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Abstract

This paper presents a new copula-based approach for analyzing panel data in
which (1) the observed multivariate outcomes are a mixture of zeros and continuously-
measured positives, with the zeros accounting for a nontrivial proportion of the sample;
(2) both the zero and positive outcomes show state dependence and dynamic inter-
dependence (cross-equation lagged dependence); and (3) the zeros and the positives
display contemporaneous association. The copula-based approach is especially appeal-
ing because the contemporaneous associations may involve asymmetric dependence.
We apply our methodology to the analysis of cost-o¤sets between prescription drug
and other non-drug healthcare expenditures using data from the Medical Expenditure
Panel Survey. There is evidence of modest cost-o¤sets of expenditures on prescribed
drugs.
JEL codes: C51, C33, I11
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1. Introduction

This paper presents a new copula-based approach for analyzing panel data that have the

following features: (1) the observed multivariate outcomes are a mixture of zeros and

continuously-measured positives, with the zeros accounting for a nontrivial proportion of

the sample; (2) both the zero and positive outcomes show persistence (i.e., dependence on

their own past values) and dynamic interdependence (cross-equation lagged dependence);

and (3) the zeros and the positives display contemporaneous association. The copula-

based approach is especially appealing because contemporaneous associations may involve

tail dependence, in which extreme values of related variables tend to occur in tandem

(Embrechts, McNeil, and Straumann, 2002). We label such a model a dynamic multivari-

ate copula-based hurdle model and focus on the bivariate special case of it. Such nonlinear

dynamic models are potentially useful for analyzing expenditure data for goods and ser-

vices that may be dynamic substitutes or complements. The model is applicable to a variety

of bivariate situations in which outcomes exhibit dynamic dependence, and where corner

solutions are likely. Examples include expenditures on drug and nondrug healthcare ser-

vices, values of related portfolio assets, household consumption of generic and name-brand

products, and �rms�investments in domestic and foreign markets. Variants of this model

can be generated also for the case where the positive-valued outcome is discrete (e.g. a

count, as in Bien, Nolte, and Pohlmeier, 2007).

We apply our methodology to an analysis of cost-o¤sets between prescription drug and

other non-drug healthcare expenditures in the USA. In essence, this hypothesis states that

drug- and non-drug expenditures are potential substitutes such that increased drug expen-

ditures would be o¤-set by reductions in non-drug expenditures. Our choice of application

is motivated by two considerations. First, prescription drug expenditures constitute an

important item in the national health budget, accounting for around 10% of the US health

budget in 2006. For the elderly this component of healthcare expenditures is even more

important, accounting for expenditures exceeding $120 billion in 2005 and amounting to

nearly $2,800 per person (Kaiser Family Foundation, 2005). Second, a rigorous test of the

cost-o¤set hypothesis calls for a nonlinear dynamic model capable of capturing patterns

of dynamic substitution and complementarity in the use of prescribed drug and non-drug

healthcare expenditures. The model is estimated on quarterly panel data from the Med-
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ical Expenditure Panel Survey. Because there is substantial heterogeneity of individuals

and medical services in their degree of substitutability, so that the relationship between

drug therapy and other medical usage varies across a range of medical services, we conduct

separate analyses by health status and other conditions.

In the remainder of the paper, section 2 elaborates the statement of the cost-o¤set

hypothesis. Sections 3 and 4 deal with the model speci�cation, including that of its dynamic

features. The data and the empirical results are described and discussed in sections 5 and

6. Section 7 concludes.

2. The cost-o¤set hypothesis

Should policy makers be concerned about the growth of prescription drug expenditures, or

do expenditures on prescription drugs pay for themselves through reduced usage of other,

possibly more expensive, health services? The strength and extent of substitution between

prescription drugs and other medical services is the key aspect of the issue. However,

there are plausible arguments that complementarity between prescribed drug and non-

drug expenditures might be expected. The topic has timely policy implications, as many

states in the US are intensifying e¤orts to control rising prescription drug costs in their

public programs (Cunningham, 2005).

The study of cost-o¤sets in structural settings has a sound basis but is challenging

for reasons already noted. Previous analyses of these questions have followed a variety

of di¤erent approaches. One strand of the literature analyzes the relationship between

Medicare supplemental insurance and the utilization of prescription drugs of the elderly;

see, for example, Poisal and Murray (2001) and Goldman and Philipson (2007). These

papers examine the e¤ect of a change in the price of prescription drugs, brought about by

a change in insurance coverage for drug purchases, on spending on drugs. Relationships

between spending on drugs and nondrug care are implied but not directly described. Of

greater direct relevance to this paper is the strand of literature which concentrates on the

relationship between drug expenditures and cost sharing and on the substitution e¤ects

resulting from changes in cost sharing; see Gaynor, Li and Vogt (2007), Goldman et al.

(2004), Joyce et al. (2002). Such an approach is �structural� in the sense that it fo-

cuses on the mechanism though which changes in prescription drug prices impact usage of
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drugs and other types of health care. For example, Gaynor et al. (2007) use individual

level data on health insurance claims and bene�ts; they report evidence of substitution

between outpatient care and prescription drug expenditures, with 35 percent of reductions

in prescription drug expenditures being o¤set by increases in other medical expenditures.

Another example of a structural approach is Shang and Goldman (2007) who use Medicare

Current Bene�ciary Survey (MCBS) panel data to examine spending of Medicare bene�-

ciaries with and without supplemental drug coverage. They report that � ... a $1 increase

in prescription drug spending is associated with a $2.06 reduction in Medicare spending.

Furthermore, the substitution e¤ect decreases as income rises, and thus provides support

for the low-income assistance program of Medicare Part D.�Stuart and Grana (1995) and

a series of coauthored articles by Stuart (2004, 2005, 2007) are other examples of studies

that investigate cost-o¤sets of prescription drugs.

A di¤erent reduced form approach to uncovering potential substitution is illustrated by

Lichtenberg (1996, 2001) who analyzes the direct impact of (especially newer) prescription

drug expenditures on other types of expenditures, especially hospital care. His analysis

based on Medical Expenditure Panel Survey (MEPS) data involves direct regression of other

expenditures on measures of prescription drug use. His results indicate that � ... persons

consuming newer drugs had signi�cantly fewer hospital stays than persons consuming older

drugs.�Some health policy advocates argue that, on average, use of new prescription drugs

reduces total health care costs, but Zhang and Soumerai (2007) show that those results are

not robust to changes in speci�cation.

Another strand of literature emphasizes complementarity between drug and nondrug

spending. For example, Stuart et al. (2007) argue,

�Economic theory also posits that when the price of a complementary good

falls, both the demand for the good itself and the complement will rise. This

leads to a second way in which Part D might a¤ect Medicare Part A (hospitals)

and Part B (medical) spending. Because physician services complement to

prescription drug �lls, we expect that people with prescription drug coverage

will be more likely to visit physicians and thereby spend more on Medicare Part

B services. Furthermore, increased physician usage could lead to increased rates

of diagnostic checks, surgeries, and other expensive procedures.�

3



The extant literature on the direct non-structural approach for testing the cost-o¤set

hypothesis is potentially problematic. Indeed some features of this approach are at odds

with the standard static consumer behavior theory. For example, standard static models

of consumer demand do not directly introduce current or past expenditures as explanatory

variables for explaining other expenditure variables, but such dependence can clearly arise

in a dynamic setting. For example, purchases of durable consumer goods at time t will

generally a¤ect consumption of nondurables and durables beyond t: Analogously, the longer

lasting health e¤ects of prescribed medications, if they exist, may impact the use of other

medical services in the future. Thus, it is of interest to test whether expenditures on

prescribed medications have predictive value for other future medical expenditures (after

controlling for the e¤ects of socioeconomic factors, as well as insurance and health status).

Currently there is not available a rigorous derivation of a cost-o¤set model from a

dynamic model of health care consumption. While our approach uses somewhat ad hoc

functional forms and distributional assumptions, it provides a starting point for devel-

oping models suitable for empirical study of dependence structures. It addresses several

important econometric and modeling issues that will typically arise in such contexts.

We model the cost-o¤set hypothesis within the statistical framework of the joint bi-

variate distribution of two types of expenditures, prescribed medications and other non-

drug expenditures, denoted y1 and y2, respectively. We allow for a potentially long term

nonlinear dynamic impact of current medical expenditures on health status and on fu-

ture health-related expenditures. Within such a framework we attempt to estimate the

time pro�le of the impact of drug expenditures on current and future nondrug expendi-

tures, the key parameters of interest being @y2;t=@y1;t�� . Identi�cation of these parameters

requires panel data. Within our framework, the cost-o¤set hypothesis implies negative

intertemporal dependence between the two types of expenditures, i.e., @y2;t=@y1;t�� < 0.

