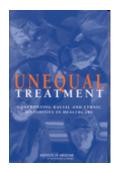
Some Economics of Treatment Disparities in Healthcare

Amitabh Chandra


Harvard University and the NBER

Douglas Staiger Dartmouth and the NBER

There is a **massive** literature in medicine and public health on treatment disparities in healthcare.

The Institute of Medicine's (IOM) report Unequal Treatment summarizes the key findings of this literature.

"Racial and ethnic minorities tend to receive a lower quality of healthcare than non-minorities, even when access-related factors, such as patients insurance status and income, are controlled. The sources of these disparities are complex, are rooted in historic and contemporary inequities, and involve many participants at several levels, including health systems, their administrative and bureaucratic processes, utilization managers, healthcare professionals, and patients. Consistent with the charge, the study committee focused part of its analysis on the clinical encounter itself, and found evidence that stereotyping, biases, and uncertainty on the part of healthcare providers can all contribute to unequal treatment."

Smedley, B. D., A. Y. Stith, and A. R. Nelson, eds. 2003. Unequal treatment: Confronting racial and ethnic disparities in health care. Washington, DC: National Academies Press.

Let's look at some examples from the literature...

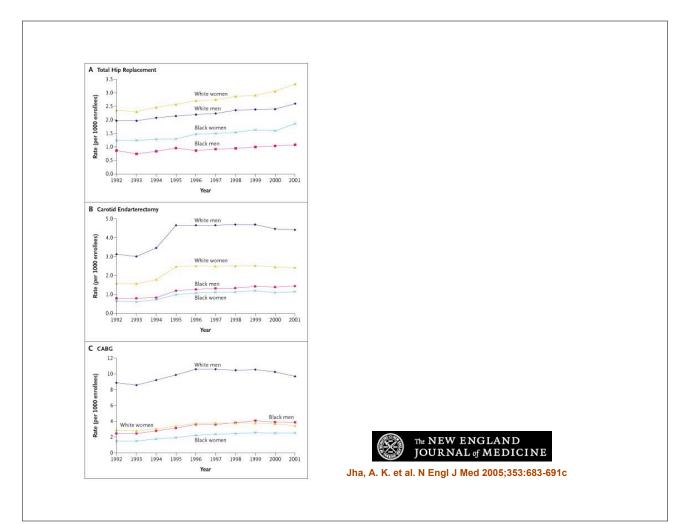
The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL ARTICLE

Racial Trends in the Use of Major Procedures among the Elderly

Ashish K. Jha, M.D., M.P.H., Elliott S. Fisher, M.D., M.P.H., Zhonghe Li, M.A., E. John Orav, Ph.D., and Arnold M. Epstein, M.D., M.A.

ABSTRACT


BACKGROUND Differences in the use of major procedures according to patients' race are well known

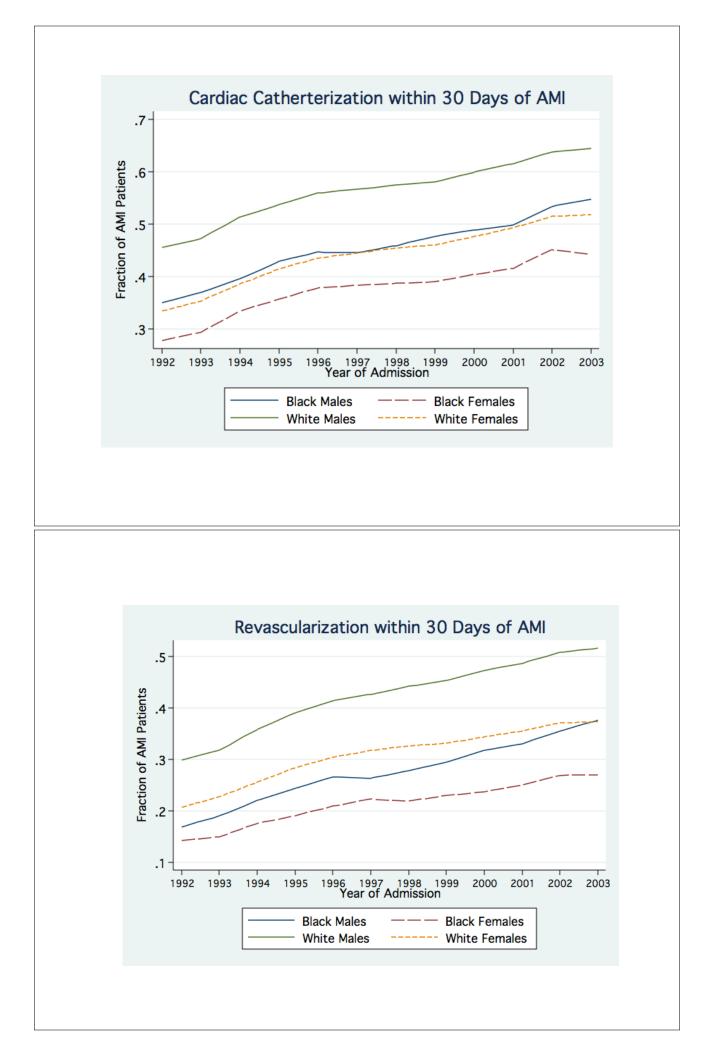
ectomy, and total hip replacement.

