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A Comparative Study of GARCH (1,1) and Black-Scholes Option Prices

Abstract

This paper examines the behaviour of European option price (Duan (1995)) and the Black-Scholes model
bias when stock returns follow a GARCH (1,1) process. The GARCH option price is not preference-
neutral and depends on the unit risk premium (I ) as well as the two GARCH (1,1) process parameters (a,
b,). In general, the GARCH option price does not seem overly sendtive to these parameters. Degp-out-of-
the-money and short maturity options are an exception. The variance persistence parameter, g = a; + by,
has a material bearing on the magnitude of the Black-Scholes model bias. The risk preference parameter, |,
on the other hand, determines the so called “leverage effect” and can be important in determining the
direction of the Black-Scholes model bias. Consequently, a time varying risk premium (I) may help explain
agenera underpricing or overpricing of traded options (Black (1975)).

Consistent with "volatility smile" and similar to the bias noted by Merton (1976), deep-out-of-the-
money and deep-in-the-money (at-the-money) options with a very short time to expiration are found to be
underpriced (overpriced) by the Black-Scholes model. The direction of striking price bias for longer
maturities is mostly influenced by GARCH option vauation parameters, a result that could be useful in
resolving conflicting striking price biases observed empirically.

This paper makes a novel attempt to decompose the Black-Scholes model bias into components related
to three important features of GARCH option valuation: level of the unconditional variance of the locally
risk-neutra return process, relative level of the initial conditional variance, and path dependence of the
terminal stock price distribution. An analysis of their behaviour sheds light on the making of the overall
systematic biases mentioned above as well as the time to maturity bias reversal phenomenon (Rubinstein
(1985) and Sheikh (1991)).

One modification to the Black-Scholes model that corrects only the unconditional variance bias does
not improve accuracy enough to justify the additional input requirement. Another modification corrects the
unconditional variance bias and the conditional variance bias, but not the path dependence bias. This latter
modification, which we cal the Pseudo-GARCH or PGARCH formula, performs rather well when the
impact of a given period’'s variance innovation is low (small a;) but nearly permanent (g close to 1.0). In
these empirically relevant stuations, the Black-Scholes type PGARCH formula offers practical
approximations to the theoretically correct smulated GARCH prices.



A Comparative Study of GARCH (1,1) and Black-Scholes Option Prices

A key determinant of option value is the variance of the underlying asset. Variance dso affects the
sensitivity of option value with respect to the asset price, option's time to maturity, interest rate, and
variance itsdlf. Thus, in principle, an accurate specification of variance could have sgnificant bearings
on the valuation of options, and the calculation of option vaue sengitivities.

In deriving their semina European option vauation formula, Black and Scholes (1973) assumed a
norma diffuson process for the stock return with a congtant ingtantaneous variance. If the
ingantaneous variance is a deterministic function of time, the average ingantaneous variance over the
life of the option can instead be used in the Black-Scholes formula (Merton (1973)). However, neither
constancy nor a time-deterministic behaviour is supported by empirical studies® A type of variance
behaviour which has gained widespread acceptance in the literature is Generalized
Autoregressive Conditional Heteroskedagticity or GARCH (Engle (1982), Bollerdev (1986)).

Using a discrete time equilibrium asset pricing framework (Rubinstein (1976), Brennan
(1979)), Duan (1995) hasrecently developed a European stock option valuation mode when the
continuoudy compounded stock returns follow a GARCH process. Duan's model contains the
Black-Scholes modd as a special case of homoskedagticity. As shown by Duan (1994a,1994b),
the basc GARCH option pricing framework can be extended or generalized to handle
alternative specifications of conditional variance such as Nelson's (1991) EGARCH, stochagtic
interest rates, and the bivariate stochagtic variance diffusion cases (Hull and White (1987),
Wiggins (1987), Scott (1987), Stein and Stein (1991), and Heston (1993)) in the limit.

In this paper we use smulationsto examine the comparative behaviour of the Black-Scholes
(BS) and Duan's (1995) GARCH sock option prices. The recently proposed Empirical
Martingale Smulation (EM S) method of Duan and Simonato (1995) is combined with ssandard
amulation methods to generate the GARCH option prices. We also propose two modifications
to the Black-Scholes formula and examine their accuracy in tracking the GARCH option price.
One modification, which we shall refer to as the Modified Black-Scholes formula (MBS), uses
the unconditional variance under the locally risk-neutral GARCH process of Duan (1995) in the
Black-Scholes formula. Under the other modification, called the Pseudo-GARCH (PGARCH)

%, for example, Fama (1965), Black (1976), M erton (1980), Christie (1982), Poterba and Summers (1986), French, Schwet, and Stambaugh (1¢
Schwert (1989).



formula, the expected average conditional variance under the same processisinserted into the
Black-Scholes formula.

Our reaults show that the GARCH option valuation effect, i.e., the divergence between the
BS and the GARCH option price, varies widdly from a negligible magnitude to a subgtantial
one. The same can be said about the accuracy of the proposed formulas (MBS, PGARCH).
Further, the sampling error associated with the smulated GARCH option price varies with
parameter combination. The results of this study should thus help a researcher or practitioner
in assessing theimportance of GARCH in a given option valuation stuation and in selecting the
BS, MBS, or PGARCH asan approximation if desred.

In some early works following the Black-Scholes model, heter oskedasticity was incor porated
in the form of stock-price-dependent variance (Cox and Ross (1976)), jumpsin the stock price
which otherwise follows a lognormal diffuson process (M erton (1976)), and dependence of the
sock return variance on leverage (Geske (1979) or asset structure (Rubingtein (1983)). More
recently, heteroskedagticity of the optioned asset's returns and its effect on option valuation
have been the primary focusin a number of paperswherethe asset return variance is modelled
as a separate sochadtic variable from the asset return. A majority of these works assume a
bivariate diffuson modd.? In a similar vein, Madan and Seneta (1990) assume a gamma
digribution for asset return variance. All modelsarein continuousform.

M odelling heter oskedagticity has several notable implications for option valuation in theory
aswadl asin practice. Firg, even in the limit (continuous time), Black-Scholes type preference-
free option valuation no longer prevails, an equilibrium asset pricing relationship is needed to
determine an unique option value.

Second, the unconditional distribution of asset return is no longer lognormal even when the
conditional digtribution islognormal. In most cases, the unconditional asset return distribution
is ether quite intricate or analytically intractable. Thus a series approximation or the use of a
Monte Carlo smulation method is usually required to calculate the option value. These
methods are certainly computationally more involved than usng a Black-Scholes type formula.

Further, the smulated option price is subject to sampling error and the series approximation

See Hull and White (1987, 1988a,1988b), Johnson and Shanno (1987), Wiggins (1987), Heston (1993), Melino and Turnbull (1990), Scott (1¢
sney and Scott (1989), Finucane (1989), and Stein and Stein (1991). A stochastic volatility framework has been closely examined by Lee, Leg,
(1991), Finucane (1994), and Hull and White (1993).



method also leads to approximation error even when the series is convergent.®* Similar
comments also apply to calculation of the hedge ratio and other option value senstivities such
asthetheta or the gamma.

Third, for bivariate diffuson models, parameter estimation could be a challenging task as
the asset return variance is not directly observable. While the GARCH parameters can be
estimated using historical returns, an additional assumption needsto be made about parameter
gability and sometimes estimation may not converge (Figlewski (1994)).

Fourth, it isnot clear how a practitioner could imply volatility expectations by the market
from the observed option prices. Even if it was possble to invert a theoretical option valuation
model that incorporates heteroskedagticity (see Engle and Mustafa (1992) for an attempt), one
could at best hopeto estimate the implied parameter(s) of the assumed volatility process but not
the implied volatility in the traditional sense. While some researchers (Day and Lewis (1992),
Harvey and Whaley (1992), Stein (1989)) have examined the behaviour of the volatilities
implied by the Black-Scholes modédl, the resultsarein general tenable only to the extent that the
Black-Scholes model produces reasonable estimate of the theoretical option price incorporating
heteroskedagticity.”

The above condderations lead to some interesting issues. First, how important is the
preference-based nature of option pricing under heteroskedagticity? In other words, are option
prices sendtive to the preference related parameter? We may also ask the same question about
the heteroskedadticity related parameters. Answers to these questions may lead to smpler
approximations to the theoretical valuation modd or they may identify parameters which
should be estimated with care by practitionersin implementing the modd.

Second, relative to the Black-Scholes modd, is there any sysematic pattern in the option
valuation effect of heteroskedadticity? Is it possible to decompose the effect into components
that can be identified with specific aspects of the option valuation mode? ° If so, the

all and Roma (1994, p.597) note potential instabilitieswhen using a Hull and White (1987) typethird-order series approximation.

See, for example, footnote 3 of Stein (1989), p.1012.

-or example, in the stochastic variance option valuation model of Hull and White (1987), the unconditional distribution of the terminal stock p
it lognormal. Further, when the stock return and the change in its variance rate are instantaneoudy correlated, the conditional (upon an ave
ancerate) distribution of the terminal stock priceis not lognormal either and its mean depends on the specific path followed by the variance
stwo specific aspects of the Hull and White (1987) model are the departure from lognormality and the path dependence of the stochastic vari
n price.



decomposition may offer ingghts into the option valuation effect of heteroskedagticity and the
observed empirical biases of the BS modd.

Third, when isthe Black-Scholes formula (with a constant variance) in gross error so that a
mor e complex option valuation mode incorporating heteroskedagticity may be worth pursuing
despite the accompanying sampling or approximation errors? The 'when' can of course be
defined according to the option types (call, put), option features such as moneyness and timeto
maturity, the option exercise rule (European, American), the parameters of the variance
process, the preference or equilibrium asset pricing parameter(s), and the riskfree rate or
parametersof an interest rate process.

Fourth, if practitioners continueto rely on the Black-Scholes formula (with a single variance
measure) because of its convenience and intuitive appeal, is it worthwhile to use a sngle
variance measurethat attemptsto capturethe nature of assumed heteroskedadticity?

In this paper, we address the above issues, focusng exclusvely on the European stock
option valuation problem when the stock returns follow a GARCH (1,1) process. While Duan's
(1995) GARCH option valuation model encompasses higher order GARCH processes, GARCH
(1,1) seems by and large to be a popular choice in moddling volatility behaviour
parsmonioudy.’

Regarding the first and third issues, Duan presents smulation results for only one set of
parameter values for the GARCH(1, 1) process. In this paper, we present a more
comprehensive set of smulation results with respect to the GARCH parameters, namely, the
unit risk premium and the two dope parameters of the GARCH (1,1) process. In general, we
do not find the GARCH option price or the BS model bias to be overly sendtive to the
preference parameter except for the deep-out-of-the-money options with a very short time to
expiration. This latter group of options are also the ones where the BS mode bias and the
smulation sampling error of the GARCH pricearethelargest in percentageterms.