More strictly, a cost-o¤set that implies a reduction in aggregate medical spending satis-

�es @y2;t=@y1;t�� < �1.1 We adopt a copula framework which accommodates a �exible

formulation of dependence and marks a departure from the usual assumption of linear de-

pendence. Note that, although the e¤ect of interest is the intertemporal relationship that

runs from y1 to y2, our model has no restrictions of the Granger-causal type.

1 In our empirical analysis, we focus on the case in which � = 1:
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3. Model speci�cation

The distributions of quarterly drug and nondrug expenditures have substantial numbers of

zeros, approximately 60-70 percent for drug expenditures and 30-40 percent for nondrug

expenditures. To capture this feature we propose a bivariate hurdle model of expenditures.

In the univariate case, the hurdle or two-part model is ubiquitous in the health economics

literature (Pohlmeier and Ulrich, 1995). Either logit or probit is the commonly used

functional form for the �rst part, which describes whether spending is positive. For the

second part, which models positive spending, much of the older literature used OLS to

estimate the parameters of the logarithm of expenditures. More recently, models based on

the gamma distribution have been preferred (Manning, Basu, and Mullahy, 2005), in part

because they tend to �t the data better, and also because they have the added advantage

of not requiring, post estimation, a retransformation to the raw scale. We take this basic

setup from the literature on expenditures and extend it in two signi�cant ways. First, it

is adapted to the bivariate case. Second, because the cost-o¤set hypothesis is inherently

dynamic, we specify dynamic relationships within the bivariate hurdle framework. We

develop a model of the joint distribution of drug and nondrug expenditures because this

will lead to a number of parameters relevant to the cost-o¤sets hypothesis.

Consider two non-negative outcomes y1 and y2 each with a signi�cant fraction of zeros.

The bivariate hurdle model speci�es a statistical process for each of the four con�gurations

of outcomes, y1 = 0; y2 = 0 (denoted by (y01; y
0
2) in what follows); y1 > 0; y2 = 0 (y

+
1 ; y

0
2);

y1 = 0; y2 > 0 (y01; y
+
2 ) and y1 > 0; y2 > 0 (y+1 ; y

+
2 ). Each con�guration maps to a data

distribution given by a product of a bivariate hurdle probability and a density for the

positive outcomes, such that

y01; y
0
2 �! F (y1 = 0; y2 = 0)� f00(y1 = 0; y2 = 0) (1)

y+1 ; y
0
2 �! F (y1 > 0; y2 = 0)� f+0(y1; y2 = 0jy1 > 0)

y01; y
+
2 �! F (y1 = 0; y2 > 0)� f0+(y1 = 0; y2jy2 > 0)

y+1 ; y
+
2 �! F (y1 > 0; y2 > 0)� f++(y1; y2jy1 > 0; y2 > 0):

where F is a bivariate distribution de�ned over binary outcomes, and f00, f+0, f0+ and

f++ are bivariate densities. The de�nitions given in equation (1) can be simpli�ed further.
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First, note that the density f(y1 = 0; y2 = 0) is degenerate and equal to one. Next, note

that

f+0(y1; y2 = 0jy1 > 0) = f2(y2 = 0)f(y1jy1 > 0; y2 = 0):

Since f2(y2 = 0) is degenerate, the model requires only a speci�cation for f(y1jy1 > 0; y2 =
0). We specify this density using a parametric form for f1(y1jy1 > 0). This speci�cation
follows the logic of the two-part or hurdle model (Cragg, 1971; Duan et al., 1983) as

being speci�ed �free�of y2 but this does not mean that y1jy1 > 0 and y2 are independent
events. Note that, we could specify the joint density f(y1; y2 = 0jy1 > 0) directly, but any
dependence parameter speci�ed would be unidenti�ed unless there were other sources of

identi�cation.2 Duan et al. (1983, 1984) provide theoretical and numerical demonstrations

of these properties. The density f(y1 = 0; y2jy2 > 0) can be similarly decomposed and

simpli�ed. Consequently,

y01; y
0
2 �! F (y1 = 0; y2 = 0) (2)

y+1 ; y
0
2 �! F (y1 > 0; y2 = 0)� f1(y1jy1 > 0)

y01; y
+
2 �! F (y1 = 0; y2 > 0)� f2(y2jy2 > 0)

y+1 ; y
+
2 �! F (y1 > 0; y2 > 0)� f12(y1; y2jy1 > 0; y2 > 0);

Below, we �rst describe parametric forms for the univariate densities fj ; j = 1; 2. Then

we describe the joint distribution F and the joint density f12. Note that, for notational

convenience, we �rst describe the setup without conditioning variables. Conditioning on

covariates and lagged dependent variables is described later.

3.1. Speci�cation of fj

Positive expenditures are speci�ed according to the gamma density,

fj(yj jyj > 0) =
exp(�yj=�j)y

�j�1
j

�j�(�j)
for j = 1; 2;�j > 0; �j > 0: (3)

2There are two ways in which a dependence parameter might be identi�ed for f(y1; y2 = 0jy1 > 0). First,
dependence parameters might be identi�ed if there were variable exclusion restrictions. Second, one could
specify the same dependence parameter for f(y1; y2 = 0jy1 > 0) as is speci�ed for f(y1; y2jy1 > 0; y2 > 0).
However, this adds no informational value or modeling �exibility, but it does add computational complexity.
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Note that E(yj jyj > 0) = �j�j , j = 1; 2 and skewness and kurtosis of the gamma distrib-
utions are positively related to 1=�j : Thus the speci�cation allows the shape parameter to

be di¤erent for drug and nondrug expenditures.

3.2. Speci�cation of F and f12

It is likely that stochastic dependence between drug and nondrug expenditures is asymmet-

ric, with equally plausible arguments in favor of lower or upper tail dependence. Unlike the

typical bivariate probit setup for joint binary outcomes or the seemingly unrelated linear

regression setup, both of which emphasize linear correlations, copula-based dependence

measures allow for more �exible patterns. Dependence in a copula-based model derives

from the functional form of the copula itself, which is speci�ed by the researcher. Some

copulas exhibit dependence that is highly nonlinear and asymmetric. Thus, a copula-based

model has the potential to more accurately capture the complex, nonlinear relationship be-

tween drug and nondrug expenditures. Our statistical framework uses the copula approach

to generate the desired joint distributions, F and f12.

3.2.1. Copula basics

The copula approach to multivariate distributions was pioneered by Sklar (1973) and ex-

tended to conditional distributions by Patton (2006). Within this framework the copula

parameterizes a multivariate distribution in terms of its marginal distributions conditional

on information set It�1. For an m-variate joint distribution function G; the copula satis�es

G(y1t; :::; ymtjIt�1) = C(G1(y1tjIt�1); :::; Gm(ymtjIt�1); �); (4)

where Gj(yjtjIt�1) denotes the marginal distribution function of the jth component and
� is a scalar-valued dependence parameter. Given the marginal distributions, and a cop-

ula function C(�); the above equation generates a joint conditional distribution. A fully

parametric implementation requires the choice of suitable functional forms of marginal

distributions G1; :::; Gm, and the functional form of the copula.

The literature o¤ers a vast array of copula functional forms from which to choose

(Nelsen, 2006). Because we have no a priori expectations regarding the dependence struc-

ture for our data, we have experimented with a variety of copulas: (1) Gaussian; (2)
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Clayton; (3) Survival Clayton; (4) Frank. The functional form of each of these copulas

appears in Table 3. The Gaussian and Frank copulas both permit positive and negative

dependence, and any observed dependence is symmetric with no tail dependence allowed

in the Gaussian case and limited tail dependence in the Frank copula. In contrast, the

Clayton and Survival Clayton copulas allow for asymmetric tail dependence, but neither

allows for negative dependence. Clayton exhibits lower tail dependence, whereas Survival

Clayton shows upper tail dependence. By changing the functional form of the copula, many

di¤erent dependence patterns between marginal distributions can be explored. Properties

of these well established functional forms are discussed in the literature (Joe, 1997; Nelsen,

2006; Cherubini, Luciano, and Vecchiato, 2004; Trivedi and Zimmer, 2007).