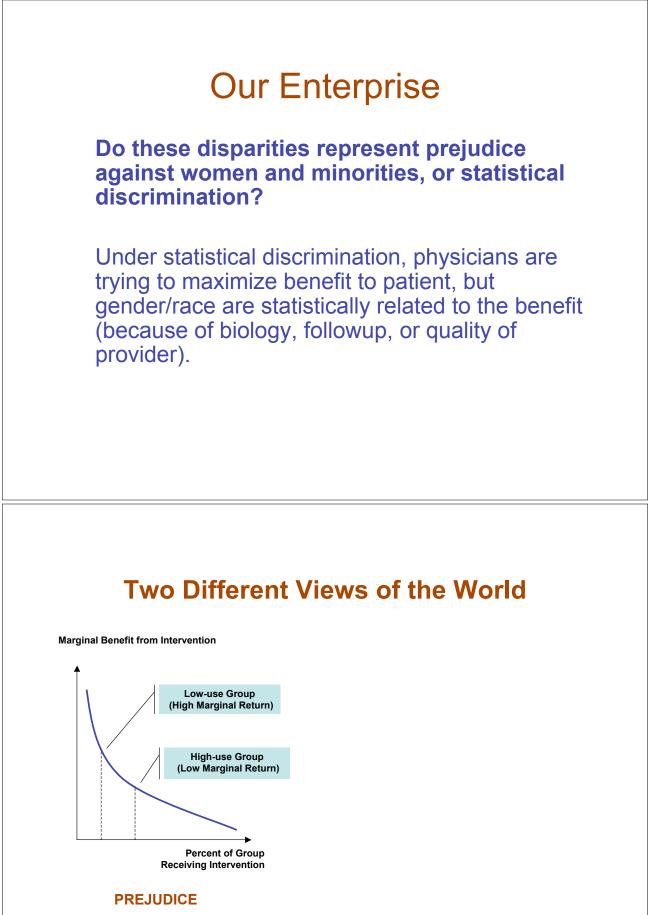
From the Department of Health Policy and Management, Hurvard School of Public Health (A.K.), Z.L., A.M.E.); the Di-vision of General Medicine, Brighman and Womer's Hospital (A.K.), E.J.O., A.M.E.); and the Boston Veterans Affairs (VA) Health System (A.K.). — all in Boston; and the Outcomes Group, White River Junction VA Medical Center, White River Junction VA and Dartmouth Medical School, Hanove, N.H. (E.S.F.). Whether national and local initiatives to reduce these differences have been successful is unkno

N Englj Med 2005;353:xxx+xx.

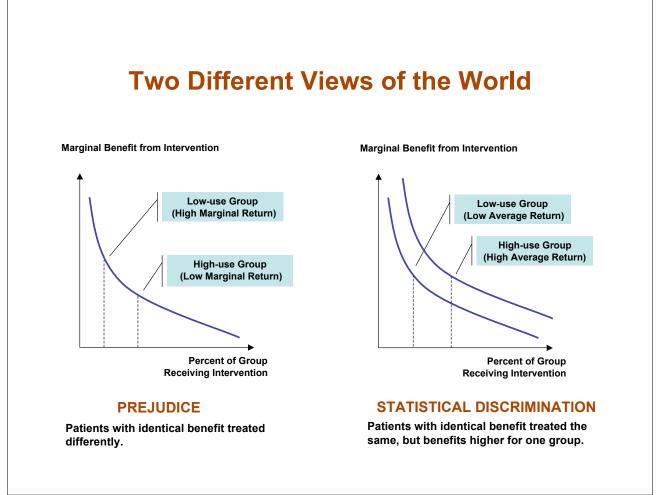
METHODS We examined data for men and women enrolled in Medicare from 1992 through 2001 on annual age-standardized rates of receipt of nine surgical procedures previously shown to have disparities in the rates at which they were performed in black patients and in white patients. We also examined data according to hospital-referral region for three of the nine procedures: coronary-artery bypass grafting (CABG), carotid endarter-

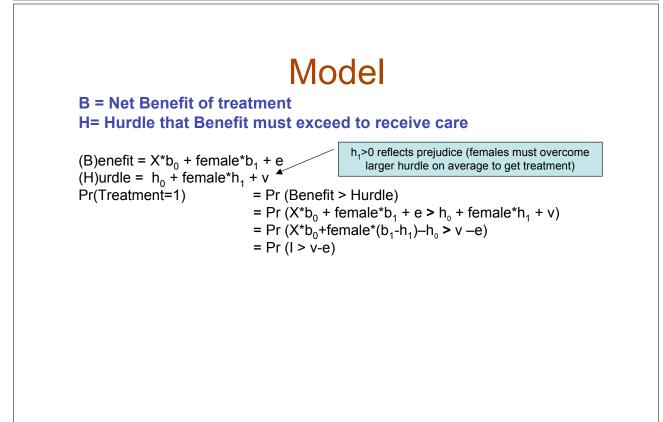
Let's look at some facts from our own tabulations of AMI Treatments

