) of Lemma A2 shows
that ∞

k=n Yk/k behaves like Yn ∼ ωξCn, and ζC ∈ (1,∞).
To prove Proposition 4, let QT,n be the fraction of all blueprints in the economy held

by type-T firms with n blueprints, where T ∈ {H,L} and n ∈ N. The properties of
QH,n are an application of Propositions 2 and 3. Proposition 4 can be shown by taking

θ = η + δL, (μ,λ) = (μL,λL), A1 = [(1 − α)ν + δHQH,1]/μL, and An+1 = δHQH,n+1/μL
for all n ∈ N.

C P P 5

3.1 Preliminaries

Suppose {Xi, Yi}ki=1 are 2k independent random variables with Pr[Xi = n] = (1−γ)γn−1,
n ∈ N, Pr[Yi = 0] = θ, and Pr[Yi = 1] = 1 − θ. Define Zk =

k
i=1XiYi and let

Kk =
k
i=1 Yi.

As can be verified using moment generating functions, the sum of i.i.d. geometrically

distributed random variables has a negative binomial distribution, given by

Pr
m

i=1

Xi = n =
n− 1
m− 1 (1− γ)mγn−m

for all m ∈ N and n+ 1−m ∈ N. In view of the independence assumptions,

Pr [Zk = n] = Pr
k

i=1

XiYi = n =

min{k,n}

m=1

Pr
m

i=1

Xi = n Pr [Kk = m]
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for all n ∈ N. Using the binomial distribution of Kk, this implies

Pr [Zk = n] =

min{k,n}

m=1

k

m

n− 1
m− 1 (1− θ)mθk−m(1− γ)mγn−m (41)

for all n ∈ N. The complementary probability is Pr[Zk = 0] = θk since Zk = 0 if and

only if all Yi are zero. Also,
∞
n=1 nPr [Zk = n] = k× (1− θ)/(1− γ). This can be used

to compute the mean growth rates conditional on survival reported in Figure IV.

Now suppose that K is drawn from the geometric distribution (1 − σ)σk−1, k ∈ N.
Then the distribution of ZK is determined by

(1− σ)
∞

k=1

σk−1 Pr [Zk = n] =
(1− σ)γn

σ(1− θσ)

n

m=1

n− 1
m− 1

σ(1− θ)(1− γ)

(1− θσ)γ

m

(42)

for all n ∈ N. The right tail probabilities of this distribution are

(1− σ)
∞

n=N

∞

k=1

σk−1 Pr [Zk = n] =
1− θ

1− θσ

(1− σ)γ + σ(1− θ)

1− θσ

N−1
(43)

for all N ∈ N. For N = 1 this yields Pr[Zk = 0] = (1− σ)θ/(1− σθ).

3.2 Sketch of Proof and Computation

Suppose δ = 0. Consider a firm that starts out with one blueprint. As reported in Klette

and Kortum [2004], by age a such a firm will have exited with probability T0,1(a) =
λ
μ
γ(a). Conditional on survival, its size distribution is the geometric size distribution

Tn,1(a)/[1− T0,1(a)] = [1− γ(a)]γn−1(a). This can be verified directly by checking (26)-
(27). The size distribution at age a of a firm that starts out with k blueprints is simply

the distribution of the aggregate of k independent firms that start with one blueprint.

Applying (41) gives {Tn,k(a)}∞n=1 for the case δ = 0. Now suppose δ > 0. Transitions

from the first to the second phase occur at a rate δ, as long as no exit has taken place.

This means that only a fraction e−δa of surviving firms remain in the initial phase.
This determines {Tn,k(a)}∞n=1. The formulas for T−1,k(a) and T0,k(a) then follow from
integrating (25)-(26), as described in the text.

The infinite sums needed in (28) and (29) follow from (42) and (43). Age densities

(distributions) can then be computed using a univariate (bivariate) numerical integra-

tion.
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