Anticipating our results, it generally appears that the best �t to the data is obtained

using the Clayton copula. The main bene�t of the Clayton copula is its ability to capture

lower tail dependence, which information criteria measures indicate is omnipresent in health

care expenditures data. The bivariate Clayton (1978) copula takes the form

C(u1; u2; �) = (u
��
1 + u��2 � 1)�1=� , � > 0 (5)

where uj = Gj(yj jIt�1) with the dependence parameter � restricted to the region (0;1).
As � approaches zero, the marginals become independent. The Clayton copula exhibits

asymmetric dependence in that dependence in the lower tail is stronger than in the upper

tail, but this copula cannot account for negative dependence. It is not always easy to

interpret estimates of � for di¤erent copulas. Thus it is helpful to transform � to more easily

interpreted measures of concordance such as Kendall�s � (Nelsen, 2006) which is comparable

across copulas. For the Clayton copula the formula for converting � is � = �=(� + 2).

In using the Clayton copula, contemporaneous dependence between drug and nondrug

spending is restricted to be positive, and therefore, not surprisingly, we �nd that contempo-

raneous dependence is positive. However, in our formulation the choice of copula does not

restrict the direction of dynamic dependence, which is our principal concern. Preliminary

analysis indicated that other copulas that permit negative contemporaneous dependence

also produced positive contemporaneous dependence. Therefore, our �ndings of positive

contemporaneous dependence appear to be robust across di¤erent copula speci�cations.
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3.2.2. Speci�cation of F

We use the probit formulation for the marginal distributions for the bivariate hurdle part

of the model, i.e., Pr (yj > 0) = �j (�). Let the joint probability distribution of positive
drug and nondrug expenditures be

F (y1 > 0; y2 > 0) = C (�1 (�) ;�2 (�) ; �0) (6)

where C is one of the copula functions described above, and �0 is a dependence parameter.

It is easy to derive the following related probabilities:

F (y1 = 0; y2 = 0) = 1� �1 (�)� �2 (�) + C (�1 (�) ;�2 (�) ; �0) ; (7)

F (y1 > 0; y2 = 0) = �1 (�)� C (�1 (�) �2 (�) ; �0) ;

F (y1 = 0; y2 > 0) = �2 (�)� C (�1 (�) �2 (�) ; �0) :

3.2.3. Speci�cation of f12

We use the gamma density for the marginal distributions for the copula-based joint distri-

bution of positive drug and nondrug expenditures. That is,

f+j (yj jy1 > 0; y2 > 0) = y
�+j �1
j

exp(�yj=�j)

�
�+j
j �(�

+
j )

for j = 1; 2;�j > 0; �
+
j > 0 (8)

and

f12(y1; y2jy1 > 0; y2 > 0) = c
�
F+1 (�) ; F

+
2 (�) ; �+

�
� f+1 (�)� f

+
2 (�) (9)

where lower case c(�) represents the copula density, and F+j is the cumulative distribution

function (cdf) version of f+j . Note that, while we have speci�ed �j , which we parameterize

to be the same as in the speci�cations of fj for parsimony, �+j is not necessarily the same

as �j , a proposition we test in our empirical analysis. Allowing �
+
j to be di¤erent from �j

may seem odd at �rst glance as they seem inconsistent with each other. In fact, this is one

of the advantages of the copula approach. The starting point of the analysis consists of

speci�cations of the marginal densities in the most data-consistent manner. Then the use

of a copula allows one to combine the marginals and obtain the joint distribution, which,

by Sklar�s theorem, satis�es all properties of a density / distribution function.
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4. Dynamics and estimation

We now introduce the speci�cations for conditioning on covariates, dynamics via lagged

dependent variables and individual-level random e¤ects. We �rst describe how they are

speci�ed for the bivariate hurdle speci�cation and then we describe how they are speci�ed

for the models of positive expenditures.

4.1. Speci�cation of conditional means in F

For the marginal distributions �1 (�jIt�1;xit) ;�2 (�jIt�1;xit) we specify

Pr(y1it > 0) = �
�
h01(fyk;it�jg) + x0it�01 + �01i

�
(10)

Pr(y2it > 0) = �
�
h02(fyk;it�jg) + x0it�02 + �02i

�
; (11)

i = 1; :::; N ; t = 3; :::; T ; k = 1; 2; j = 1; 2; :::; J and J < T . The functions h0k are de�ned

over the elements of the set fyk;it�jg which includes lagged outcomes and �0ji are random
intercepts.

We allow for independent e¤ects of lagged binary indicators of expenditures in addition

to lagged continuous expenditure variables. Thus the speci�cations for h0l are given by

h0lfyk;it�jg =
2X
k=1

JX
j=1


lkj1(yk;it�j > 0)+
2X
k=1

JX
j=1

�lkj ln (max(yk;it�j ; 1)) for l = 1; 2: (12)

That is, the lagged expenditures are entered as their logarithms when they are positive,

zero otherwise, along with an indicator for whether the lagged expenditure is greater than

zero or not.3

In the empirical analysis, we restrict the model to include only �rst and second quarter

lags, i.e., j = 1; 2. A model with one lag has many appealing analytical features but is

almost certainly too restrictive. The model with two lags allows for considerably more

general autocorrelation and cross-correlation structures. In principle, there is no reason

to limit the model to have just two lags. Unfortunately, because of the length of the

time dimension in our panel data (8 quarters) combined with the large number of control

variables, we observed a number of cases of non-convergence when we estimated models

3There are no positive expenditures less than $1.
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with 3 or more lags. Therefore, we restrict our attention in this paper to models with two

lags.

The random intercepts are further speci�ed as

�0ki = x
0
i�0k +

2X
k=1

�k1(yki0 > 0) +
2X
k=1

&k ln (max(yki0; 1)) + "0ki; k = 1; 2: (13)

This extends the standard random e¤ect panel model along two dimensions. Following

Mundlak (1978) and Chamberlain (1984), we allow for correlation between �0ki and xit

by including a vector of person-speci�c time-averaged means, x0i. Following Wooldridge

(2005), we allow for the e¤ects of initial conditions by specifying �0ki to be a function of

yki0, a vector of initial values of the outcome variables, allowing for separate e¤ects for the

binary indicator and continuous expenditure variables. The term "0ki may be interpreted

as unobserved heterogeneity uncorrelated with xit and yki0. For the speci�cation to be

valid, we assume that xit are strongly exogenous and not predetermined. To allow for

possible dependence between y1it and y2it induced by unobserved heterogeneity, ("01i "02i)

have a joint bivariate distribution whose functional form is not initially explicitly stated.

Given this distribution, the correlated random e¤ects bivariate model integrates out the

random e¤ects ("1; "2): Di¤erent functional forms of the joint distribution arise from dif-

ferent parametric assumptions about the joint distribution of the random e¤ects. Whereas

we do not explicitly carry out this integration, we use several di¤erent functional forms of

the bivariate joint distribution (i.e. the hurdle copula). Underlying each functional form is

some form of dependence. We let the data decide which functional form best �ts the data.

The estimation of the univariate dynamic probit model in the presence of initial con-

ditions has been discussed by Heckman (1981) and more recently by Wooldridge (2005);

Arumapalam and Stewart (2009) compare the two approaches. We follow Wooldridge in

employing a maximum likelihood approach conditional on the observed values of the initial

conditions, which is analogous to assuming that the initial conditions are nonrandom. Al-

though we acknowledge the tenuousness of this assumption, fully addressing this concern

would require specifying distributions for the initial conditions and integrating them out

of (13). This would add a substantial layer of complexity to an already-large model.
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4.2. Speci�cation of conditional means in f1, f2 and f12

For the marginal distributions fj(yj jyj > 0; It�1;xit) and f+j (yj jy1 > 0; y2 > 0; It�1;xit)
we specify

�1it = exp
�
h+1(fyk;it�jg) + x0it�+1 + �+1i

�
(14)

�2it = exp
�
h+2(fyk;it�jg) + x0it�+2 + �+2i

�
; (15)

i = 1; :::; N ; t = 3; :::T ; k = 1; 2; j = 1; 2; :::; J and J < T , in parallel to the speci�cations

for the marginal distributions in the hurdle part of the model. Again, the functions h+k

are de�ned over the elements of the set fyk;it�jg which includes lagged outcomes and �+ki
are random intercepts. As in the speci�cation for the binary choices, we allow for indepen-

dent e¤ects of lagged binary indicators of expenditures in addition to lagged continuous

expenditure variables via

h+l(fyk;it�jg) =
2X
k=1

JX
j=1


+lkj1(yk;it�j > 0) +
2X
k=1

JX
j=1

�+lkj ln (max(yk;it�j ; 1)) for l = 1; 2;

(16)

and

�+ki = x
0
i�+k +

2X
k=1

�+k1(yk;i0 > 0) +
2X
k=1

&+k ln (max(yk;i0; 1)) + "+ki; k = 1; 2: (17)

As is typical in gamma regressions, the parameters �1 and �2 are speci�ed as scalars.