In most cases, the two GARCH (1,1) process dope parameters have smilar effects on the
GARCH price, the amulation error, and the bias of the Black-Scholes model, when one of the
two parameters is held congtant. At higher levels of either parameter, the smulation error is
relatively higher and most notably the bias of the Black-Scholes model can be substantial. This

‘hat low-order GARCH models describe stock return volatility behaviour very well is shown by Akgiray (1989) and Pagan and Schwert (1
ng others.



suggeststhat in general the sum of the two parameters, viz,, the variance persstence parameter,
g, playsan important role and needsto be estimated carefully.

The issue of using a modified variance estimate in the Black-Scholes formula is motivated
by the continued widespread use of the formula by practitioners despite the growing evidence of
heteroskedadticity in stock returns. If a practitioner, aware of the possble temporal variations
in the variance, wishes to use the Black-Scholes formula, more efforts are likely to be made to
capturethetemporal behaviour in the single variance estimate to be used in the formula.

If the variance behaviour is presumed to be of GARCH type, one such estimate would be
the unconditional variance under Duan'slocally risk-neutral GARCH process. Thisleadsto our
MBS (M odified Black-Scholes) formula. The BS formula in Duan's paper, on the other hand,
uses the unconditional variance of the assumed GARCH process. These two variance measures
differ in that the former isaffected by the preference parameter whilethelatter isnot.

Like the BS formula, the MBS formula ignores the conditional nature of the variance. A
variance estimate which attempts to capture this conditional nature is the average of the
expected conditional variances at various points during the life of the option. Noh, Engle, and
Kane (1994) have recently found that usng an average GARCH (1,1) variance forecast in the
Black-Scholes formula returns greater profits from trading straddles on the S& P 500 Index
than usng an implied sandard deviation (ISD) (Whaley (1982), Day and Lewis (1988)).
However, they have not examined the average expected conditional variance under the locally
risk-neutral pricing measure of Duan (1995). Our PGARCH (Psuedo-GARCH) formula uses
this variance measure in the Black-Scholes formula. Previoudy, Heynen, Kemna, and Vors
(1994) found that the average expected volatility under Duan's locally risk-neutral measure is
close to the implied sandard deviation which equates the Black-Scholes price to Duan's
GARCH option price for at-the-money and near-the-money options. But they do not report
amulation results for deep-out-of-the-money and deep-in-the-money options. Their report is
also limited to just one et of valuesfor the preference and GARCH process parameters.

Our smulation results suggest that the MBS formula does not offer particular benefit over
the BS formula given the additional input requirements (unit risk premium, GARCH process
parameters). The PGARCH formula, however, improves subgtantially over the BS formula

when the pergstence in variance is high (g close to 1.0, nearly integrated variance) and when



the optionsare at-the-money or out-of-the-money. In the nearly integrated variance Stuations
the PGARCH error is under 5% (with the exception of very short maturity deep-out-of-the-
money options) and thus offers a computationally attractive alternative to the more accurate
smulated GARCH prices.

Additionally, an important benefit of the two new formulas consdered in this paper, viz.,
MBS and PGARCH, isthat they allow a rough breakdown of the GARCH option valuation
effect (difference between BS and GARCH) into three components. the effect of change in the
unconditional variance under Duan's locally risk-neutral measure (BS - MBYS), the effect of the
conditional nature of the variance process (MBS - PGARCH), and the nonlinear and path-
dependent nature of GARCH option pricing (PGARCH - GARCH). An examination of these
effects offers a number of useful insghtsinto GARCH option valuation and the associated bias
of the Black-Scholes modd.

Our smulation results indicate that the three components of the BS modd bias are not
always of the same dgn. Ther reative importance (magnitude) also varies across different
option valuation stuations. The interaction of these factors leads to the determination of the
direction of the BS model bias in a given option valuation stuation. These include the “ amile
effect”, the conflicting striking price biases (Black (1975), MacBeth and Merville (1979), and
Rubingtein (1985)), and the general overpricing or underpricing bias (Black (1975)).

The rest of this paper is organized as follows. In section |, we first review Duan's (1995)
GARCH option pricing mode, then discuss conceptually the BS model bias and its three
components, and finally describe the MBS and the PGARCH valuation formulas. Section 11
delineatesthe design of our smulation study. The smulation resultsare presented in section 111.

Lastly, concluding remarksaregiven in section V.

I. GARCH Option Pricing

A. Duan's (1995) GARCH (1,1) Option Valuation Model
Let S be the stock price at time t. The one-period stock price relative is assumed to follow the

following process:
S/S.=exp(r HOh -0.5 h +g,)



where g hasanorma distribution with mean 0 and conditional variance h, under probability measure P,
r is the constant one-period continuoudy compounded risk-free rate; and | is the constant unit risk
premium on the stock. It is further assumed that h, the conditiona variance of &, follows a GARCH
(1,2) process of Bollerdev (1986) under measure P

& [fri~ N(O, h)

h =ay+ 2,1 + bih
wheref., isthe s-field generated by al information up to and including timet - 1; >0, a,>0, b;> 0. To
ensure covariance stationarity of g, g(=a; +b,) is assumed be lessthan one. The lognormal process for
the stock price with a constant variance is a specia case of GARCH (1,1) with a;=0, b,;= 0. The
parameter, g, can be viewed as a measure of the persstence of shocks to the conditional variance. * A
high value of g means a very dow rate of decay for the effect of any innovation in the conditional
variance process on the future conditional variances. ® This may cause the conditiona variance to
deviate from its long-term mean (stationary level) for a long time. The degree of persstence or
accumulation of innovations in the conditional variance process as typified by the parameter, g, could
thus have important implications for option valuation ina GARCH (1,1) environment.

The dope parameter, a;, measures the marginal impact of the most recent innovation in the
conditiona variance. The dope parameter, b;, on the other hand, captures the combined margina
impacts of the lagged innovations. Empirical studies of financid returns show that the b, estimates are
markedly higher than a; estimates, i.e.,, variance persstence is often characterized by a low but
prolonged effect of variance innovation in a given period °. This corresponds to a low but sowly
decaying autocorreation of squared returns (Taylor (1986)). Roughly speaking, a;'s primary impact is
on the degree of autocorreation while b,'s primary impact is on the decay of autocorrelation through
the persstence parameter, g¢ While the rate of decay underscores the importance of the conditional
nature of the variance process, ahigher a; increases the conditiona kurtoss of multiperiod returns and
can thus have important effect on option values (Engle and Bollerdev (1986), Engle and Mustafa

See Engle and Mustafa (1992, p.292) and Bollerslev, Chou, and Kroner (1992) for discussions on the persistence of volatility shocks. Bollersev (1
5) shows that the second and higher order autocorrelations of shocks to the conditional variance are increasing in the persistence parameter, g Empiric
legree of persistence in the stock return variance seems to be related to the size of the firm with larger stocks exhibiting a greater degree of persistence
ler stocks (Engle and Mustafa (1992), Engle and Gonzalez-Rivera (1991), Schwert and Seguin (1990)).

\lelson (1990, p.325) points out that the persistence in conditional variance in the sense of Engle and Bollerdev (1986) actually means a near perme
t on the forecast moments of the conditional variances of future periods.

3ee, e.q., Taylor (1986), Akgiray (1989), Lamoureux and Lastrapes (1990), Ng (1991), Engle and Mustafa (1992), and Heynen and Kat (1994).



(1992)). In the GARCH modé, thereis just one source of randomness. Unlike the bivariate
diffuson models, the return volatility over the next period of time is known with certainty in the
GARCH modéd, given the information set f which includes the current and past redlizations of the
stock returns. This alows Duan (1995) to define an equilibrium price measure Q which is absolutely
continuous with respect to the measure P, and under which one plus the conditionally expected stock
return is exp(r) instead of exp(r+ 10O hy); the conditiona variance, however, remains the same dmost
surely as under measure P. ° Since the conditional mean of one plus the one-period stock return
under Q isindependent of any preference-related parameter and is equa to exp(r), measure Q issaid to
satidy a localy risk-neutra valuation relationship (LRNVR). In the case of a congant variance, the
LRNVR reduces to the conventiond risk-neutral vauation relationship. It is important to note that
measure Q does not lead to globd risk neutralization.
Under pricing measure Q, the stock return processis as follows:
IN(S/S1)=r-05h+z
z [frr~ N(O, h) and
he=ag+ ay(zerICha)’ + biha
Note that the above conditiona variance mode is in fact the Nonlinear Asymmetric GARCH
model of Engle and Ng (1993) and is a specia case of the Generdized Asymmetric GARCH family of
Hentschd (1995). In this modd, for | >0, conditiond variance is negatively related to lagged return,
i.e., the volatility impact of a negative news (return surprise) is greater than that of a postive news.
This asymmetric volatility effect is sometimes referred to as the “leverage effect”. Thus, Duan’s results
show that options on an asset following the traditiona linear and symmetric GARCH mode should be
vaued asif the assat follows the Nonlinear Asymmetric GARCH model instead with the risk premium
parameter, | , affecting the degree of departure.
By repeated subgtitution, h can be expressed as a function of the lagged vaues of a non-centra
chi-square variable z” with the unit risk premium, |, being the non-centrality parameter:
h t~=~h 0'G_t~+~dpha O'sumfrom{k'="0} to{t-'1} G k

Wherezt = (ZtllChl) -1 , and G =G (al Zt.k2 + bl) , and Gy=1.

The termind stock price under measure Q can be expressed as.

Duan's (1995) GARCH option vauation model is for a genera GARCH(p,q) process. In this paper, we limit our attention to the GARCH (1,1) pr¢



S T=~S texp left [(T~~t)r—~05sum from {s=1t} to T h s~+~sum from {s=t} to T
zeta s right ]

The value of a European cal option with strike price X is obtained by taking conditional expectation of
the terminal payoff under measure Q and then discounting at the risk-free rate:

GARCH: C® =exp (-r (T-t)) E°[ max ( Sr - X, 0) | ;]
The put option vaue can be calculated using the European put-call parity relationship. In this paper, we

only focus upon call options.

B. The Black-Scholes Model vs. Duan's GARCH (1,1) Option Valuation Modd

The Black-Scholes formula for a European cal option is a special case of GARCH option valuation
where the variance rate is constant through time, i.e., h = s5* for dl t. In this situation, the call option
formula assumes the familiar form:

BS: CG°=S N(dy) - X exp(-r(T-t)) N(c:)
where d; = [IN(S/X)+ r(T-t) + 0.5 $4(T-1)] / $AT-1), db =dy - SAT-t), and s is the unconditional
variance under measure P and is calculated as 2 = & /(1- a; - by).