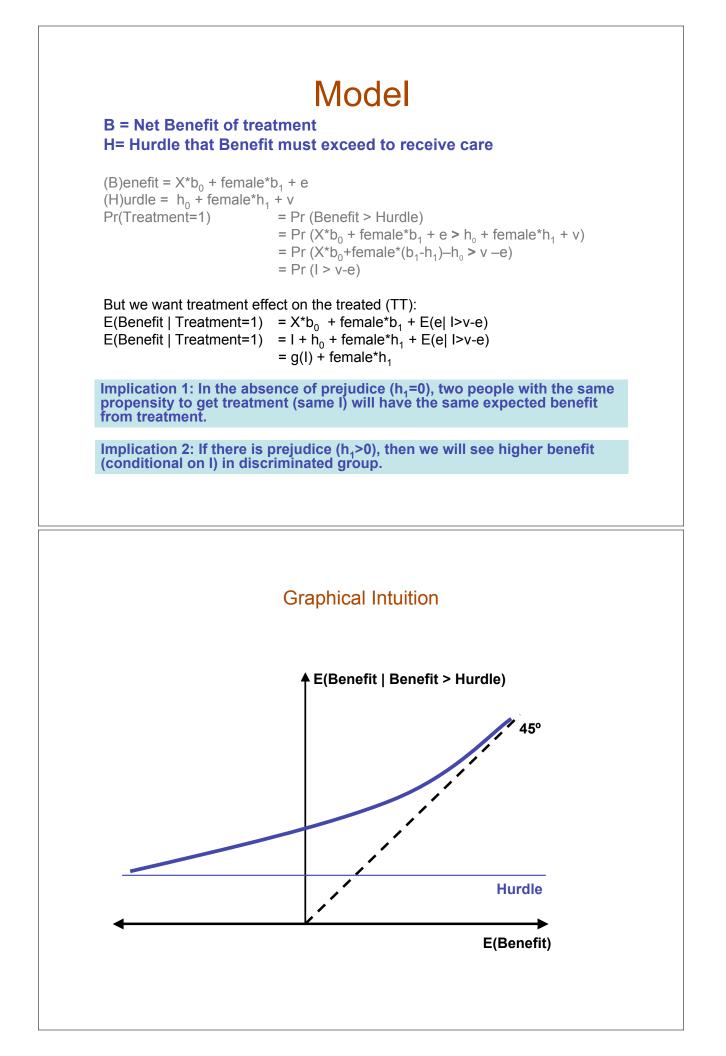


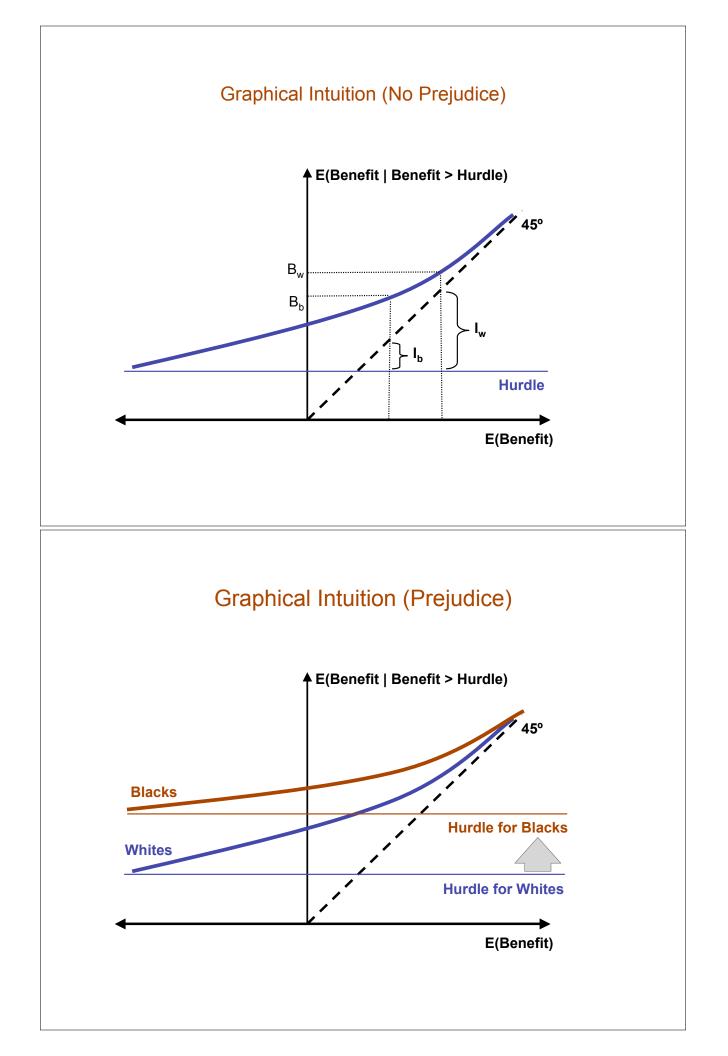

Every "first heart-attack" in Medicare since 1992.