Finally, in the empirical analysis, as motivated above we restrict the model to include only

�rst and second quarter lags, i.e., j = 1; 2.

4.3. Estimation and inference

As described in equation (2), in our set-up there are four categories of bivariate realizations:

(1) y1 = y2 = 0; (2) y1 > 0; y2 = 0; (3) y1 = 0; y2 > 0; (4) y1 > 0; y2 > 0: The

joint likelihood is formed using the probability expression for each realization. Using the

marginal and joint expressions described above, the log likelihood function for the bivariate
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hurdle model is

lnL =
P
0;0
[ln (F (y1 = 0; y2 = 0); It�1;xit; �0)] (18)

+
P
+;0
[ln (F (y1 > 0; y2 = 0); It�1;xit; �0) + ln (f1 (�jIt�1;xit))]

+
P
0;+
[ln (F (y1 = 0; y2 > 0); It�1;xit; �0) + ln (f2 (�jIt�1;xit))]

+
P
+;+

[ln (F (y1 > 0; y2 > 0); It�1;xit; �0) + ln f12(y1; y2jy1 > 0; y2 > 0; It�1;xit; �+)] :

For purposes of estimation, it is convenient to note that the log likelihood decomposes

into two parts which can be maximized separately, i.e., lnL = lnL1 + lnL2 where

lnL1 =
P
0;0
ln (F (y1 = 0; y2 = 0); It�1;xit; �0) +

P
+;0
ln (Fy1 > 0; y2 = 0; It�1;xit; �0) (19)

+
P
0;+
ln (F (y1 = 0; y2 > 0); It�1;xit; �0) +

P
+;+

ln (Fy1 > 0; y2 > 0; It�1;xit; �0)

and

lnL2 =
P
+;0
ln (f1 (�jIt�1;xit)) +

P
0;+
ln (f2 (�jIt�1;xit)) (20)

+
P
+;+

ln f12(y1; y2jy1 > 0; y2 > 0; It�1;xit; �+):

lnL1 and lnL2 are maximized separately using a Newton-Raphson algorithm with numeri-

cal derivatives. Upon convergence, robust standard errors that adjust for clustering at the

individual level are calculated and used for inference throughout.

The dynamic copula-based hurdle model accommodates dependence between drug and

nondrug spending in several unique respects. First, the likelihood function contains two

dependence parameters capturing contemporaneous dependence: �0 measures dependence

between the probabilities of having any drug and nondrug expenditures, and �+ represents

dependence between drug and nondrug expenditures when both are positive. Second, as

each marginal distribution speci�es spending as a function of one- and two-period lagged

indicators of positive spending, one- and two-period lagged spending amounts, and initial

conditions, the model also incorporates dynamic dependence, which should be of more

interest from a policy perspective. As illustrated in more detail below, the models exhibit

highly nonlinear structures for both contemporaneous and dynamic dependence, which
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contrasts with previous studies on this topic where the main focus was often linear measures

of contemporaneous dependence.

The model proposed in this paper shares similarities with the set-up developed by

Bien, Nolte, and Pohlmeier (2007). Their count data model also seeks to accommodate

large proportions of zero-valued outcomes in a multivariate setting. Although numerous

di¤erences separate their model and ours, the most substantive departure is that while

Bien et al. do address dynamic issues by way of an error correction mechanism, their

main focus remains contemporaneous dependence. In contrast, our model, as well as its

attendant policy implications, emphasizes nonlinear dynamic dependence by way of an

explicit autoregressive structure introduced directly into the marginal behavior of medical

spending.

5. Data

The data for this study come from the 1996-2006 waves of the Medical Expenditure Panel

Survey (MEPS) collected by the Agency for Healthcare Research and Quality (AHRQ)

from which we construct a number of subsamples of substantive interest. MEPS consists

of a series of �ve interviews over a two-and-a-half year period from which an 8 quarter panel

is constructed for each respondent. Person-speci�c socioeconomic information and monthly

health insurance status comes from the Household Component Full Year �les. Informa-

tion on monthly health care spending comes from the Household Component Event �les.

Spending is accumulated at the quarterly level and includes spending from all sources on

the following services: prescription drugs (including re�lls), o¢ ce-based visits, outpatient

visits, inpatient hospital visits, and emergency room visits. The latter three categories in-

clude both facility and separately-billed-doctor expenses. The sample excludes individuals

who report quarterly drug or nondrug spending above the 99.5 percentile of all positive

spenders. Finally, all spending measures are adjusted for in�ation using the medical CPI

(http://www.bls.gov/cpi), with fourth quarter 2006 serving as the base period. Although

these data permit additional studies in which nondrug spending is delineated into speci�c

subcategories of expenditures, our baseline results emphasize total expenditures due to the

policy relevance of aggregate spending and to keep the quantity of results at a managable

level.
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We construct six subsamples of data for analysis, as MannWhitney U-tests indicated

substantial heterogeneity in medical spending in the full sample. Moreover, the six sub-

samples are relevant for targeted policy considerations. Each sample considers individuals

18 years of age and older. The �rst two subsamples attempt to introduce homogeneity

along age and insurance dimensions. Thus they consist of (1) an elderly sample consisting

of individuals ages 65 and older (N = 78; 162), and (2) well-insured individuals covered by

both medical and prescription drug insurance (N = 289; 374). Four additional subsamples

focus on subjects with speci�c health ailments: (3) diabetes (N = 42; 702), (4) mental

illness (N = 76; 848), (5) arthritis (N = 91; 230), (6) heart problems (N = 120; 552).

Table 1 presents descriptive statistics for quarterly drug and nondrug spending. Not

surprisingly, the probability of positive spending appears to vary somewhat with respect

to health problems, insurance, and age. The same is true for spending among positive

spenders, with the highest spending occurring among the elderly and those with diabetes,

arthritis, and heart conditions. The relatively large means of quarterly medical spending,

in comparison to the smaller medians, indicate long upper tails. Also, as expected, the

quarterly data exhibit substantial serial dependence. In Table 1, we also report the �rst

order serial correlation coe¢ cient for the indicator of positive spending as well as for the

logarithm of expenditure (with its value set to zero when expenditure is zero). Two patterns

are immediately apparent. First, nondrug expenditures display substantially more serial

correlation than drug expenditures. Second, the serial correlation in the indicator variable

is uniformly larger than the serial correlation in the corresponding continuous expenditure

variable.

All models estimated below contain a common set of explanatory variables, with sample

means appearing in Table 2. These are variables that we expect, a priori, to correlate with

health care demand. Our socioeconomic controls are standard in health care demand

models: age, gender, race, marital status, education, region of residence, employed status,

and person-level income (both wage and nonwage). We also include measures of �rm size

and an indicator of government employment, both of which equal zero if the subject is

not employed. In addition to indicators for insurance status, we also include self-reported

health (on the standard excellent-to-poor scale), indicators of physical limitations, injuries,

and number of chronic conditions. The motivation behind including a diverse set of health
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variables, as opposed to a simple health index, is that some health indicators are more

pertinent to speci�c populations; for example, certain chronic conditions are especially

prevalent among the elderly. Although some of the health measure might be somewhat

collinear, our large sample sizes allow precise estimation of their individual impacts on

health care spending.

As indicated in Table 2, the elderly sample has lower rates of employment, smaller family

sizes, and higher rates of public insurance. The diabetes, arthritis, and heart condition

samples are older and have larger numbers of blacks, lower rates of employment, and

higher rates of public insurance. The mental illness sample has more females, fewer blacks,

and higher divorce rates compared to the other samples. The sample of individuals with

prescription drug coverage is younger, whiter, healthier, more educated, and more likely

to be employed and married. Di¤erences between the subsamples highlight heterogeneity

in health care markets and motivate separate consideration of the di¤erent groups.

5.1. Covariates in marginal distributions

All marginal models use a common vector of covariates. Speci�cally, the lag structure is

speci�ed to be the same for all outcomes. This restriction follows from the results of Pat-

ton (2006) who developed �conditional� copula modeling by including lagged dependent

variables on the right hand side similar to what is proposed here. The model is a nonlin-

ear vector autoregressive system of equations. By including previous-period expenditures

variables on the right hand side, the model captures dynamic dependence between drug

and nondrug expenditures.