If the variance follows a lognormal diffusion process as in Hull and White (1987) and others, the
termina stock price is lognormally distributed conditional on the path followed by the variance. When
the stock price is instantaneoudy uncorrelated with the variance, this conditional lognormal distribution
depends on the average variance only and is not affected by other attributes of the variance path. Thus,
conditional upon an average variance, the option price is merdly the Black-Scholes price; the
unconditiona or fina option price is then the expected Black-Scholes price, with the expectation being
taken over the digtribution of the average variance.™* However, the digtribution of the average variance
is not lognormal, and Hull and White propose a Taylor series gpproximation involving the moments of
this digtribution.

When the stock price and the variance are correlated, the mean of the conditional lognormal
distribution of the stock price depends on the specific path followed by the variance and not just on the
average variance dong the path. The option price conditiona upon the path followed by the variance is

\ similar conclusion has been drawn by Amin and Ng (1993), Stein and Stein (1991), Madan and Seneta (1990).



no longer the Black-Scholes price (with the average variance inserted). In this case, Hull and White
(1987) use smulation to caculate the option price.

In Duan's GARCH option pricing model, the stock return variance over the next time period is
known with certainty conditiona upon the current information set, and hence the conditiona
digtribution of one-period ahead stock return is lognorma with a known conditiona variance. Beyond
the immediate period, the one-period conditiond variances evolve stochesticaly according to the
assumed GARCH process. While the digtribution of a future-period conditiona variance may be
tractable according to H-function properties (Springer (1979)), it is certainly not lognorma. Hence,
unlike the bivariate diffuson modes, the joint digtribution for the logarithmic stock price and the
logarithmic (conditional) variance is not bivariate normal; accordingly, the distribution of the termina
stock priceis unlikely to be lognormal given the path of the one-period conditional variance.

Further, local risk-neutralization in Duan's model increases the unconditional stock return variance;
it also induces correlation between the conditiond variance and the lagged stock return when the unit
risk premium parameter, |, is non-zero.

To better understand the relationship between the BS option price and the GARCH (1,1) option
price, assume, for amoment, the following option vauation conditions prevail:

(a) any correlation between stock return and conditional variance can be ignored (say, | is smdll);

(b) the time to maturity of the option is quite long ; and

(c) the conditiond digtribution of the termina stock price under measure Q can be reasonably
approximated by alognormal distribution (say, the GARCH dope parameters are smdl);

Then, due to (a) and (c), following Hull and White's (1987, pp.285-286) logic, the GARCH option
price is approximately the expected Black-Scholes price, with the expectation taken over the
digtribution of average conditiona variance under measure Q. Using Hull and White's series approach,
the GARCH option price can thus be cadculated as a function of the moments of the average
conditiona variance. Because of (b), the expected average conditiona variance would be fairly close to
the unconditional variance under measure Q and the second- and higher-order moments of the average
conditional variance would be negligible Given a small or negligible unit risk premium in (a), the
unconditiona variance under measure Q would be roughly the same as that under the origina

probability measure P. Consequently, the BS price would be fairly close to the GARCH price.

For an at-the-money option, the derivatives would be small too.
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If condition (@) is not applicable, the BS price would deviate from the GARCH price for two
reasons. Firgt, as mentioned by Duan (1995), the BS price is based upon an incorrect unconditiona
variance, viz., the measure P unconditiond variance. Since the measure Q unconditiona variance is
higher for a nonzero |, this reason by itself would cause the BS price to be lower than the GARCH
price for any degree of moneyness and any initid conditional variance Stuation. Let us cal this
GARCH option vauation effect the u.v. (unconditiona variance) bias. Second, the GARCH price
would deviate from the expected BS price as a function of the average conditiona variance. This
second GARCH option vauation effect, which we shal refer to as the p.d. (path dependence) bias,
would also result when condition (c) is violated. The direction of the p.d. biasis not immediately clear.

If condition (b) does not hold, i.e., the option in question has a short time to expiration, the initia

conditiona variance gtuation is likely to play an important role. If the initia conditiona variance is
lower than the measure Q unconditiona variance, the conditiona variances through meturity would
tend to stay below the measure Q unconditiona variance. One clear implication is that the expected
average conditiond variance would be lower than the measure Q unconditiona variance. Similar
results apply when the initial conditional variance is high.** Hence even if we were to use the measure
Q (as opposed to measure P) unconditiond variance in the BS formula, a pricing difference between
the BS and GARCH option vauation models would arise due to a lack of recognition of the initial
condition. This GARCH option valuation effect shall henceforth be referred to as the c.v. (conditiona
variance) bias.
Note that the three biases that we have identified are not necessarily of the same sgn for a given
option. For example, consder a Stuation where the initia conditional variance is below measure Q (as
well as measure P) unconditional variance. The u.v. bias would aways cause the BS price to be low.
The c.v. bias, on the other hand, is likely to cause the BS price to be high. As we shdl see later, the
direction of the p.d. bias is ambiguous and depends upon other option valuation parameters or variables
such as moneyness and time to maturity of the option. Thus the direction of the overall GARCH option
vauation effect is not uniform. Our amulation Sudy consders variation in a broader set of parameters
and is expected to shed light on this situation-specific nature of the overal GARCH option vauation
effect and its components. An additiond area where we hope to gain insght is the relative importance
of the three GARCH effects.

Higher-order moments of the average conditional variance would also likely depend on theinitial condition.
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C. Modified Black-Scholes (MBS) and Pseudo-GARCH (PGARCH) Models
Depending upon the specific option vauation Stuation, it is possble that either the BS model or the
BS formula with some GARCH-based variance figure would yield option value not too far from
Duan's GARCH option vaue. Duan's smulation results aready bear some evidence in this regard. In
49 of the 63 cases that Duan reports, the GARCH option price is within 5% of the BS mode (with
measure P unconditional variance) vaue. Motivated by such possihilities, we explore in this paper two
other variants of the BS modd, viz., the Modified Black-Scholes (MBS) modd and the Pseudo-
GARCH (PGARCH) modd. Both use the Black-Scholes functiona form. These models differ from
the conventional BS modd inthat measure Q-based variance figures are inserted in the Black-Scholes
pricing function:

MBS: G®°=S N(d) - X exp(-r(T-t)) N(d»)
where d; = [In(S/X)+ r(T-t) + 0.5 K(T-t)] / SXT-t), b =d; - LAT-1), & is the unconditiona variance
under measure Q and is calculated as & = & /[1- a1(1+%) - by]; and

PGARCH: C™® =S N(dy) - X exp(-r(T-t)) N(c» )
where d; = [In(S/X) + r(T-t) + 0.5 v(T-t)] / O«(T-t), dr = dy - O«(T-t), and v isthe average expected
conditiona variance under measure Q. The average expected conditiona variance over an n-day period
is calculated as follows. Let hy be the known initial variance. Define D=a(1+1)+ by. Then, as shown in
Duan (1995), the expected conditiond variance for day k is given by
E'(h_k)~=~h_0'DELTANK}~+~apha 0'{1~-~DELTA”K} over {1~~DELTA}.

Therefore the average annualized expected conditional variance over the n-day period is:

360 over n"sum from {k'="1} to nE'(h_k’)~=~{dpha O'n} over {1~-~DELTA}~+~left ['h 0~
~adpha 0 over { 1~-~DELTA}

right ' {DELTA"(1~~DELTA")} over { 1~~DELTA}.

The MBS mode attempts to eiminate the u.v. bias of the BS modd by using the unconditiona

variance under measure Q which is greater than that under measure P. The MBS price is thus adways
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higher than the BS price. The PGARCH modd attempts to diminate both the u.v. bias and the c.v.
bias. It does s0 by using the average expected conditiona variance under measure Q, v, which is lower
than, equal to, or greater than & depending upon whether hy is lower than, equal to, or grester than <.
Accordingly, the PGARCH price is lower than, equd to, or greater than the MBS price depending
upon whether hy is lower than, equal to, or grester than &. Since the PGARCH modd is subject only
to the path dependence bias, it is expected to track the true GARCH price closdly in option valuation
gtuations where the path dependence (unconditiona variance plus conditiona variance) bias is a
relatively smal (large) part of the overdl bias of the Black-Scholes formula

The MBS and PGARCH prices alow us to estimate the three components of the BS model bias.
This can be seen by expressing the BS model bias as follows:

BS- GARCH = (BS- MBS) + (MBS - PGARCH) + (PGARCH - GARCH)
The u.v. bias can be estimated as (BS - MBYS), the c.v. bias can be estimated as (MBS - PGARCH),
and the p.d. bias can be estimated as (PGARCH - GARCH).

II. Simulation Design

In this paper, we Smulate a tota of 525 option vauation Stuations. An option valuation Stuation is a
gpecific combination of the values of the initial conditiona variance (hy), the unit risk premium (1) , the
GARCH process dope parameters (a;, b;), the moneyness (S/X) and the time to maturity (T) of the
option. Inal 525 cases, we assumer = 0and s= 0.25. ( s isthe unconditional volatility under measure
Q.) For a given combination of the GARCH process dope parameters (a;, b;) and the unit risk
premium (I ), the & vaueis adjusted to maintain a constant s of 0.25. We do s0 to focus upon the
option valuation effect of the process for the variance as opposed to its level. The specific values that
we congder for the different variables and parameters are as follows:

Chy:  0.75 s (low initial conditional variance), s (equa to unconditiona volatility), 1.25 s (high
initial conditiond variance);

| : 0.0l (low), 0.10 (medium), 0.20 (high);

a;:  0.05(low), 0.175 (medium), 0.30 (high);

by: 050 (low), 0.65 (medium), 0.80 (high);
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S/X: 0.8 (degp-out-of-the-money), 0.9 (near-out-of-the-money), 1.0 (at-the-money), 1.1 (near- in-
the-money), and 1.2 (degp-in-the-money); and
T: 30 days, 90 days, 180 days, 360 days, and 720 days.

Whenever an option valuation Situation involves the low or the high value for one of the three
parameters (a;, by, 1), the medium vaue is assumed for the other two parameters. For example, when
a;=0.050r a;=0.30, weuse b; = 0.65 and | = 0.10. Thus the variance persstence parameter, g
(=as+ by), varies between 0.675 (a; = 0.175, b; = 0.50) and 0.975 (& = 0.175, b; = 0.80). Given the
empirica evidence of heavy persstence (g closeto 1.0) driven by ahigh b, vaue in many Stuations, we
also separately examine in alater section of this paper an additiona set of cases with g=0.99 (a = 0.05,
b, = 0.94).