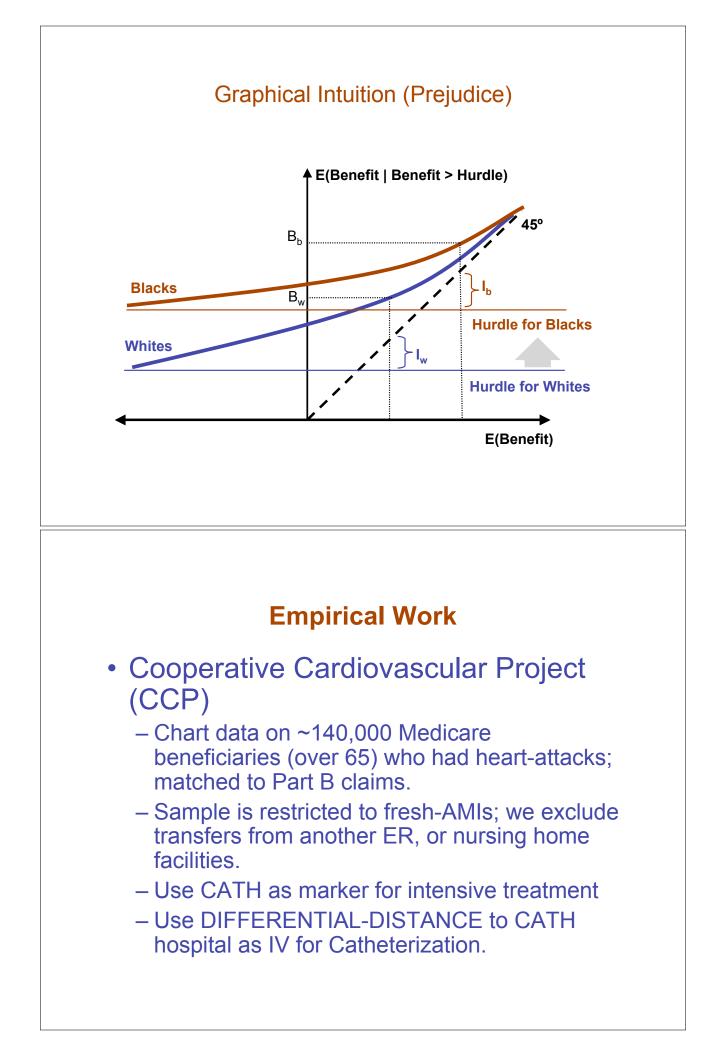
Approximately 210,000 such patients per year.


Each AMI is matched to Part A claims data.


For a 20% random sample, we also have Part B claims.






Patients with identical benefit treated differently.

Construction of Clinical Appropriateness for Aggressive Treatments: Pr(CATH=1|X)

- 1. Age, Race, Sex
- 2. previous revascularization (1=y)
- 3. hx old mi (1=y)
- hx chf (1=y) 4.
- 5. history of dementia
- 6. hx diabetes (1=y)
- 7. hx hypertension (1=y)
- 8. hx leukemia (1=y)
- hx ef <= 40 (1=y) 9.
- 10. hx metastatic ca (1=y)
- 11. hx non-metastatic ca (1=y)
- 12. hx pvd (1=y)
- hx copd (1=y) 13.
- 14. hx angina (ref=no)
- 15. hx angina missing (ref=no) hx terminal illness (1=y) 16.
- 17. current smoker
- 18. atrial fibrillation on admission
- 19. cpr on presentation
- 20. indicator mi = anterior
- 21. indicator mi = inferior
- 22. indicator mi = other
- 23. heart block on admission
- 24. chf on presentation
- 25. hypotensive on admission
- 26. hypotensive missing

- 27. shock on presentation
- 28. peak ck missing
- 29. peak ck gt 1000
- non-ambulatory (ref=independent) 30.
- 31. ambulatory with assistance
- ambulatory status missing 32.
- 32. albumin low(ref>=3.0)
- 33. albumin missing(ref>=3.0)
- bilirubin high(ref<1.2) 34.
- 35. bilirubin missing(ref<1.2)
- 36. creat 1.5-<2.0(ref=<1.5)
- 37. creat >=2.0(ref=<1.5)
- 38. creat missing(ref=<1.5)
- 39. hematocrit low(ref=>30)
- 40. hematocrit missing(ref=>30) ideal for CATH (ACC/AHA criteria) 41.