In most previous applications of conditional copulas, usually in models of continuous

outcomes, and in the literature on dynamic binary response models, the lag is restricted to

one period. For potential �exibility, given that our data periodicity is quarterly, we include

two lags on both 1[yj > 0] and y+j : Speci�cally we use four variables at one- and two-period

lags to measure past expenditures:

1. one and two-period lagged values of a dichotomous indicator for positive drug expen-

ditures;

2. one and two-period lagged values of a dichotomous indicator for positive nondrug

expenditures;
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3. one and two-period lagged values of log of drug expenditures with the variable coded

as zero when the expenditure is zero.

4. one and two-period lagged values of log of nondrug expenditures with the variable

coded as zero when the expenditure is zero.

The vector x includes all explanatory variables listed in Table 2, with dummies for

individual chronic conditions rather than the number of chronic conditions.4 The vector

x also includes measures of age squared and an interaction between age and female and

its square. Counting control variables in x, quarter dummies, lagged spending measures,

initial conditions, and the �Mundlak terms�, each marginal distribution includes a total of

91 explanatory variables plus an intercept term.5

6. Results

We �rst report on model selection criteria for the choice between di¤erent copulas, the

results of a number of speci�cation tests of a number of key features of the bivariate hurdle

model, and parameter estimates of the dynamic relationships. We then report on the

properties of contemporaneous association and tail dependence highlighted by the copula.

Finally, because the dynamic relationships inherent in the parameter estimates are quite

complicated, we report on calculations of partial e¤ects which illustrate the dynamics much

more transparently.

Table 4 reports maximized log likelihood values for several copulas. Because each of the

objective functions has the same number of parameters across copulas, picking the model

with the largest log likelihood is equivalent to choosing the model with the smallest Akaike

or Bayesian Information Criterion. For each subsample, the Clayton copula provides a

superior �t in both parts of the model. Examining each part of the model separately,

4The chronic condition dummies indicate the presence of cancer, diabetes, arthritis, asthma, hyperten-
sion, a mental condition, a urine condition, and a heart condition.

5For some of the subsamples, the number of explanatory variables is less because some variables are
omitted. For example, the sample consisting of subjects with prescription drug coverage omits the indicator
for prescription drug coverage. The time-varying variables used to calculate Mundlak terms are: age, age
squared, female*age, female*age squared, married, widow, divorced, family size, education, log of income,
employed, �rm size, govtjob, private insurance, public insurance, prescription drug coverage, very good
health, good health, fair health, poor health, physical limitation, injury, cancer, diabetes, mental illness,
arthritis, asthma, urine condition, hypertension, and heart condition.
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we note that the Clayton copula provides a substantially better �t for the hurdle part

of the model in each case, and also generally for the conditional part, except for three

cases for which there is little discrimination across models. The last two columns in Table

4 present estimates of contemporaneous dependence for the di¤erent copulas. Despite

the di¤erent dependence structures implied by the di¤erent copulas, estimates reveal a

qualitative consistency in dependence magnitudes.

Parameter estimates from the bivariate hurdle model with Clayton copulas are reported

in Tables 5-10. The left panel of results corresponds to the hurdle part, and the right panel

reports �ndings for positive expenditures. Only estimates of the autoregressive parameters

are shown in the tables along with a number of speci�cation tests and the copula para-

meters. The models include a rich set of controls, as outlined above, but these are not

shown in the tables in the interest of brevity. Tables of results for the full models are

available upon request. Although not shown, we note that the estimated coe¢ cients of the

control variables are similar in sign to previous studies of medical care access and spending.

Not surprisingly, the most important determinants of medical spending, both in terms of

magnitude and statistical signi�cance, are health status measures. Individuals with health

problems and/or physical limitations are more likely to have positive spending and have

higher levels of spending compared to their more healthy counterparts.

The dynamic relationships between the two types of expenditures are captured by the

coe¢ cients of functions of lagged expenditures, both as binary indicators of any expenditure

and the logarithm of expenditures. There is clear evidence of own and cross lagged e¤ects

of spending in both the binary response or hurdle part and the continuous part of the

model. Rather that discussing every own and cross e¤ect in Tables 5-10, the discussion

that follows focuses on the relationship between lagged drug spending and current period

nondrug spending, as this relationship informs on the presence and magnitude of cost-

o¤sets.

In the hurdle component of the model, a consistent pattern emerges across the subsam-

ples: Indicators of lagged positive drug spending are associated with lower probabilities of

present-quarter nondrug spending. The 1-quarter lagged indicator of positive drug spend-

ing is negative and signi�cant in all six subsamples, while the 2-quarter lagged indicator

is negative and signi�cant in the well insured, mental illness, and arthritis samples. In
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contrast, the actual amounts of lagged (logged) drug spending are positively related to the

probability of present-quarter nondrug spending. (The only lagged logged drug spending

measure that is not signi�cant is the 2-quarter lag in the 65 and older sample.) Although

negative coe¢ cients of the lagged binary indicators are larger in magnitude than the posi-

tive coe¢ cients of the lagged (logged) spending variables, it is di¢ cult to ascertain whether

this is evidence of cost-o¤sets, as the lagged measures correspond to di¤erent scales. Fur-

thermore, contemporaneous dependence, discussed in the following subsection, appears to

be unambiguously positive. We attempt to quantify these various o¤-setting e¤ects below.

In the second part of the model, which describes positive spending, none of the lagged

measures of drug spending, either binary of logged amounts, appears to be signi�cantly

related to nondrug spending. Therefore, we expect that cost-o¤sets, to the extent that

they exist, are largely driven by the hurdle part of the model.

The chi-square test of the null hypothesis that the initial conditions have zero coe¢ -

cients is reported in Tables 5-10; this refers to the � k and �+k terms in (13) and (17). The

joint null is rejected in every case, for both parts of the model, at p < 0:01. The tables

also report a chi-square test that the �Mundlak terms�are jointly insigni�cant. This refers

to the joint signi�cance of the �0k and �+k coe¢ cients in (13) and (17) of the correlated

random e¤ects speci�cation. This null hypothesis is also conclusively rejected in every case.

Both these tests support the desirability of our more �exible random e¤ects speci�cation.

Finally, the tables report tests of the hypothesis that �j = �
+
j for j = 1; 2, i.e., the shape

parameters of the gamma distributions for y+1 and y+2 are the same in the speci�cations

of the densities in y+1 ; y
0
2, y

0
1; y

+
2 and y+1 ; y

+
2 . The null hypothesis of equality is rejected

in every case, with the exceptions of drug spending in the diabetes and heart condition

samples. In addition, although we do not report test statistics, it is clear that skewness

and kurtosis are signi�cantly higher for drug than for nondrug expenditures.

6.1. Contemporaneous and tail dependence

The copula dependence parameters �0 and �+, reported at the bottom of Tables 5-10, mea-

sure contemporaneous dependence between drug and nondrug spending, after controlling

for the in�uence of all explanatory and lagged spending variables. Although less inter-

esting from a policy perspective, contemporaneous dependence represents an important
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benchmark, as most previous studies have estimated contemporaneous cost-o¤sets based

on cross sectional data. Our results indicate that the Clayton copula gives the best �t,

and this copula supports positive contemporaneous dependence. The results show strong

evidence of positive contemporaneous dependence in all subsamples and for both parts of

the model. Both �0 and �+ are estimated with high degrees of precision, so this appears

to be a robust �nding.

Contemporaneous dependence is larger in magnitude in the hurdle part, with �0 between

1.00 and 1.30 (Kendall�s tau between 0.33 and 0.39). By comparison, in the second part,

�+ is between 0.20 and 0.25 (Kendall�s tau between 0.09 and 0.11). The interpretation is

that an individual�s probabilities of positive drug and nondrug spending are more closely

related than the amounts of drug and nondrug spending.

To illustrate contemporaneous dependence, post estimation we set explanatory vari-

ables equal to their mean values and coe¢ cients equal to their estimated values for each

subsample. From the estimated bivariate density, we then draw 2000 Monte Carlo realiza-

tions of (Pr(y1 > 0);Pr(y2 > 0)) for the hurdle part and (y1; y2) for the second part. These

simulated pairs appear graphically in Figures 1 and 2. The �gures attempt to depict the

nature of dependence implied by the estimated dependence parameter, although skewness

in the marginals, themselves, prevents a clean visual interpretation of the dependence.