For each option vauation stuation (hy, |, &, by, /X, T), we calculate four option prices. The
BS, MBS, and PGARCH option prices are caculated usng the formulas in sections |.B and 1.C. For
the GARCH option price, we use sratified smulations with 1000 strata and 50 runs. Therefore, the
GARCH option price in each option valuation situation is based on 50,000 runs. To ensure that the
smulated GARCH option prices do not violate the rational option pricing bounds, the underlying stock
prices in these runs are generated using the Empirical Martingade Simulation (EMS) method recently
proposed by Duan and Smonato (1995). The EMS method has the added benefit of a reduced
gandard error for the smulated option price. To further reduce smulation errors, we use a
combination of the antithetic variable technique and the control variate technique. In the latter, the

control variate isthe BS price based on the unconditiond variance with daily innovations.

Il. Simulation Results

We organize this section in Six sub-sections. In 111.A, we study how various GARCH parameters and
option contract parameters such as moneyness and time to maturity affect the GARCH option price
and the associated sampling error. Section [11.B studies the bias behaviour when we approximate the
GARCH option price using the BS price, the volatility input of the latter being the unconditiona
volatility under measure P. In section 111.C, we breakdown the overdl pricing bias of the BS modd
into three separate components, and examine each component's individua contribution to the direction
and magnitude of the overdl bias. Next, in section 111.D, we shall attempt to resolve a practica
guestion: among the approximation models (BS, MBS, PGARCH), is there a mode which is
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conagtently more accurate in approximating the GARCH option price? Further, under what
circumstances the BS model is more precise than the smulated GARCH option price despite the fact
that the BS modd is biased? In section I11.E, we discuss the results for the nearly integrated variance
gtuations that are often reported for financid time series.  Findly, in section 111.F, we discuss the

implications of the findings for other valuation Stuations such as deposit insurance vauation.

A. Behaviour of the GARCH Price and the Smulation Sampling Error
As is cusomary, we shall refer to the estimated GARCH price of an option from smulations as the
GARCH price. As such the GARCH price is subject to sampling error and the standard error of the
GARCH price (GARCHSR) is estimated from the smulations™ For comparative purposes, the
sandard error is reported as a percentage of the GARCH price.

Table 1 presents the GARCH price and the standard error as a percentage of the GARCH
price (GARCHPSR) averaged over dl cases of an initial conditiona variance sStuation (low, equd, or
high) and also under an initia variance condition averaged over dl cases of a given level of moneyness,

time to maturity, unit risk premium, or a GARCH process parameter.™

Table 1 here

As expected, the GARCH option price increases with the level of the initial conditional variance,
the level of moneyness, and the time to maturity of the option. *° However, in generd, the GARCH

option price does not seem overly senstive to the level of the initid conditional variance. Variation in

The standard error reported in this paper for a given option valuation situation is the standard deviation of the simulated option prices divided b
re root of the number of runs. The standard error calculated in this usua way, call it the naive standard error, assumes that the simulated option price
Jendent. However, this is not a valid assumption due to the martingale correction of the simulated stock price paths under the Empirical Martir
llation (EMS) method. As shown by Duan and Simonato (1995), the martingale correction reduces simulation errors. Hence the naive standard et
rted in this paper overestimate the true standard errors of the smulated GARCH prices. We aso ran simulations without the martingale correctior
llated standard errors (which are valid estimates) that are dightly greater than the naive standard errors. The magnitude of these differences in the star
sare not material enough to affect the major findings of this paper.

With some exceptions, the comparisons based upon the averages in Table 1 and the other tablesto follow fairly reflect the full set of 525 cases (avai
1 request from the authors).

While we do not report the results in the table, we have also examined whether the GARCH price of an in-the-money Europes
on falsbelow itsintringc value and found that it doesnot. Thisis not surprising since we employed the Equivalent Martingale
ulations technique. Even when thistechnique is not used, the use of a 0% riskfree interest rate in the BS formulawould yield tt
e of apure option (option on futures with futures-style margining) when the spot asset price follows alognorma diffusion with
sant variance rate (Lieu (1990)). It has been shown (Lie (1990), Chen and Scott (1993), Chaudhury and Wei (1994)) that the
le of a pure European option never dips below itsintringc value. Thisresults dso prevailsin astochastic interest rate regime (C
Scott (1993)).
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the GARCH option price across the different levels of moneyness and time to maturity is consderably
more than that across the three stuations of the initial conditiond variance. For example, the average
GARCH price moves from $9.878 to $10.021 as the initid conditional volatility (square root of the
initid conditional variance) changes from its low levd to its high leve, i.e., a 1.45 percent change in
average price for a67% increase in initia conditional volatility.

A digtinct feature of Duan's GARCH option vauation modd is its preference-based nature. The
unit risk premium, |, increases the unconditional variance under the locdly risk-neutra pricing measure
Q; it is the noncentrdity parameter for the innovations driving the conditional variance process under
measure Q; and it induces correlation between the conditiona variance and the lagged asset return
under measure Q. A priori, the net impact of the unit risk premium is unclear.

Reaults in Table 1 suggest that a change in the unit risk premium does not aways move the
GARCH pricein the same direction. Further inspection of the full set of cases reveds that the GARCH
option price is decreasing (increasing) in the unit risk premium for out-of-the-money and at-the-money
(inthe-money) options. The economic sgnificance of this intriguing result, however, becomes
guestionable once we consider the magnitude of price change for the different levels of I. As| increases
from 0.01 to 0.20, the GARCH price change is less than 5 percent for dl options other than the deep-
out-of-the-money ones. For this latter group of options, the same change in | induces a large
percentage drop (as high as 50 percent) in the GARCH price.

The two dope parameters (a, b;) of the GARCH (1,1) conditiona variance process are a the
heart of the GARCH option vauation problem. If they were close to zero, a congant variance
assumption would be reasonable and the BS price should provide a close approximation to the
appropriate theoretica price. If, on the other hand, the two dope parameters and their sum are not
negligible in value, the conditiond and stochastic nature of the variance process becomes quite
relevant.

Reaults in Table 1 confirm the above expectations. The two dope parameters have smilar effects
on the GARCH price and the smulation error when one of the two parameters is held constant. Since
holding one of the dope parameters (a;, b;) constant while increasing the other leads to a higher g or
heavier persgstence in variance, we also observe smilar behaviour for the GARCH price and its
sandard error as g varies. At higher levels of ether parameter or their sum, the smulation error is

relatively higher. This suggests that in generd the sum of the two parameters, viz., the variance
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persstence parameter, g, plays an important role and needs to be estimated carefully. However, no
uniform directiond pattern for the GARCH price can be discerned asthe parameters vary.

The GARCHPSR (smulation standard error as a percentage of the GARCH price) average figures
in Table 1 reved that on average GARCHPSR is about 1 percent or less except in the case of deep-
out-of-the-money and shortest maturity options. Case by case andysisindicates that GARCHPSR isin
excess of 7 percent when the option is degp-out-of-the-money (SX=0.8) and has a very short maturity
(T = 30 days). While the volume of such exchange-traded options is typicaly low, they could ill be
relevant to practitioners and researchers dedling with cusom-made derivative products and potentia
application of Duan's (1995) model to other option-like valuation situations.

GARCHPSR congstently goes down asthe level of moneyness and time to maturity increases. The
preference parameter | has no materia impact on the smulation precison level. In generd, dthough

not always, smulation precison is somewhat lower for the low initial conditional variance Stuations.

B. BSModd Bias

Table 2 presents summary satistics for the bias (BS -GARCH), the absolute bias (|IBS - GARCH]|), and
the absolute percentage bias (100* |BS - GARCH|/GARCH) of the BS mode when the appropriate
theoretica priceisthe smulated GARCH option price.

Table 2 here

Averaging over dl 175 cases of an initid conditiona variance stuation (Panel A), the BS bias is
within adime and is about 4 to 6 percent of the GARCH price. The initid conditiona variance Stuation
appears to have a bearing on the direction of the bias athough not necessarily on the percentage bias.
Given that the sandard deviations are rather large compared to the means and aso in the light of our
discussion in the previous section, we shal now examine the bias figures classfied by the moneyness
(Panels B-F) and the time to maturity (Panels G-K) of options, the unit risk premium (Panels L-N), and
the GARCH process parameters (Panels P-X).

The absolute percentage biases are more comparable across the various levels of a variable or a
parameter Since they are adjusted for the price level. Once again it appears from Panels B-K that the
bias of the BS modd is dgnificant for the shortest maturity and deep-out-of-the-money options.
Depending upon the initial conditiona variance Stuation, the average absolute percentage bias of the
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BS mode ranges from 14 to 21 percent (15 to 22 percent) for deep-out-of-the-money (shortest
meaturity) options. In contrast, most other option categories have a mean bias of less than 5 percent."’
We dso note that the absolute percentage bias of the BS mode decreases as the moneyness and the
time to maturity of the option increase.

Notice that the standard deviation of the absolute percentage bias is rather large compared to the
means for al categories of moneyness and time to maturity. Our examination of the full set of cases
shows that thisis due to the presence of deep-out-of-the-money and/or the shortest maturity optionsin
each of the Pandls B-K. The BS mode bias in percentage terms is the highest for the deep-out-of-the-
money shortest maturity options.

Regarding the direction of the BS model bias, it seems that the deep-in-the-money (SX = 1.2) and
the longest maturity (T = 720 days) options tend to be underpriced by the BS model, especidly in
equa and high conditiona variance Stuations. An ingpection of the individua cases aso show that the
deep-out-of-the-money and deep-in-the-money shortest maturity options are always underpriced by the
BS model. At-the-money options are overpriced in low conditiond variance Situations, otherwise they
are underpriced. This striking price bias is quditatively smilar to that noted by Merton (1976) when the
sock returns follow a jump diffusion process and a low conditional variance Stuation prevails.
However, unlike the jump diffusion context, the sign of the bias for at-the-money (X = 1.0) options
reverses when the conditional variance is near to or higher than the stationary level of variance. Also,
for near-theemoney (S/X = 0.9, 1.1) options, the bias is not uniform and depends on other option
vauation parameters. An ingpection of the individua cases also revedl that the sign of the bias for deep-
out-of-the-money and deep-in-the-money options varies for maturities longer than 30 days. For
example, condder in Table 3 the BS modd bias (BS-GARCH) for the option valuations Stuations
where time to maturity is 180 days (0.5 year), &= 0.175, b, = 0.65.

Table 3 here

When the initia conditiona variance is low and the unit risk premium is at its low level (0.01), dll
options including the deep-out-of-the-money and deep-in-the-money ones are overpriced by the BS
modd. Under the same variance Stuation but now at a high unit risk premium level (0.20), al deep-

As can be seenin Pandl C of Table 2, the average absolute percentage biasis 7 to 9 percent for the near-out-of-the-money
onsinlow and high initial conditiona variance Stuations.
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out-of-the-money options are overpriced while near-out-of-the-money, at-the-money and in-the-money
options are underpriced. Moving to the high initid conditiona variance stuation, al options above are
underpriced by the BS modd.