Table 1: Means by sex and race, CCP data

	Total	Females	Males	Blacks	Whites
Patient Characteristics					
Age	76.7	78.1	75.3	75.6	76.7
Congestive Heart Failure	0.22	0.25	0.19	0.27	0.21
History of Dementia	0.06	0.08	0.05	0.08	0.06
Diabetes	0.30	0.33	0.28	0.42	0.30
Hypertension	0.62	0.68	0.56	0.80	0.61
Non-Ambulatory	0.03	0.04	0.02	0.06	0.03
Ambulatory With Assistance	0.16	0.20	0.12	0.20	0.16
Prediction Based on All Patient Cha	aracteristics				
Pr(Cath within 30 days)	0.46	0.42	0.50	0.43	0.46
Pr(survive to 1 year)	0.68	0.66	0.69	0.65	0.68
Patient Outcomes					
Survive to 1 year	0.67	0.65	0.70	0.67	0.67
cost in 1st year	22.5	21.4	23.7	21.7	22.6
Cath within 30 days	0.46	0.40	0.52	0.39	0.47
Revasc within 30 days	0.30	0.25	0.35	0.21	0.31

Table 2: Probit Coefficients [marginal effects] of the effect of Sex and Race on Catheterization

	No Controls	Full Controls
Effect of:		
Female	-0.318	-0.165
	(0.007)	(0.008)
	[-0.126]	[-0.064]
Blacks	-0.159	-0.142
	(0.014)	(0.016)
	[-0.063]	[-0.054]
# Observations	138873	138873

Dependent Variable: Cath within 30 days (mean=0.46)

Measurement

For two people with the same propensity (I): $E(Benefit | Cath=1,male,I) = E(\Delta S_m | Cath=1,male,I) = g(I)$ $E(Benefit | Cath=1,female,I) = E(\Delta S_f | Cath=1,female,I) = g(I) + h_1$

Estimate difference in benefit, over identical distributions of I as: Survival = $\alpha_0 + \alpha_1 Cath + h_1(Cath*female) + X\alpha_3 + e$, where $\alpha_1 = Benefit$ from Cath for men $= E_I(\Delta S_m | Cath=1)$, and $h_1 = E_I(\Delta S_f - \Delta S_m | Cath=1)$

What about Estimation?

Weighting:

- Unweighted estimation → But this produces treatment effects integrated over different distributions of treatment propensity.
- For testing our model, we need same distribution of propensity in both groups.
- Reweight men using Barsky, et al. (JASA, 2002) so that distribution of cath propensity is same as women
 - Find 1st, 2nd,, 99th percentile of female distribution of cath propensity.
 - Reweight men by .01 over fraction of men in each range

Estimation method:

- OLS (very good X's)
- IV (using diffdist, difdist*female as IV's)
- Need to ensure that IV recovers Treatment on Treated.

Female-Male Differences in the Survival Benefit from Intensive Management

		OLS (n=1	OLS (n=138,873)			IV (n=129895)		
	Unwe	eighted	We	ighted	Unw	eighted	Weighted	
	cath	cath*fem	cath	cath*fem	cath	cath*fem	cath	cath*fem
1 Day Survival	0.049 0.002	·		·		·		
7 Day Survival	0.108 0.002							
30 Day Survival	0.123 0.003							
1 Year Survival	0.173 0.003							
2 Year Survival	0.199 0.003							
4 Year Survival	0.213 0.003							

		OLS (n=1	38,873)			IV (n=12	29895)	
	Unwe	eighted	We	ighted	Unweighted		We	eighted
	cath	cath*fem	cath	cath*fem	cath	cath*fem	cath	cath*fem
1 Day Survival	0.049 0.002	0 0.002						
7 Day Survival	0.108 0.002	-0.005 0.003						
30 Day Survival	0.123 0.003	-0.011 0.004						
1 Year Survival	0.173 0.003	-0.027 0.004						
2 Year Survival	0.199 0.003	-0.025 0.005						
4 Year Survival	0.213 0.003	-0.017 0.005						

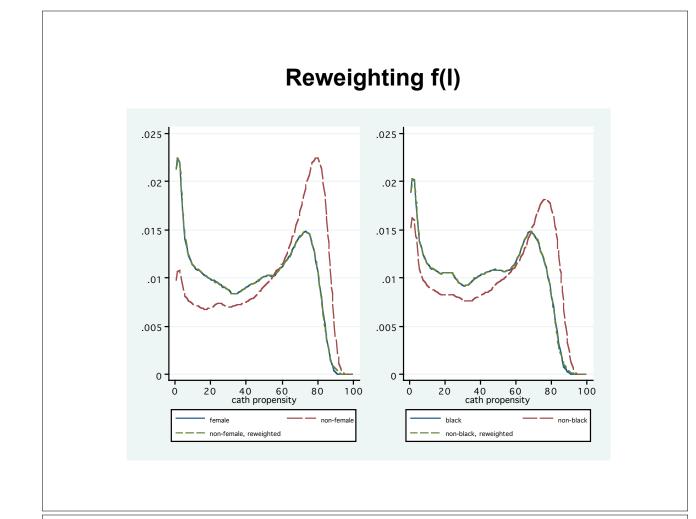
Female-Male Differences in the Survival Benefit from Intensive Management