Nevertheless, as the lower tail dependency measure for the Clayton copula is 2�1=�, which

indicates that a larger � value is associated with greater lower tail dependency, the pre-

cisely estimated dependence parameters suggest that quarters in which an individual has

low probability of incurring drug expenses tend to be the same quarters of low probability

of nondrug expenses. Similarly, quarters of low drug spending also exhibit low nondrug

spending.

6.2. Dynamic dependence and partial e¤ects

We compute measures of e¤ects that are analogous to the average partial e¤ect proposed

by Wooldridge (2005). We de�ne the average partial e¤ect (APE) of yj;t�1 on yk;t as

APEk(yj;t�1) = E(yk;tjy(1)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)� E(yk;tjy(0)j;t�1; y
�
�k;t�1;y

�
t�2;x

�) (21)

where j; k = 1; 2 and y(1)j;t�1 and y
(0)
j;t�1denote values of yj;t�1 over which the partial e¤ect

is desired. All other covariates in the model, including other lagged endogenous regressors
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y�k;t�1;yt�2 and exogenous covariates x are �xed at representative values denoted by ���.
Di¤erent conventions may be used to set x�; see, for example Stuart et al. (2007). Although

this measure is limited because it only captures the one-period impact on y(2)it of the lagged

change in binary-valued variable y(1)it�1 (the model includes two lags), we estimate one period

APE for two reasons. First, the complexity of the model makes it impossible to convey,

in an intuitive way, the e¤ects from all coe¢ cients of lagged spending measures. Second,

although two-period lagged measures of spending are sometimes signi�cant, particularly in

the hurdle part of the model, coe¢ cients on the one-period lags are several times larger in

magnitude. Thus, we expect any cost-o¤sets to derive primarily from one-period e¤ects.

Speci�cally

E(yk;tjy(m)j;t�1; y
�
�k;t�1;y

�
t�2;x

�) (22)

= Pr(yk;t = 1jy(1)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)� E(yk;tjyk;t > 0; y(1)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)

+ Pr(yk;t = 1jy(0)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)� E(yk;tjyk;t > 0; y(0)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)

where Pr(yk;t = 1jy(m)j;t�1; y
�
�k;t�1; y

�
t�2; x

�) and E(yk;tjyk;t > 0; y
(m)
j;t�1; y

�
�k;t�1; y

�
t�2; x

�) for

m = 0; 1 are obtained directly from the marginal probit and gamma distributions respec-

tively.

In this paper, we calculate APEs corresponding to the cost o¤set hypothesis, i.e., we

calculate the e¤ects of drug expenditures at time (t � 1) on non-drug spending at time t.
Speci�cally, we set y(0)j;t�1 = 0 (no drug expenditure) and y

(1)
j;t�1 > 0 (positive values of drug

expenditure) to calculate APEs. Because there is no convention regarding what value of

y
(1)
j;t�1 to use, we calculate APEs repeatedly over a range of values of y

(1)
j;t�1.

6 These are

reported in the 6 panels of Figure 3. The gray �45 degree� line demarcates the region in

which a dollar in drug spending is o¤set by more than a dollar in non-drug spending (below

and to the left of the line) from the region in which the cost o¤set is less than one dollar

(above and to the right of the line).

Estimated APE is negative in each case throughout most of the range of drug spending,

although it does become zero in two cases when the change in drug spending is assumed

to be large ($180). For all six samples, the magnitude of APE decreases over the range of

6The minimum ($30) and maximum ($180), roughly represent the 25th and 75th percentiles of observed
values of drug expenditure, conditional on it being positive.
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previous drug spending changes. Taking the 65 and older sample as an example, previous

quarter drug spending of $30 is associated with a current quarter reduction in nondrug

spending of approximately $60. Similarly previous quarter drug spending of $180 trans-

lates to a current quarter reduction in nondrug spending of approximately $15. Estimates

of APE over the range of previous quarter drug spending for the other samples are as fol-

lows: continuously insured: �$25 to $0, diabetes: �$100 to �$40, mental illness: �$25 to
$0, arthritis: �$60 to �$15, heart condition: �$80 to �$20. The APE estimates suggest

modest cost-o¤sets in nondrug spending in the quarter following an increase in drug expen-

ditures. Over most of the distribution of drug spending, the magnitudes of cost-o¤sets are

less than dollar-for-dollar, indicating that increases in drug spending translate to increases

in aggregate medical spending. In two cases, for the sample of continuously insured and

for those with a mental illness, while there is a decrease in non-drug spending, it is less

than the amount spent on drugs in the previous quarter.

6.3. An alternative measure of cost-o¤set

The APEs de�ned above estimate partial e¤ects that are �marginal�over the distribution

of current drug expenditures, which includes a substantial fraction of zeros. But, given

that drug expenditures at time t are often predicated on nondrug spending at time t via

prescription re�ll rules and/or physician monitoring behavior, it is important to identify

cost o¤sets conditional on speci�c values of current drug expenditures, especially as the

preferred Clayton-copula formulation suggests positive contemporaneous association along

with left tail dependence between the two types of spending. Therefore, we de�ne the

conditional average partial e¤ect (CAPE) on yk;t given yj;t of the e¤ect of yj;t�1 as

CAPEk(yj;t�1) = E(yk;tjy(1)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�) (23)

� E(yk;tjy(0)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�);

where j; k = 1; 2 and j 6= k and y(1)j;t�1 and y
(0)
j;t�1denote values of yj;t�1 over which the

partial e¤ect is desired. The key di¤erence between APE described by equation (21) and

CAPE described by equation (23) is the additional conditioning on yj;t in the calculation

of CAPE. Thus CAPEk shows how APEk(yj;t�1) changes with yj;t. Calculation of the

conditional (on yj;t) expectations is considerably more complicated than the unconditional
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expectations needed for the calculation of the APEs. For the hurdle probabilities,

Pr(yk;t = 1jy(1)j;t�1; yj;t = 0; y
�
�k;t�1;y

�
t�2;x

�) =
Pr(yj = 0; yk > 0)

Pr(yj = 0)
(24)

and

Pr(yk;t = 1jy(1)j;t�1; yj;t > 0; y
�
�k;t�1;y

�
t�2;x

�) =
Pr(yj = 0; yk > 0)

Pr(yj > 0)
(25)

where the terms in the numerator involve the copula formulation and the terms in the

denominator are the probit marginals. For the expectations in the �positives�part of the

model,

E(yk;tjyk;t > 0; y(1)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�) =

1Z
lim vk!0

vk
f12(yj ; vkjyj > 0; yk > 0)
f+j (yj jyj > 0; yk > 0)

dvk;

(26)

which is computed using numerical integration.

The panels of Figure 4 display values of CAPE for two values of yk;t; $30 and $180,

chosen because they represent the 25th and 75th percentiles of positive drug spending.

The �gures show that the cost o¤set is greater the higher is drug spending in the current

quarter. Evidence of greater than dollar cost o¤sets (values below and to the left of the

�45 degree�line) are substantially greater here than in the unconditional case of the APE.

In other words, real cost o¤sets are more likely for individuals who have drug expenditures

in the current period as compared to those who do not. In contrast to the APE results,

cost o¤sets do not tend towards zero, underlining the distinction once again, between the

extensive and intensive margins of spending on drugs.

7. Conclusion

Previous research on the relationship between drug and nondrug spending has produced

mixed results. This is due to several empirical complications. First, with high proportions

of zeros, health care spending measures cannot be easily described by a single statistical

distribution. Second, the bivariate dependence between drug and nondrug spending might

exhibit substantial departures from normality. Third, the contemporaneous relationship

between drug and nondrug spending might be fundamentally di¤erent from the economi-

cally more relevant dynamic relationship. Fourth, as medical e¤ects of prescription drugs
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might be fast-acting, investigating the dynamic relationship between drug and nondrug

spending requires panel data recorded at relatively high frequency.

This paper proposes a dynamic nonlinear multivariate hurdle model and applies it to

the case of drug and nondrug spending. More generally, the model also applies to situa-

tions in which dynamic dependence between pairs of outcomes are of interest, and where

corner solutions are likely, i.e., there are substantial numbers of zeros. Using nationally-

representative quarterly data on medical expenditures, the model is estimated for six

policy-relevant subsamples. The models produce evidence of positive contemporaneous

dependence, somewhat similar to previous studies. However, the models produce nega-

tive dynamic dependence across numerous samples and speci�cations, which we interpret

as evidence of cost-o¤sets. Average partial e¤ects (APE), analogous to those proposed

by Wooldridge (2005), suggest that cost-o¤sets are smaller than dollar-for-dollar. Condi-

tional average partial e¤ects (CAPE), calculated similarly to APE but conditioned on

speci�c values for current quarter drug spending, reveal that cost-o¤sets are larger than

dollar-for-dollar for reasonably large current period drug spending.