One implication of the above bias behaviour for the same maturity isthat the striking price bias may
take different forms depending upon the variance Stuation and the leve of the unit risk premium. Thus
the GARCH option vauation modd seems general enough to accommodate the various striking bias
patterns and "reversals' that have been reported in empirica studies (e.g., Black (1975), MacBeth and
Merville (1979), and Rusingtein (1985)).

It is dso worth noting in Table 2 that the BS model bias tends to move from a generd overpricing
in low initial conditiona variance Stuation to a genera underpricing in high initia conditional variance
situation.”® This is in conformity with Duan's (1995) simulation results™ Duan (1995, p.23) mentions
that the GARCH conditiona variance process is known to generate more low-variance sates more
frequently. Accordingly, we should expect the BS modd to overprice options more often. We,
however, find that a high unit risk premium on the stock (I = 0.20) often leads to more options being
underpriced by the BS mode even in the low initid conditional variance stuation. This can also be seen
from Panels L-N of Table 2. For both the low and equa initia conditiona variance Stuations, a
postive average BS modd bias at low unit risk premium changes to a negative average bias at high
unit risk premium. An examination of the individua option vauation Situations under the low and equa
variance conditions aso reved a high frequency of overpricing (underpricing) by the BS mode when
the unit risk premium is at its low (high) level. Since the low and equd variance conditions are more
likely than the high variance condition, a time varying risk premium may explain why the BS model
with a congtant variance overprices most traded options sometimes while underpricing them at other
times (Black (1975), p.41).

Panels P-X as well as our examination of the full set of cases show that the dternate values for the
GARCH process dope parameters (& , b;) do not have any noticeable impact on the direction of the
BS mode bias, given an initid conditiond variance Stuation. However, as they increase (i.e. as the
variance perssence increases), the absolute percentage bias of the BS mode increases sgnificantly.
Pand X shows that when g>0.90, the average absolute percentage bias is more than 8 percent

regardless of the variance situation.

The zero bias point is, however, not necessarily at the exact at-the-money (S/X = 1.0) position.
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Similar to our generd finding regarding the behaviour of GARCH option prices, panels L-N
indicate that the absolute percentage bias is not grestly affected by the level of the unit risk premium, 1.
The mean absolute percentage bias ranges from 4 to 7 percent for al three levels of I. But, as noted
above, | could have an important bearing on the direction of the BS mode bias.

C. The Three Components of the BSModel Bias

In the previous section, we have looked into the magnitude and the direction of the BS model bias
when Duan's (1995) GARCH option vauation modd is the appropriate theoretical modd. Earlier in
this paper, we have identified three sources of bias for the BS modd, viz., the u.v. (unconditional
variance) hias, the c.v. (conditiona variance) bias, and the p.d. (path dependence) bias. It is ussful to
know how the three sources of bias interact to determine the overal or net BS modd bias in a given
option vauation Stuation. It is adso useful to find out the principa source(s) of the BS modd biasin a
given option vauation Stuation, or how the relative importance of the three sources of bias vary (if at
all) across different option valuation stuations. It would be equally interesting to determine if the p.d.
biasis awaysin one direction.

Table 4 contains some amulation results that should help address these issues. In this table, we
report the mean figures for the u.v. bias (BS - MBS), the c.v. bias (MBS - PGARCH), the p.d. bias
(PGARCH - GARCH), and the respective percentage bias proportions (PROP). For each option
vauation Stuation (combination of X, t, &, b,, |, initia conditiona variance), the bias proportions
(PROP) are calculated asfollows:

UVPROP = 100* |BS - MBS|/ ABSUM

CVPROP = 100* [MBS - PGARCH|/ ABSUM

PDPROP = 100* |PGARCH - GARCH|/ ABSUM
where ABSUM = |IBS- MBS| + [MBS- PGARCH| + |PGARCH - GARCH|. PROP for abiasisan
indicator of how important its magnitude is in determining the overal or net bias of the BS modd. A
large (small) PROP figure for abias meansthat it isrelatively more (less) important.

Strictly speaking, the difference between PGARCH and GARCH has two components: the p.d.
bias (expected Black-Scholes price as a function of the average conditional variance - GARCH), and
the bias (PGARCH - expected Black-Scholes price as a function of the average conditiona variance)

Duan (1995) reports bias figures as: GARCH - BS. In this paper, we use: BS - GARCH.
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of the BS formula due to its nonlinearity in the average conditional variance rate. Following Hull and
White's (1987) series approach, we attempted to estimate the expected BS price using the first and
second centra moments of the average conditiona variance (based upon Duan's (1995) reaults) in a
second-order Taylor series. This, however, resulted in considerable ingtability in some option valuation
stuations. Hence we decided not to pursue the decompostion of the difference between PGARCH and
GARCH. Consequently, while we refer to this difference as the p.d. bias, gtrictly speaking, it is dso
inclusive of the nonlinearity bias®

Some comments about the biases can be made on an a priori bass. First, the u.v. bias is dways
negative since the measure Q unconditiona variance is greater than the measure P unconditiona
variance as long as the unit risk premium, | , is nonzero. Second, the u.v. bias should increase
(decrease) as the magnitude of | increases (decreases). Third, the c.v. biasis positive, zero, or negative
depending upon whether the initial conditional variance is less than, equa to, or greater than the
measure Q unconditiona variance.

If we consder the possibility of either a poditive or negative p.d. bias in conjunction with the above
comments, it seemsthat the overall or net GARCH option valuation effect would very likely depend on

the option vauation Stuation at hand. To see this, we now turnto Table 4.

Table4 here

Panel A indicatesthat averaging across all 175 cases under an initial conditiona variance stuation,
the p.d. bias is postive for dl three (low, equd, high) initid conditiona variance Stuations. In the low
initid conditiona variance Stuation, the postive p.d. bias (0.085) combined with a postive c.v. bias
(0.064) outweighs the negative u.v. bias (-0.083). This results in an average net GARCH option
vauation effect of 0.067 (Pand A, Table 2) or general overpricing by the BS model. In the equal initial
conditiona variance Stuation, the c.v. biasis zero and the postive p.d. bias (0.085) barely exceeds the
negative u.v. bias (-0.083). Thisleadsto a smdl overpricing by the BS modd, the average magnitude
of the net GARCH vauation effect being the lowest (0.003, Pand A, Table 2) of the three variance
gtuations. A negative net GARCH Option vauation effect (-0.077) or a genera underpricing by the

For an at-the-money option, the BS formula is approximately linear in the variance. The nonlinearity bias is thus roughly zero, and the difference bet\
RCH and GARCH solely reflects the p.d. bias.
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BS modd occursin the high initial conditiona variance Situation; the negative u.v. bias (-0.083) and the
negative c.v. bias (-0.081) together outweigh the positive p.d. bias (0.087).

Thus we have a generd overpricing by the BS modd turning into a general underpricing as the
initiad conditiona variance moves from a low to a high state, a pattern that we have previoudy noted.
This pattern is aso supported by a redistribution of the relative importance (measured by mean PROP
figures, Pand A, Table 4) away from the p.d. bias to the c.v. bias when the initial conditiona variance
is high rather than low.?*

The nature of the p.d. bias (which aso includes the nonlinearity bias in this paper) is an interesting
issue since this is the component that mainly captures the effect of both path dependence and departure
from lognormality of the terminal stock price. Since under the GARCH modd the (log) stock returnis
leptokurtic (under both P and Q), both out-of-the-money and in-the-money options should be more
vauable (Duan (1995), p.20). Accordingly, we would expect the p.d. bias to be negative (underpricing
by the BS model).

Conddering the average p.d. bias figures for the different levels of moneyness and time to
meaturities in Panels B-K of Table 4, the high variance, shortest maturity options (Pandl G) are the only
group where the average p.d. bias is negative. Case by case analysis confirms the preponderance of
negative p.d. bias in high variance stuations. Across al three variance gtuations, deep-in-the-money
options maturing in 180 days or earlier have mostly negative p.d. bias figures. A negative p.d. bias is
not as prevalent for the deegp-out-of-the-money options. For these options, a negative p.d. biasis more
common when the option maturity is short and the conditional variance equas or exceeds the
sationary level. For maturities longer than 30 days, the p.d. biasis largely positive for deep-out-of-the-
money options. Further, while the average p.d. bias is postive for at-the-money, near-out-of-the-
money, near-in-the-money, and deep-in-the-money options under dl three variance stuations (Panels
C-F, Table 4), studying the full set of cases we find that the p.d. bias is most consstently postive for
the at-the-money options.

An evauation of the average PROP figuresin Panels B-K of Table 4 indicates that: (a) the average
p.d. bias PROP reaches its highest values in the case of the deep-out-of-the-money (45.04%, 64.09%,
40.27%) and the shortest maturity (45.23%, 77.00%, 45.65%) options, (b) the p.d. biasis conssently
the most dominant source of bias for deep-out-of-the-money, deep-in-the-money, and the shortest

This redistribution pattern is largely supported by a case-by-case analysis except for the shortest maturity (T = 30 days) options.
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meaturity options only; and (C) as the option's maturity gets longer, the relative importance of the p.d.
bias tends to diminish although not monotonicaly in the high variance situation. Further analysis of the
full set of casesrevealsthat the individua (not average) p.d. bias PROP reaches its highest valuesin the
cae of the shortest maturity deep-out-of-the-money and deep-inthe-money options, and the
dominance of the p.d. biasis aso the greatest in these cases.

There are severd indghts that we can draw from the above smulation results. Frst, the p.d. bias
(inclusive of the nonlinearity bias in this paper) is not uniformly negative for an out-of-the-money
option, that is, it does not dways lead to underpricing of an out-of-the-money option by the BS model.
While leptokurtosis in (log) stock returns caused by the GARCH process creates underpricing by the
BS mode, for longer maturities this effect tends to be more than offset by other features of the
distribution of the terminal stock price.

Second, the effect of these other features is not as important in the case of a deep-in-the-money
option, thus resulting in anegative p.d. bias (underpricing) in alarge number of cases.

Third, the overal underpricing of the shortest maturity deep-out-of-the-money and deep-in-the-
money options by the BS mode noted earlier is due to the dominance of the negative p.d. bias in these
cases augmented by the universally negative u.v. bias.

Previoudy, we found at-the-money optionsto be overpriced (underpriced) by the BS modd in low
and equa (high) initid conditional variance situations (Panel D, Table 2). It appears (from Pand D,
Table 4) that the postive p.d. bias of an at-the-money option ether by itsaf (equa variance Stuation)
or pairing with the postive c.v. bias (low variance Stuation) outweighs the universdly negative u.v.
bias to cause this underpricing. In the high initia conditiona variance Situation, the negative c.v. bias
coupled with the negative u.v. bias outweighs the positive p.d. bias (Panel D, Table 4) and leads to an
underpricing of an at-the-money option (Pand D, Table 2). Notice that the main source of this variance
bias of a-the-money options is the change in the dgned vaue of the c.v. bias and its reative
importance across the three variance stuations.