Female-Male Differences in the Survival Benefit from Intensive Management

		OLS (n=1	38,873)			IV (n=12	29895)	
	Unwe	eighted	We	ighted	Unweighted		Ŵe	eighted
	cath	cath*fem	cath	cath*fem	cath	cath*fem	cath	cath*fem
1 Day Survival	0.049 0.002	0 0.002	0.052 0.002	-0.003 0.002				
7 Day Survival	0.108 0.002	-0.005 0.003	0.115 0.003	-0.013 0.003				
30 Day Survival	0.123 0.003	-0.011 0.004	0.131 0.003	-0.019 0.004				
1 Year Survival	0.173 0.003	-0.027 0.004	0.184 0.004	-0.033 0.005				
2 Year Survival	0.199 0.003	-0.025 0.005	0.21 0.004	-0.028 0.005				
4 Year Survival	0.213 0.003	-0.017 0.005	0.221 0.004	-0.011 0.005				

		OLS (n=1	38,873)		IV (n=129895)				
	Unw	eighted	Wei	ghted	hted Unweighted			Weighted	
	cath	cath*fem	cath	cath*fem	cath	cath*fem	cath	cath*fem	
1 Day Survival	0.049	0	0.052	-0.003	0.06	-0.012	0.087	-0.042	
	0.002	0.002	0.002	0.002	0.023	0.031	0.028	0.035	
7 Day Survival	0.108	-0.005	0.115	-0.013	0.133	-0.001	0.166	-0.035	
	0.002	0.003	0.003	0.003	0.033	0.045	0.04	0.051	
30 Day Survival	0.123	-0.011	0.131	-0.019	0.13	0.011	0.134	0.005	
	0.003	0.004	0.003	0.004	0.039	0.053	0.047	0.059	
1 Year Survival	0.173	-0.027	0.184	-0.033	0.197	-0.118	0.209	-0.132	
	0.003	0.004	0.004	0.005	0.046	0.062	0.054	0.068	
2 Year Survival	0.199	-0.025	0.21	-0.028	0.183	-0.077	0.198	-0.093	
	0.003	0.005	0.004	0.005	0.047	0.063	0.054	0.068	
4 Year Survival	0.213	-0.017	0.221	-0.011	0.164	-0.093	0.188	-0.117	
	0.003	0.005	0.004	0.005	0.047	0.064	0.054	0.068	

Female-Male Differences in the Survival Benefit from Intensive Management


Female-Male Differences in the Survival Benefit from Intensive Management

		OLS (n=1	38,873)			IV (n=1)	29895)	
	Unw	eighted	Weighted		Unweighted		Ŵe	eighted
	cath	cath*fem	cath	cath*fem	cath	cath*fem	cath	cath*fem
1 Day Survival			0.052 0.002	-0.003 0.002			0.087 0.028	-0.042 0.035
7 Day Survival			0.115 0.003	-0.013 0.003			0.166 0.04	-0.035 0.051
30 Day Survival			0.131 0.003	-0.019 0.004			0.134 0.047	0.005 0.059
1 Year Survival			0.184 0.004	-0.033 0.005			0.209 0.054	-0.132 0.068
2 Year Survival			0.21 0.004	-0.028 0.005			0.198 0.054	-0.093 0.068
4 Year Survival			0.221 0.004	-0.011 0.005			0.188 0.054	-0.117 0.068

			400.070				
		OLS (n=138,873)					
	Unw	eighted	We	ighted			
	cath	cath*black	cath	cath*black			
1 Day Survival	0.05	-0.011	0.049	-0.012			
,	0.001	0.055	0.002	0.002			
	0.001	0.000	0.002	0.002			
	0.400	0.000	0.400	0.000			
7 Day Survival	0.108	-0.032	0.109	-0.036			
	0.002	0.007	0.002	0.003			
30 Day Survival	0.12	-0.03	0.122	-0.032			
· · · , · · ·	0.002	0.008	0.003	0.004			
	0.002	0.000	0.000	0.001			
1 Year Survival	0.162	-0.036	0.166	-0.039			
i fear Survivar							
	0.003	0.009	0.003	0.005			
2 Year Survival	0.19	-0.043	0.196	-0.045			
	0.003	0.01	0.004	0.005			
4 Year Survival	0.208	-0.055	0.215	-0.054			
	0.003	0.01	0.004	0.005			

Things you want to see

- 1. How well does reweighting work?
- 2. How good of an instrument is DD?
- 3. Does IV recover TT or a LATE?
- 4. Are physicians using the right g(I)? Is survival benefit increasing in g(I)?
- 5. Are physicians using the same g(I) function for men and women (blacks and whites)?
- 6. What if survival per dollar (instead of survival) is equalized?
- 7. Mechanisms: followup, hospital skill