These results hold important implications for public health insurance policies. If cost-

o¤sets are larger than dollar-for-dollar, then aggregate health care spending might be

reduced by encouraging increased spending on prescription drugs. Although our results

indicate larger than dollar-for-dollar cost-o¤sets might exist under certain conditions, those

conditions are likely to be too unpredictable to allow formulation of appropriate policies.

For example, CAPE estimates suggest that larger than dollar-for-dollar cost-o¤sets exist

between previous quarter drug spending and current quarter nondrug spending when the

patient has current quarter drug spending. It seems di¢ cult to implement policies based

on these conditions, as spending for certain drugs might be highly unexpected.

Our choice of modeling strategy, especially along the dimension of lag structure, is

driven in part by the structure of our panel dataset. While we are able to ascertain whether

there are relatively rapid cost-o¤sets and evaluate the magnitudes of such o¤sets, for many

health conditions and drug classes, e¤ects may not be expected so rapidly. Instead, one

might expect no short-term e¤ects but signi�cant long-term e¤ects, even as distant in the

future as �ve years ahead or over the individual�s remaining life. Neither is our dataset

nor is our model designed to address such issues.
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Table 1 : Quarterly medical spending by subsample
Drug expenditure Nondrug expenditure

Statistic all 1(> 0) j > 0 all 1(> 0) j > 0

65 and older

Mean 49.18 0.29 168.42 2824.92 0.67 2824.92

Median 0.00 90.68 422.58 422.58

1st order serial corr 0.19 0.18 0.43 0.38

Continuously insured - medical and Rx

Mean 29.20 0.21 139.14 1925.60 0.46 1925.60

Median 0.00 74.15 322.85 322.85

1st order serial corr 0.19 0.18 0.42 0.37

Diabetes

Mean 69.09 0.34 202.31 3258.39 0.70 3258.39

Median 0.00 110.23 470.04 470.04

1st order serial corr 0.17 0.15 0.42 0.35

Mental Illness

Mean 55.79 0.31 178.63 2406.50 0.61 2406.50

Median 0.00 98.09 414.17 414.17

1st order serial corr 0.20 0.19 0.44 0.38

Arthritis

Mean 51.75 0.32 162.53 2608.91 0.66 2608.91

Median 0.00 91.44 442.35 442.35

1st order serial corr 0.18 0.17 0.43 0.37

Heart condition

Mean 58.02 0.32 180.73 2750.15 0.66 2750.15

Median 0.00 99.11 404.76 404.76

1st order serial corr 0.16 0.15 0.40 0.33
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Table 2: Sample means by subsample
65 and Fully mental heart

older insured diabetes illness arthritis condition

Socioeconomic

Age 74.6 44.8 59.2 47.7 57.7 60.7

Female 0.59 0.53 0.56 0.68 0.63 0.58

Black 0.12 0.11 0.19 0.10 0.15 0.18

Hispanic 0.12 0.13 0.24 0.16 0.15 0.14

Never married omitted

Married 0.52 0.69 0.58 0.49 0.56 0.58

Divorced 0.10 0.11 0.16 0.21 0.17 0.15

Widow 0.34 0.04 0.17 0.11 0.17 0.18

Family size 1.90 2.98 2.60 2.65 2.41 2.41

Education (total years of schooling) 11.25 13.40 11.14 12.30 11.89 11.81

Northeast residence omitted

Midwest residence 0.22 0.24 0.19 0.22 0.22 0.21

West residence 0.38 0.35 0.43 0.36 0.39 0.42

South residence 0.21 0.23 0.23 0.26 0.23 0.20

Metropolitan statistical area 0.74 0.81 0.75 0.77 0.75 0.75

Employed 0.17 0.83 0.43 0.62 0.50 0.47

Log income (person-level, wage and nonwage) 5.15 5.23 5.15 5.16 5.17 5.17

Firm size 1.07 12.89 5.73 7.73 6.19 6.22

Government job 0.02 0.16 0.08 0.11 0.09 0.09

Health

Excellent health omitted

Very good health 0.27 0.35 0.17 0.26 0.25 0.25

Good health 0.32 0.26 0.35 0.31 0.32 0.35

Fair health 0.18 0.07 0.29 0.19 0.21 0.21

Poor health 0.06 0.02 0.14 0.09 0.10 0.09

Physical limitation 0.56 0.19 0.55 0.43 0.55 0.48

Injury 0.21 0.21 0.23 0.30 0.32 0.23

Number of chronic conditions 1.75 0.74 2.52 1.79 2.08 2.13

Insurance

Private Insurance 0.55 1.00 0.55 0.63 0.64 0.63

Public Insurance 0.44 0.00 0.35 0.24 0.28 0.29

Have Prescription drug insurance 0.34 1.00 0.46 0.56 0.52 0.52
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Table 3: Di¤erent parameteric copulas
Copula type Function C (u1; u2) ��domain Kendall�s �

Clayton (u��1 +u
��
2 �1)

�1=� � 2 (0;1) �
�+2

Survival Clayton ((1� u1)
��+(1� u2)

���1)�1=� � 2 (0;1) �
�+2

Frank 1
� log

�
1+
( exp (�u1 � 1))( exp (�u2 � 1))

exp (�)� 1

�
� 2 (�1 ; 1) 1+4

�

hR �
0

t
�(et�1)dt� 1

i
Gaussian �[��1(u1)�

�1(u2); �] �1 < � < +1 2
� arcsin (�)
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Table 4: Maximized log likelihoods for models with alternative copulas
Copula Subsample Hurdle lnL Conditional lnL Overall lnL Hurdle b� Conditional b�

Models with Clayton copula

Clayton 65 and older -81341� -594359 -675700� 0.333 0.101

Continuously insured -280333� -1425303� -1705636� 0.366 0.093

Diabetes -45777� -347241 -393018� 0.347 0.098

Mental illness -81647� -539333� -620981� 0.388 0.110

Arthritis -96854� -689050 -785904� 0.384 0.091

Heart condition -131270� -916224� -1047494� 0.348 0.106

Models with Survival Clayton copula

Survival Clayton 65 and older -81934 -594359 -676293 0.320 0.021

Continuously insured -283909 -1425319 -1709228 0.500 0.013

Diabetes -46009 -347249 -393258 0.324 0.015

Mental illness -82470 -539352 -621822 0.410 0.019

Arthritis -97865 -689041� -786907 0.373 0.019

Heart condition -131991 -916232 -1048223 0.351 0.021

Models with Frank copula

Frank 65 and older -81531 -594357* -675888 0.338 0.059

Continuously insured -281689 -1425343 -1707032 0.446 0.043

Diabetes -45822 -347237* -393059 0.341 0.053

Mental illness -81887 -539344 -621231 0.405 0.061

Arthritis -97167 -689057 -786224 0.387 0.050

Heart condition -131411 -916235 -1047646 0.353 0.059

Models with Gaussian copula

Gaussian 65 and older -81527 -594369 -675896 0.332 0.045

Continuously insured -281123 -1425348 -1706471 0.440 0.029

Diabetes -45837 -347246 -393084 0.339 0.037

Mental illness -81864 -539357 -621221 0.408 0.045

Arthritis -97176 -689061 -786237 0.386 0.040

Heart condition -131448 -916243 -1047691 0.354 0.047
� denotes model with best �t for given subsample
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Table 5: Bivariate two-part model: coe¢ cients of lagged variables
Sample: age 65 and older

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.089** -0.117** -0.149** -0.046

(0.032) (0.036) (0.050) (0.072)

1(nondrugt�1> 0) 0.002 0.105** -0.096* -0.910**

(0.025) (0.028) (0.043) (0.062)

ln (drugt�1) 0.003 0.038** 0.032** -0.001

(0.007) (0.008) (0.010) (0.015)

ln (nondrugt�1) 0.022** 0.066** 0.022** 0.166**

(0.004) (0.004) (0.006) (0.008)

1(drugt�2> 0) 0.009 0.040 -0.180** 0.023

(0.032) (0.036) (0.051) (0.074)

1(nondrugt�2> 0) 0.091** 0.274** 0.022 -0.458**

(0.026) (0.028) (0.044) (0.064)

ln (drugt�2) 0.023** 0.004 0.057** -0.004

(0.007) (0.008) (0.010) (0.015)

ln (nondrugt�2) 0.004 0.020** -0.009 0.065**

(0.004) (0.004) (0.006) (0.008)