Rubingtein (1985) and Sheikh (1991) noted a time to maturity bias reversal phenomenon over
different time periods for at-the-money options when the BS modd is inverted to imply volatility from
the observed option prices. Duan (1995) shows that under the GARCH model, when the initid

conditional variance is low, the BS modd 1SD increases with maturity.”? The ISD pattern reverses

This meansthat the BS bias (BS-G) becomes more negative, i.e., underpricing by the BS model increases with maturity.
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when the initial conditional variance is high.”® To facilitate a better understanding of this phenomenon,
we report in Table 5 the three components of the BS model bias and their relative magnitude figures
(PROP) for at-the-money options, under the low and high initial conditional variance stuations and the
middle vaues of the GARCH vauation parameters. Under both variance stuations, the absolute as
well as the relative magnitude of the c.v. bias decreases as the maturity gets longer. Given that the c.v.
bias is positive under the low variance Stuation, overal overpricing is more (underpricing is less) for
shorter maturity options relative to longer maturity options. This of course trandates a relatively lower
ISD for a shorter maturity option in Duan's (1995) Table 4.1. Thus it appears that the c.v. bias or the
initiad conditiona variance Stuation under the GARCH (1,1) mode could be at the heart of the timeto

meaturity bias reversal phenomenon.

Table5 here

Previoudy we noted a general tendency of overpricing by the BS modd turning into underpricing
as the unit risk premium, |, increases. The unit risk premium, |, is of course the key determinant of the
u.v. bias. Pands L-N of Table 4 show that average u.v. bias PROP increases from about 1% to over
50% as| changes from its low gtate (0.01) to its high state (0.20). When | is low, the positive p.d. bias
ather by itsdf (equal variance) or coupled with the postive c.v. bias (low variance) produces
overpricing . However, when | is high, the dominance of the negative u.v. bias produces underpricing in
al three variance stuations.

By examining Panels P-U of Table 4, we find that the GARCH process dope parameter & affects
the relative importance of the three types of bias much more than the parameter b;. With a higher a,
the average p.d. bias and the average p.d. bias PROP go up sgnificantly. For example, under the low
variance condition, the average p.d. bias (p.d. bias PROP) goes up from 0.006 (30%) whena = 0.05
to 0.291 (49%) when & = 0.3. To a lesser extent, this effect also shows up in Panels V-X where the
bias results are reported for dternative levels of the variance persstence parameter g.

While both & and | lead to significant shifts in the relative importance of the three types of bias of
the BS mode, the amulation results from Tables 1-4 suggest that the unit risk premium, |, is perhaps
more important in determining the direction of the overal bias or GARCH option vauation effect. The

This means that the BS bias (BS-G) becomes less negative, i.e., underpricing by the BS model decreases with maturity. While we do not report the
ts here, we have confirmed Duan's explanation for various combinations of the unit risk premium and the GARCH process parameters.
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GARCH process persgstence parameter g, on the other hand, is more important when it comes to the
gze of the overdl bias while the dope parameter & has significant influence on the composition of the
bias.

D. Comparison of BS MBS PGARCH, and GARCH Prices

From the amulation results discussed so far, we gather that the BS price is a biased estiméte of the
true option price when the stock returns follow a GARCH (1,1) process. The direction and the
magnitude of the bias vary across different option valuation Situations and depend on the interaction of
the three components of the bias (u.v. bias, c.v. bias, p.d. bias). While the BS price is biased, it has no
variance as an estimate of the true option price when the unconditiona stock return variance is known.
The smulation-based GARCH option price, on the other hand, has no bias, but it has variance as an
estimate of the true option price caused by smulation sampling error. As noted earlier, this sampling
error varies across different option valuation Stuations too. Thus, it is possible, at least in theory, that
the BS mode absolute percentage bias in a given option vauation dStuation is less than the
GARCHPSR (smulation standard error as a percentage of the smulation-based GARCH price).

Econometricians often use a mean square error (MSE) criterion to choose between biased and
unbiased estimates of population parameters. The MSE of an estimate is equd to its variance plus bias
squared. The MSE of the BS price is its absolute bias squared. For the smulation-based GARCH
option price, the MSE is the GARCHSR squared. Thus a comparison of the absolute percentage bias
of the BS model and the GARCHPSR is amilar to a comparison of their root mean square error
(RMSE). With estimation risk, an estimate with alower RMSE is preferred under a squared error loss
criterion.

This opens up the possihility that a practitioner may be better off using the BS modd instead of
the GARCH option pricing moded in some option vauation Stuations. In other stuations where the
GARCH option pricing mode is to be preferred on a RM SE basis, it is possible that the gainin RMSE
is not perhaps large enough to a practitioner facing the sgnificantly higher computationa involvement
of the GARCH model.

Another interesting issue is whether removing one or more but not al of the three components of
the BS mode hias leads to an improvement (in RMSE sense) over ether the BS price or the
smulation-based GARCH price. In other words, does MBS (removes u.v. bias) or PGARCH
(removes u.v. bias and c.v. bias) outperform the BS price or the smulation-based GARCH price in a
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RMSE sense? The answer to this question is not clear a priori since the three biases are not dways of
the same sign.

Table 6 presents the absolute percentage bias for each of BS, MBS, PGARCH, and the smulation
sandard error as a percentage of the GARCH price (GARCHPSR), averaged over dl option vauation
stuations under a given (low, equd, high) initial conditional variance state and aso by monyeness, time
to maturity, the unit risk premium, and the GARCH process dope parameters. The absolute percentage
bias for each of BS, MBS and PGARCH is in fact its RMSE as a percentage of the GARCH price.
Similarly, the GARCHPSR is the RMSE of the smulated GARCH price expressed as a percentage.
We report the percentage figures as they are more comparable across different option vauation
gtuations. However, for the sake of brevity, we shall refer to these percentage figures as smply RMSE

in the discussion to follow.

Table 6 here

Pandl A of Table 6 shows that on average the BS moded's RMSE is about 4 to 6 percent higher
than that of the smulated GARCH model. Removing either the u.v. bias (usng MBS) or both the u.v.
bias and the c.v bias (usng PGARCH) does not offer any significant advantage over the BS mode on
average. However, as noted earlier, the BS modd bias, its components, and GARCHPSR vary widely
across different option vauation Stuations. Hence the average across al option vauation Stuations
could be potentially mideading. One indication of this are the large standard deviations reported beside
the mean RM SE figuresin Table 6.

Panels B-K indicate that on average for any level of moneyness and time to maturity, the GARCH
modd's RMSE is lower than ether of BS, MBS, or PGARCH. This advantage is, however, margina
for at-the-money and in-the-money (near and deep) options and those maturing in 6 months (180 days)
or later. The RMSE advantage of the GARCH modé is about 4 (2) percent or less for at-the-money
(in-the-money) and 180 (360, 720) days options. In these and other cases, on average the MBS and
PGARCH formulas do not offer any particular benefit over the BS modd. In fact, it appears that
sometimes trying to remove the u.v. and/or the c.v. bias leads to a higher RMSE. But once again we
should not ignore the rather large andard deviations of the RMSE.

Strictly speaking, the true absolute percentage bias for BS, MBS and PGARCH and the true standard error of the simulated GARCH price as a percer
e GARCH price (GARCHPSR) are not known. Thisis because the true GARCH price is not known. Since the simulated GARCH price is an estimate i
gported absolute percentage bias and GARCHPSR figures are actually estimates of the corresponding true figures.

26



The RMSE reaults in Pand C (near-out-of-the-money options), Panel H (90 day options), and
Panels L-N (different levels of the unit risk premium, | ) of Table 6 are fairly smilar. With the
exception of near-out-of-the-money options under a low variance condition, the MSE gain of the
GARCH modd over the BS mode is on average in the range of 3 to 7 percent and the aternative
formulas (MBS,PGARCH) do not seem to offer any notable improvement over the BS model. Largely
gmilar comments aso apply to the RMSE results in Panels Sand T for low to medium b, values and
the RMSE results in Panels P-Q for low and medium a, vaues® The RMSE results in Pands Rand U
for thehigha and b levels are different in that the GARCH mode's RM SE gain over the BS mode is
on average 8 percent or more for these cases. Pands V, W, and X show that a higher g produces
smilar RMSE behaviour asthehigha, and b levels.

The RMSE reaults that are noticeably different from the rest in Table 6 are the ones in Pand B
(deep-out-of-the-money options) and Panel G (30 day options). In these cases, the RMSE of the BS
model is on average 14 percent or more while the GARCH mode's RMSE is on average about 2
percent. Thus for these options, there is an average gain of 12 percent or more in accuracy (RMSE) in
computing the GARCH smulation-based price rather than using the conventional BS modd. While the
dternative formulas (MBS, PGARCH) attempt to remove some biases of the BS mode, this does not
result in any clear improvement in accuracy (RMSE) over the BS moddl.

On the basis of the average RMSE resultsin Table 6, it seems that GARCH option pricing is most
important for deep-out-of-the-money options (S/X = 0.8), very short maturity (T = 30 days) options,
and options on stocks with high gor variance persstence.

While the above results compare the average RM SE figures for the GARCH modél, the BS modd,
and the dternative models (MBS, PGARCH) by one option varigble (X, T) or parameter (a, by, I) a
atime, it would be useful to know under what option vauation stuations the BS model fares better
(lower RMSE) or worse than the GARCH model.

The RMSE of the BS modd is less than that of the GARCH modd in 18 of the 175 low variance
cases, in 32 of the 175 equal variance cases, and in 9 of the 175 high variance cases. The corresponding
numbers for the MBS (PGARCH) formulaare 7 (14), 17 (7), and 18 (23). In alarge mgority of these
cases, the RMSE gain over the GARCH mode is, however, quite modest (typicaly less than 1
percent). While the MBS and PGARCH formulas sometimes offer a more accurate price estimate

For the highest b, level, the RM SE averages are a bit higher.
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(lower RMSE) than the BS modd and the smulated GARCH price, the gain in RMSE is not
sgnificant. Further, compared to the BS model, implementation of the MBS or PGARCH modd leads
to additional data requirements (the unit risk premium and the GARCH process parameters).