Wald Estimates

	30-day CATH rate		1-year	1-year Survival		Predicted vival
	DD	DD	DD	DD	DD	DD
	Below Median	Above Median	Below Median	Above Median	Below Median	Above Median
Sample:			10100au	median	median	1010anii
All patients (n=1 38,873)	48.9%	42.8%	67.6%	66.7%	67.6%	67.2%
By Gender Female (n=6 8,770)	42.5%	36.4%	65.2%	64.7%	65.9%	65.5%
Male (n= 70,103)	55.1%	49.1%	70.0%	68.8%	69.1%	68.8%
By Race Black (n=8,285)	41.5%	36.9%	66.7%	66.8%	64.1%	64.6%
Non - Black (n= 130,588)	49.3%	43.2%	67.7%	66.7%	67.8%	67.3%

Does the Diff-Distance IV Recover Treatment on Treated?

Concern:

When DD is small, we go deeper into the distribution of patients; DD as an IV recovers a LATE and not TT.

Test:

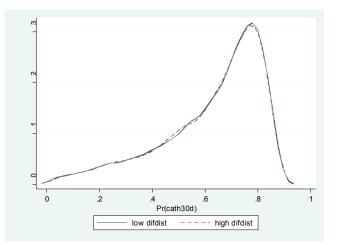
Compare predicted probability of receiving cath in patients *who received cath* across High and Low DD.

Ensure that patients with High DD, do not have a lower predicted probability (conditional on receiving Cath).

Does the Diff-Distance IV Recover Treatment on Treated?

Concern: When DD is small, we go deeper into		CATH patients	by predicted TH rate for ents getting CATH	
the distribution of patients; DD as an IV recovers a LATE and not TT.	Sample:	DD Below Median	DD Above Median	
Test:	All patients (n=138,873)	62.7%	62.7%	
Compare predicted probability of receiving cath in patients <i>who</i> <i>received cath</i> across High and Low	By Gender Female (n=68,770)	60.9%	61.0%	
DD.	Male (n=70,103)	64.1%	63.9%	
Ensure that patients with High DD, do not have a lower predicted probability (conditional on receiving	By Race Black (n=8,285)	60.5%	59.6%	
Cath).	Non-Black (n=130,588)	62.9%	62.9%	
		•	-	

Does the Diff-Distance IV Recover Treatment on Treated?


Concern:

When DD is small, we go deeper into the distribution of patients; DD as an IV recovers a LATE and not TT.

Test:

Compare predicted probability of receiving cath in patients *who received Cath* across High and Low DD.

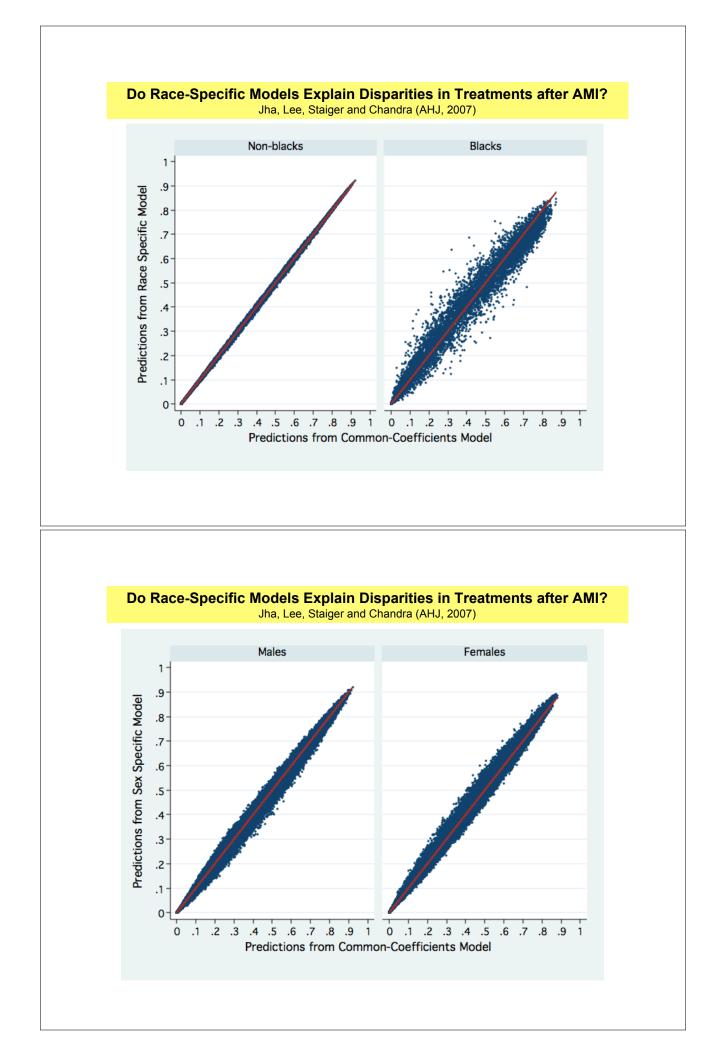

Ensure that patients with High DD, do not have a lower predicted probability (conditional on receiving Cath).