�2 test for initial conditions = 0 242.6** 781.5** 35.5** 17.0**

�2 test for Mundlak terms = 0 195.9** 151.4** 105.5** 88.4**

�2 test for �j= �
+
j � � 10.7** 1811**

�0; �+ 0.997 0.224

(0.020) (0.022)

Kendall�s Tau 0.333 0.101

(0.004) (0.009)

lnL -81341 -594359

N 78162 55848

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 6: Bivariate two-part model: coe¢ cients of lagged variables
Sample: well insured - medical and Rx

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) -0.007 -0.171** -0.228** -0.020

(0.020) (0.020) (0.034) (0.053)

1(nondrugt�1> 0) 0.077** 0.015 -0.003 -0.995**

(0.016) (0.016) (0.029) (0.045)

ln (drugt�1) 0.027** 0.053** 0.059** -0.015

(0.004) (0.004) (0.007) (0.011)

ln (nondrugt�1) 0.013** 0.078** 0.013** 0.213**

(0.003) (0.003) (0.005) (0.006)

1(drugt�2> 0) -0.008 -0.082** -0.293** 0.016

(0.019) (0.019) (0.035) (0.052)

1(nondrugt�2> 0) 0.122** 0.249** 0.030 -0.395**

(0.016) (0.016) (0.031) (0.046)

ln (drugt�2) 0.026** 0.031** 0.079** -0.007

(0.004) (0.004) (0.007) (0.011)

ln (nondrugt�2) -0.002 0.005 -0.000 0.075**

(0.003) (0.003) (0.005) (0.007)

�2 test for initial conditions = 0 804.6** 1543** 57.2** 32.9**

�2 test for Mundlak terms = 0 1091** 900.1** 305.2** 210.1**

�2 test for �j= �
+
j � � 11.5** 3431**

�0; �+ 1.155 0.204

(0.010) (0.017)

Kendall�s Tau 0.366 0.093

(0.002) (0.007)

lnL -280333 -1425303

N 289374 139969

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 7: Bivariate two-part model: coe¢ cients of lagged variables
Sample: diabetes

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.076 -0.161** -0.215** -0.084

(0.041) (0.047) (0.062) (0.093)

1(nondrugt�1> 0) -0.052 0.030 -0.057 -1.023**

(0.033) (0.038) (0.055) (0.086)

ln (drugt�1) 0.007 0.047** 0.049** 0.004

(0.008) (0.010) (0.012) (0.019)

ln (nondrugt�1) 0.021** 0.074** 0.015 0.173**

(0.005) (0.006) (0.008) (0.011)

1(drugt�2> 0) 0.006 -0.052 -0.169** -0.005

(0.041) (0.047) (0.063) (0.098)

1(nondrugt�2> 0) 0.031 0.169** -0.091 -0.707**

(0.034) (0.038) (0.055) (0.084)

ln (drugt�2) 0.020* 0.026** 0.042** -0.005

(0.008) (0.009) (0.012) (0.019)

ln (nondrugt�2) 0.010 0.032** 0.016* 0.100**

(0.005) (0.006) (0.008) (0.011)

�2 test for initial conditions = 0 90.5** 158.2** 21.8** 9.90**

�2 test for Mundlak terms = 0 225.5** 115.5** 101.1** 92.5**

�2 test for �j= �
+
j � � 1.78 931.3**

�0; �+ 1.062 0.195

(0.028) (0.031)

Kendall�s Tau 0.347 0.089

(0.006) (0.013)

lnL -45777 -347241

N 42702 31680

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 8: Bivariate two-part model: coe¢ cients of lagged variables
Sample: mental illness

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.001 -0.229** -0.145** 0.051

(0.031) (0.034) (0.050) (0.073)

1(nondrugt�1> 0) 0.004 0.020 -0.174** -1.106**

(0.026) (0.029) (0.044) (0.067)

ln (drugt�1) 0.029** 0.062** 0.032** -0.021

(0.006) (0.007) (0.010) (0.015)

ln (nondrugt�1) 0.018** 0.085** 0.037** 0.206**

(0.004) (0.005) (0.007) (0.009)

1(drugt�2> 0) -0.012 -0.100** -0.218** 0.074

(0.030) (0.033) (0.050) (0.071)

1(nondrugt�2> 0) 0.033 0.176** 0.003 -0.532**

(0.027) (0.029) (0.047) (0.067)

ln (drugt�2) 0.025** 0.029** 0.061** -0.026

(0.006) (0.007) (0.010) (0.014)

ln (nondrugt�2) 0.010* 0.026** 0.004 0.086**

(0.004) (0.005) (0.007) (0.009)

�2 test for initial conditions = 0 195.3** 371.3** 24.4** 40.8**

�2 test for Mundlak terms = 0 317.5** 282.5** 101.8** 87.1**

�2 test for �j= �
+
j � � 9.13** 1293**

�0; �+ 1.267 0.246

(0.021) (0.023)

Kendall�s Tau 0.388 0.110

(0.004) (0.009)

lnL -81647 -539333

N 76848 49601

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 9: Bivariate two-part model: coe¢ cients of lagged variables
Sample: arthritis

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.016 -0.145** -0.283** -0.058

(0.028) (0.032) (0.044) (0.063)

1(nondrugt�1> 0) -0.020 0.030 -0.087* -0.967**

(0.023) (0.026) (0.039) (0.059)

ln (drugt�1) 0.022** 0.046** 0.062** -0.001

(0.006) (0.007) (0.009) (0.013)

ln (nondrugt�1) 0.023** 0.076** 0.021** 0.187**

(0.003) (0.004) (0.006) (0.008)

1(drugt�2> 0) -0.023 -0.105** -0.175** -0.029

(0.028) (0.031) (0.045) (0.066)

1(nondrugt�2> 0) 0.123** 0.184** 0.026 -0.416**

(0.024) (0.026) (0.041) (0.059)

ln (drugt�2) 0.030** 0.036** 0.057** 0.005

(0.006) (0.007) (0.009) (0.013)

ln (nondrugt�2) -0.003 0.023** -0.005 0.060**

(0.004) (0.004) (0.006) (0.008)

�2 test for initial conditions = 0 303.3** 560.7** 42.7** 43.7**

�2 test for Mundlak terms = 0 322.5** 196.6** 144.6** 88.9**

�2 test for �j= �
+
j � � 11.9** 1743**

� �
�0; �+ 1.245 0.200

(0.020) (0.021)

Kendall�s Tau 0.384 0.091

(0.004) (0.009)

lnL -96854 -689050

N 91230 62983

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 10: Bivariate two-part model: coe¢ cients of lagged variables
Sample: heart conditions

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.059* -0.139** -0.131** -0.081

(0.025) (0.027) (0.040) (0.061)

1(nondrugt�1> 0) -0.049* -0.016 -0.098** -1.112**

(0.020) (0.022) (0.033) (0.053)

ln (drugt�1) 0.009 0.043** 0.031** 0.004

(0.005) (0.006) (0.008) (0.012)

ln (nondrugt�1) 0.023** 0.073** 0.024** 0.192**

(0.003) (0.003) (0.005) (0.007)

1(drugt�2> 0) -0.000 -0.042 -0.208** -0.020

(0.025) (0.027) (0.041) (0.061)

1(nondrugt�2> 0) 0.057** 0.215** -0.035 -0.499**

(0.020) (0.022) (0.035) (0.053)

ln (drugt�2) 0.018** 0.021** 0.056** 0.006

(0.005) (0.006) (0.008) (0.012)

ln (nondrugt�2) 0.006* 0.021** 0.004 0.073**

(0.003) (0.003) (0.005) (0.007)

�2 test for initial conditions = 0 246.4** 548.1** 42.4** 22.6**

�2 test for Mundlak terms = 0 548.9** 244.5** 139.2** 174.8**

�2 test for �j= �
+
j � � 1.56 2520**

�0; �+ 1.070 0.238

(0.016) (0.018)

Kendall�s Tau 0.348 0.106

(0.003) (0.007)

lnL -131270 -916224

N 120552 84980

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Figure 1: Simulated probabilities from hurdle part (2000 points plotted)
Elderly Continuously insured
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Figure 2: Simulated spending from positive spending part (2000 points plotted)
Elderly Continuously insured
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Figure 3: Average Partial E¤ects
Elderly Continuously insured
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Figure 4: Conditional Average Partial E¤ects
Elderly Continuously insured
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