Some of the distinguishing features of the cases where the BS model has a RM SE advantage over
the GARCH modd are: (a) the highest & vaue (0.30) occurs in none of the low variance, 1 of 32
equa variance, and 3 of 9 high variance cases; (b) the highest b vaue (0.80) occurs in 2 of 18 low
variance, 3 egua variance, and 1 high variance cases, (c) the highest | value (0.20) occursinonly 1
low variance, none of the equa and high variance cases, in contragt, the lowest | value (0.01) occurs
in 4 equa variance and 5 high variance cases®® and (d) the time to maturity is 6 months or longer in 17
of 18 low variance, 25 of 32 equa variance, and al 9 high variance cases®” None of the cases involve
the shortest maturity (T=30 day) options.

As for moneyness, the cases seem well spread over dl levels including the degp-out-of-the-money
level. As the maturity gets longer (6 months or more), the BS model RMSE drops off sgnificantly
even when the option is deep-out-of-the-money. It is only when the option maturity is short (90 days)
and gis not low, or when the option maturity is very short (30 days), that the BS modd RMSE is
quite high for out-of-the-money, especialy deep-out-of-the-money options.

As shown in Panel A of Table 7, for out-of-the-money options (X = 0.8, 0.9) which are maturing
in 90 days or sooner, the average RMSE of the BS modd is 24 percent, 22 percent, and 32 percent
respectively for low, equal, and high variance conditions. In contrast, the average RMSE for al other
options is 2.17 percent, 1.06 percent, and 1.48 percent respectively for low, equal, and high variance

conditions.

Table 7 here

Pand B of Table 7 shows that for the shortest maturity deep-out-of-the-money options (T=30
days, X = 0.8), the average RMSE of the BS mode is 54 percent, 65 percent, and 75 percent
respectively for low, equal, and high variance conditions. When the shortest maturity deep-out-of-the-
money options are excluded, the average RMSE for the remaining 168 cases is 3.60 percent, 1.85
percent, and 3.56 percent respectively for low, equa, and high variance conditions. Examining the bias
proportions for the shortest maturity deep-out-of-the-money options vs. al other options, we find that

The middlevaue of | isfound in 17 of 18 low variance, 28 of 32 equa variance, and 4 of 9 high variance cases.
All 9 high variance casesinvolve the longest maturity (T=720 day) options.
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the p.d. bias is a the source of the worst errors of the BS model. For the 7 (168) shortest maturity
deep-out-of-the-money (al other) options, the p.d. bias PROP is 70 (36) percent, 95 (57), and 75 (32)
percent respectively for low, equd, and high initid variance conditions.

Unfortunately, neither MBS nor PGARCH provides any significant improvement in RMSE over
the BS mode for the shortest maturity deep-out-of-the-money options. We further examine the cases
(24 low variance, 9 equd variance, and 15 high variance) where the BS model RMSE is greater than
20 percent. Pandl C of Table 7 shows that the average RMSE of the BS modéd in these cases is 44
percent for low variance condition, 59 percent for equa variance condition, and 55 percent for high
variance condition.?® The corresponding average RMSE figures for the MBS (PGARCH) formula are
46 (41) percent, 52 (52) percent, and 50 (32) percent respectively.

E. Nearly Integrated Cases

In dedling with asset returns, empirical sudies often find a very high level of variance persistence or
a gtuation of nearly integrated variance process as indicated by estimated g values exceeding 0.90. Ng
(1991) reports g values in the range of 0.90 to 0.93 for monthly excess returns on both small and large
sze portfolios of U.S. stocks during 1931-1987. Akgiray (1989) finds g values exceeding 0.96 for the
CRSP vaue-weighted and equally-weighted daily returns during the various subperiods of 1963-1986.
Engle and Mustafa’'s (1992) g vaues for daily returns (July 1962 to December 1985) on the S& P 500
and 5 large U.S. stocks are dl around 1.0. In Heynen and Kat’s (1994) study of the 1980-1987 daily
returns, 4 of the 7 sock indices and 3 of the 5 currencies show gvauesin excess of 0.97. Lamoureux
and Lastrapes (1990) examine the daily returns of 20 actively traded stocks with CBOE options during
the 1980-1984 period. They report gvaluesin excess of 0.97 for 5 of the 20 stocksintheir sample. In
all these and other cases, g vaues are dominated by the b, parameter for which a vaue greater than
0.90 is not uncommon. Thus the empirica evidence on returns of many financiad assets seems to
indicate a relativedy smdl immediate impact of a variance innovation which however is nearly
permanert.

Given the empirica relevance of these nearly integrated stuations and the fact that our smulation
results so far also indicate larger biases for the BS model and larger smulation errors for the GARCH
price, we report in Appendix A the case by case smulation results for some nearly integrated (a;=0.05,

Panel C of Table 7 indicates that when the cases where the RMSE of the BS model is more than 20 percent are compared with the cases where the RI
e BS modd is less than 20 percent, the former cases are characterized by a significantly higher and dominant P.D. bias proportion. Thus the p.d.
arsto be responsible for the worst errors of the BS model.
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b1=0.94, g=0.99) cases. For the sake of brevity, we only consder the middle vaue (0.10) of | , and
ignore the equal variance cases.

Some key features noted earlier show up in the nearly integrated cases as expected dbet with a
greater intendty. GARCH smulation errors and the BS mode bias in percentage terms decrease with
moneyness and time to maturity. Compared to the results reported earlier, the importance of the
GARCH vauation effect is not limited to the deep-out-of-the-money shortest maturity (30 days)
options only. Even at-the-money options maturing in 6 months can have BS error in excess of 10
percent.

A very important feature of the nearly integrated cases is that the GARCH vauation effect (BS
modd bias) is dominated by the conditional variance bias and the p.d.bias is relatively unimportant. As
aresult, the BS modd consistently overprices (underprices) optionsin low (high) variance conditions.
With near integration (with a; approaching zero and b, approaching 1.0), the conditiona variance
innovations are nearly perfectly correlated and their effect decays extremely dowly; if conditiona
variance garts at a high levd, it is expected to remain high for along time. Since the future conditional
variances are highly predictable in this Stuation, not much variance is expected for them and the
average expected variance is like an average over a deterministic path of variance (the complete
stochastic path of the variance becomes less important).

This suggests that our PGARCH formula should approximate the GARCH price fairly well in the
nearly integrated Stuations (where b; is the mgjor component) since it corrects the c.v. bias as well as
the u.v. bias and the p.d. biasis relatively a small component. The results in Appendix A lend support
to this contention. Except for the shortest maturity deep-out-of-the-money options, the percentage
error of the PGARCH formula is under 6%. For the widdy traded at-the-money options, the
PGARCH bias is about 2% or less. Thus, in commonly found empirica Stuations, the PGARCH
formula may offer an attractive practica dternative to the smulated GARCH price which is more

accurate but computationaly more involved.
F. Some Implications

In what follows, we discuss some key implications of our smulation results for option vauation, the

empirical biases of the BS mode, and option-like economic situations.
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F.1 Option valuation

A number of option valuation implications emerge from our smulation results. Frst, among the
GARCH process parameters, the leve of variance perastence, g, is relatively more consequentia for
the GARCH option price. This is especialy so for out-of-the-money options maturing in 90 days or
earlier. For these options, the standard error of the smulated GARCH price is adso relatively high.
Researchers and practitioners should thus gtrive for accurate estimates of g in implementing Duan's
GARCH option valuation model for the out-of-the-money short maturity options.

Second, the magnitude of the Black-Scholes (BS) mode bias is the largest in percentage terms
(often exceeding 14 percent) for the deep-out-of-the-money options maturing in 30 days or earlier.
Hence, implementation of the GARCH option vauation mode is recommended (strongly) for out-of-
the-money options (deep-out-of-the-money) maturing in 90 (30) days or earlier. These options should,
of course, be avoided if the BS modd is inverted to imply the GARCH process parameters from the
observed market prices.

Third, for options other than the deegp-out-of-the-money shortest maturity ones, the absolute
percentage bias of the BS modd is under 4 percent on average. In fact, the BS model absolute biasis
less than the standard error of the smulated GARCH price in about 11 percent of the cases that we
have consdered. These are typicaly options maturing in 180 days or later.

With the advent of the new breed of long-dated options (eg., LEAPS and FLEX) and the
increasing body of evidence indicating thet volatility is not constant over an extended period of time, it
is somewhat reassuring to know that the Black-Scholes model with a congtant (unconditional or
gationary) volatility provides a good approximation to the GARCH(1,1) theoretica option price for
longer maturities. For some major asset classes, Figlewski (1994) finds that over horizons extending up
to 10 years the historicd volatility estimate produces a better forecast of the future volatility than the
GARCH (1,1) modd. Our results suggest thet there is hope in implying the unconditional or Sationary
volatility from the Black-Scholes model using the observed long-dated option prices. We should
however caution that we have not explored the accuracy of the Black-Scholes modd with a congtant
volatility in approximating the hedge ratio of long-dated theoretica options under the GARCH (1,1)
model.
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Fourth, if the variance process is nearly integrated, the BS mode bias can be significant even for
options other than the deep-out-of-the-money very short maturity ones. Given that various empirica
studies report nearly integrated Stuations with a high b, value, caution should be exercised in using the
BS moded in these gtuations for vauation, 1SD estimation, and other purposes. Duan’'s (1995)
GARCH option valuation mode is gppropriate under these circumstances.

However, for options other than the deep-out-of-the-money very short maturity ones, the Pseudo-
GARCH formula presented in this paper offers an attractive dternative to the more accurate smulated
GARCH price of Duan. Thisis specidly so for at-the-money options where the Pseudo-GARCH error
is 2% or less. At-themoney options are , of course, the most actively traded contracts on the

organized exchanges.

F.2 Empirical Biases of the BSModd

To finance researchers, the direction of the BS moded bias is of equd, if not more, interest as the
magnitude of the bias. As suggested by Duan (1995), the GARCH option pricing mode helps explain
some of the well-known empirical biases of the BS modedl. 1n this paper, we decompose the bias into
three components.  Simulation results on the three components of the BS modd bias or the GARCH
vauation effect sheds further light on thisissue.

Conggtent with the popular "smile effect” in implied volatility and similar to the Black-Scholes bias
under Merton's (1976) jump diffuson model, deep-in-the-money and deep-out-of-the-money (at-the-
money) options with a very short time to expiration are underpriced (overpriced) by the BS model.
This striking price bias of the BS modd is caused by the direction and the relative importance of the
bias component related to the nonlinear and path-dependent nature of GARCH option pricing.
However, it should be mentioned that the striking price bias can take different forms depending upon
the initid conditiond variance Stuation and the unit risk premium level. Thus the GARCH option
pricing model seems genera enough to accommodate the conflicting striking price biases reported in a
number of empirica studies (e.g., Black (1975), MacBeth and Merville (1979), and Rubinstein (1985)).