TABLE 1
INSTRUMENTAL VARIABLE ESTIMATES OF INTENSIVE MANAGEMENT AND SPENDING ON
One-Year Survival by Clinical Appropriateness of Patient

	INSTRUMENTAL VARIABLE ESTIMATES OF		
	Impact of Cath		
Sample	On One-Year Survival (1)	On One-Year Cost (\$1,000s) (2)	Impact of \$1,000 on One-Year Survival (3)
A. All patients $(N = 129,895)$.142	9.086	.016
-	(.036)	(1.810)	(.005)
B. By cath propensity:			
Above the median $(N =$.184	4.793	.038
64,799)	(.034)	(1.997)	(.017)
Below the median $(N =$.035	17.183	.002
65,096)	(.083)	(3.204)	(.005)
Difference	.149	-12.39	.036
	(.090)	(3.775)	(.018)
C. By age:			
$65-80 \ (N = 89,947)$.171	6.993	.024
	(.037)	(1.993)	(.009)
Over 80 $(N = 39,948)$.016	16.026	.001
	(.108)	(2.967)	(.007)
Difference	.155	-9.033	.023
	(.114)	(3.574)	(.011)

NOTE. — Cath propensity is an empirical measure of patient appropriateness for intensive treatments. We define this measure by using fitted values from a logit model of the receipt of cardiac catheterization on all the CCP risk adjusters. Differential distance (measured as the distance between the patient's zip code of residence and the nearest catheterization hospital minus the distance to the nearest hospital) is the instrument. Each model includes all the CCP risk adjusters, and the standard errors are clustered at the level of each HRR.

Defining Net Benefit

NB = (S)urvival – \lambda.(C)ost, where λ is survival per 1000 dollars:

What are **BIG** and small values for λ ?

- Some might use λ =0 (physician should ignore costs of care; infinite value of life)
- BIG value for λ implies small value of life-> Costs matter!
- One survivor at 1 year realizes about 5 years of life.
- Minimum value of life year would be $20k; \lambda = 0.01$
- More reasonable value of life year would be \$100k; λ =0.002
- Our sense is that reasonable values of λ lie between 0.01 and 0.002

What about Estimation?

Estimate ΔS and ΔC from:

$$S = \alpha_0 + \alpha_1 Treat + \alpha_2 (Treat*female) + X\alpha_3 + e,$$

where $\alpha_1 = \overline{\Delta S_m}$ and $\alpha_2 = \overline{\Delta S_f} - \overline{\Delta S_m}$
$$C = \beta_0 + \beta_1 Treat + \beta_2 (Treat*female) + X\beta_3 + e,$$

where $\beta_1 = \overline{\Delta C_m}$ and $\beta_2 = \overline{\Delta C_f} - \overline{\Delta C_m}$

For all λ between 0.0-0.1, we test: H0: $\alpha_2 - \lambda^* \beta_2 = 0$

- − if α_2 $\lambda^*\beta_2 > 0 \rightarrow h_1 > 0 \rightarrow$ prejudice against women
- if α₂- λ*β₂ ≤ 0 → h₁≤0 → prejudice against men

	Weighted OLS
Dependent Variable: Survival to 1 year Effect of Cath for Men	0.184 (0.004)
Female-Male Difference in Effect of Cath	-0.033 (0.005)
Dependent Variable: Costs in 1st year (\$1000) Effect of Cath for Men	15.033 (0.129)
Female-Male Difference in Effect of Cath	-0.905 (0.167)
Ranges of λ between 0-0.1 that are consistent with:	
No Prejudice (a2=0)	(.025060)
Prejudice against women (a2>0)	(.060100)
Prejudice against men (a2<0)	(0 - 0.025)
# Observations	138873

Black-White Differences in the Net Survival Benefit from Intensive Management

	Weighted OLS
Dependent Variable: Survival to 1 year Effect of Cath for Whites	0.166 (0.003)
Black-White Difference in Effect of Cath	-0.039 (0.005)
Dependent Variable: Costs in 1st year (\$1000) Effect of Cath for Whites	15.29 (0.131)
Black-White Difference in Effect of Cath	-4.251 (0.172)
Ranges of λ between 0-0.1 that are consistent with:	
No Prejudice (a2=0)	(.007011)
Prejudice against blacks (a2>0)	(.011100)
Prejudice against whites (a2<0)	(0 -0.007)
# Observations	138873

Conclusions

- If anything, women & blacks are getting lower returns, even after we adjust for costs.
- Our IV estimates are imprecise, but we plan to update with 1992-2003 claims data (about 20x the sample).
- Key question is why are the benefits of care different?
 - Genes? Contentious explanation for race differences
 - Geography or Hospital "expertise"? No.
 - Follow-up care? Effects grow for women, not for blacks.