Averaging across al maturities, the at-the-money options are overpriced (underpriced) by the BS

moded when the initial conditiond variance is lower than or equa to (higher than) the unconditional
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variance. This pattern is driven by a change in the direction of the bias component related to the
conditiona nature of the variance process. The behaviour of this conditional variance bias aso helps
explain the time to maturity bias reversa phenomenon (Rubingtein (1985), Sheikkh (1991)). On the
other hand, the relative importance of the bias component related to a change in the unconditiona
variance under Duan'slocally risk-neutra pricing measure is responsible for consistent underpricing (by
the BS moddl) of options with a very long time to maturity.

Two decades ago Black (1975, p.41) observed that there are times when most traded options seem
underpriced and times when most traded options seem overpriced relative to the BS mode price. One
of the two possible explanations that Black provided was that ".. may be that the market is expecting
volatilitiesto be generdly lower or generdly higher than the estimates used in the formula, ..", aluding
in his discussion to a mean reverting conditiona variance process. Consstent with this, our smulation
results show that in genera the BS model overprices (underprices) options when the initial conditional
variance is lower than (higher than or equd to) the unconditional variance. A key factor here is the
opposing influences of the change in the unconditiona variance and the nonlinear and path-dependent
nature of GARCH option pricing.

The second explanation advanced by Black was that ".. it may be that factors unrelated to option
values are affecting the option prices.” From our smulation results, it seems that one such factor could
be atime varying risk premium. As the unit risk premium increases fromiits low level to its high level, a
generd pattern of overpricing by the BS mode turns into a pattern of underpricing under the low and
equd initial conditiona variance stuations. The low and equal initial conditional variance Stuations are
of course more common place than the high initial conditiona variance Situation.

We should, however, note that while the unit risk premium affects the direction of the BS mode
bias, the GARCH (1,1) process pergstence level is more important in determining the size of the bias.
The immediate impact parameter, a, on the other hand plays an important role in determining the

composition of the biasin most cases.
F.3 Option-like stuations

Option vauation modes are often used to gain indghts into other economic Stuations that are

option-like. Our smulation results have some important implications in this regard.
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First, equity in a levered firm can be viewed as a call option on the assets of the firm (Black and
Scholes (1973)). For solvent firms, which is the typical stuation, value of the assets exceeds the debt
obligations and as such the equity interest would be an in-the-money cdl option. Our results suggest
that if the asset vaue is heteroskedastic and follows a GARCH(1,1) process, the congtant volatility
Black-Scholes model can ill be relied upon to estimate the option-theoretic value of equity in a
levered firm.

Second, for firmswhich are in anear bankruptcy Stuation, i.e., the market value of the assetsis not
nearly enough to cover the debt obligations and the debt payment date is close, the equity can be
viewed as a deep-out-of-the-money option with a very short time to expiration. Since Stuations like
this are often characterized by a sharp and sustained increase in volatility of asset vadue (e.g., red edtate
and resource-based companies, financid inditutions lending to real estate and resource-based
companies, firms with sgnificant business interests in locations experiencing political instability, etc.),
volatility models such as the GARCH (1,1) specification may be appropriate. Consequently, as
indicated by our results, the use of a constant volatility Black-Scholes model may lead to serious errors
(underpricing) in estimating the equity value. In the absence of taxes and other market imperfections,
this would also mean errors (overpricing) in estimating the debt vaue. Practitioners should thus
exercise caution in using the Black-Scholes model with a constant volatility to estimate the value of
risky debt or to assess the implied political risk in the case of sovereign debt.

Third, depost insurance obtained by a financid ingtitution can be viewed as a put option (Merton
(1977,1978)) onits assets. Obvioudy, on the basis of our results and the put-call parity relationship, the
insurance will be mispriced if the insurer uses the Black-Scholes model with a congtant volatility to
determine the premium when the value of assets follow a GARCH (1,1) process. For solvent financia
ingtitutions, the put option would be deep-out-of-the-money and the mispricing would be modest.
However, when the financia ingtitution is near bankruptcy, the put option is deep-in-the-money with a
short maturity (the next audit date is close) and use of the Black-Scholes model with a constant
volatility will lead to asignificant mispricing (undervaluation) of the deposit insurance.

V. Summary



In this paper, we sudy the behaviour of European stock option prices when the stock returns follow a
GARCH (1,1) process. The appropriate theoretical price of an option in this case is provided by Duan's
(1995) GARCH option pricing modd. Since the termina stock price distribution does not conform to
known functional forms, the GARCH option price is caculated usng smulations and is thus subject to
sampling error.

The GARCH option price is afunction of the initia conditiona variance, the unit risk premium on
the stock, and the GARCH process parameters. Our smulation results for a variety of option valuation
Stuations suggest that the GARCH option price is not, in generd, very senstive to the level of initia
conditional variance. The leve of variance persstence appears more consequentia for the GARCH
option price. This is especidly so for out-of-the-money options maturing in 90 days or earlier. For
these options, the standard error of the smulated GARCH price is dso relatively high. Researchers
and practitioners should thus strive for accurate estimates of gin implementing Duan's GARCH option
vauation modd for the out-of-the-money short maturity options.

The magnitude of the Black-Scholes (BS) mode bias is the largest in percentage terms (often
exceeding 14 percent) for the deep-out-of-the-money options maturing in 30 days or earlier. For other
options, the absolute percentage biasis under 4 percent on average. In fact, the BS model absolute bias
is less than the standard error of the smulated GARCH price in about 11 percent of the cases that we
have consdered. These cases are typicdly the ones with low to moderatea; and | vaues and options
meaturing in 180 days or later.

We have dso tried two modifications to the BS modd. The first one, modified BS, inserts the
unconditional stock return variance under Duan's localy risk-neutral price measure into the BS
formula. The second one, Pseudo-GARCH, uses the average expected conditiona variance (under
Duan's measure Q) in the BS formula. Our simulation results suggest that the two modified formulas
do not in generd result in any materiad improvement over the BS model. However, in the commonly
found nearly integrated variance dgtuations, the Pseudo-GARCH formula offers dgnificant
improvement over the BSmodd. At-the-money options with maturity more than a month are the most
actively traded options. For these options, the Pseudo-GARCH formula’'s error is about 2 percent or

lessfor socks with nearly integrated variance process.
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Duan (1995) suggested that the GARCH option valuation model helps explain some of the well-
known empirica biases of the Black-Scholes model. An important benefit of the two new formulas
conddered in this paper (MBS and PGARCH) is that they dlow a rough breakdown of the GARCH
option valuation effect (difference between BS and GARCH) into three components: the effect of
change in the unconditional variance under Duan's locally risk-neutral measure (BS - MBYS) or the u.v.
bias, the effect of the conditiona nature of the variance process (MBS - PGARCH) or the c.v. bias,
and the nonlinear and path-dependent nature of GARCH option pricing (PGARCH - GARCH) or the
p.d. bias. Our smulation results indicate that the three components of the BS model bias are not
aways of the same dgn. Their relative importance (magnitude) aso varies across different option
vauation stuations. The interaction of these factors leads to the determination of the direction of the
BS modd bias in a given option vauation Stuation. These include the “smile effect”, the conflicting
griking price biases (Black (1975), MacBeth and Merville (1979), and Rubinstein (1985)), and the
genera overpricing or underpricing bias (Black (1975)).

Additionaly, we discuss implications of GARCH effect in some option-like Stuations, e.g., equity

of alevered firm, claims on firms nearing bankruptcy, and deposit insurance.
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Table 1
The Behavi our of GARCH European Call Option Prices (GARCH) and the Associated
Simulation Standard Error as a Percentage of the Price (GARCHPSR)®

(I'nitial Standard Devi ation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithmc Stock

Ret urns) :
0.75 1.00 1.25
Mean Mean Mean Mean Mean Mean
N GARCH GARCHPSR GARCH GARCHPSR GARCH GARCHPSR

Al | 175 9.878 0.636 9.942 0.569 10. 021 0.54
S/ X=0. 8 35 1.560 2.364 1.587 2.090 1.624 1.949
S/ X=0.9 35 3.528 0.508 3.591 0.444 3.670 0.431
S/ X=1.0 35 7.512 0.167 7.617 0.165 7.743 0.171
S/ X=1.1 35 14.230 0.087 14.306 0.087 14. 402 0.091
S/ X=1.2 35 22.559 0.056 22.607 0.057 22.668 0.059
T= 30 Days 35 6.622 1.931 6.689 1.649 6.772 1.529

= 90 Days 35 7.611 0.492 7.688 0.451 7.785 0.430
T=180 Days 35 8.977 0.300 9.048 0.290 9.137 0.287
T=360 Days 35 11.290 0.238 11.349 0.236 11.422 0.236
T=720 Days 35 14.889 0.218 14.935 0.218 14.991 0.218
| =0.01 25 9.983 0.538 10.017 0.510 10. 061 O0.484
| =0.10 125 9.837 0.668 9.913 0.583 10. 007 0.553

| =0.20 25 9.974 0.572 10. 009 0.555 10.055 0.534

a;=0. 050 25 10.007 0.206 10. 027 0.169 10. 053 0.234
a;=0.175 125 9.904 0.635 9.968 0.572 10. 048 0.535
a;=0. 300 25 9.620 1.072 9.727 0.953 9.859 0.871
b;=0. 50 25 10.002 0.427 10. 020 0.423 10. 044 0.428
b;=0. 65 125 9.913 0.587 9.959 0.542 10.017 0.524
b;=0. 80 25 9.578 1.089 9.776 0.850 10.020 0.731
ai+by:
0.675,0. 700 50 10.000 0.316 10.020 O0.296 10. 050 0.331
0. 825 75 9.979 0.553 10.014 0.529 10. 058 0.506
0. 950, 0. 975 50 9.600 1.080 9.750 0.901 9.940 0.801

(a) When conparing prices for the alternative levels of a given GARCH process
or preference paranmeter (say, |), the middle values for the other such

paraneters (a;=0.175, b;=0.65) are assumed. Thus the nunber of cases (N)
corresponding to the mddle value of any of these paraneters is high (125).



Table 2
The Bl ack-Schol es Prices (BS) Conpared to GARCH Prices (G for European
Cal | Options'®

(I'nitial Standard Devi ation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1.00 1.25

_ N Mean St dev Mean St dev Mean
St dev
A Al cases

BS- G 175 0.067 0.154 0.003 0.107 -0.077 0.114
| BS-g§ 175 0.096  0.137 0.065 0.085 0.095 0.099
100*| BS-§ /G 175 5.628 13.556 4.398 14. 236 6.426 16.887
B. Deep- out - of -t he- noney ( S/ X=0. 8)

BS- G 35 0.034 0.085 0.007 0.065 -0.030 0.063
| BS-g§ 35 0.046 0.079 0.032  0.057 0.044 0.054
100*| BS-§ /G 35 14.380 23.908 16. 507 28.509 21.256 31.318

C. Near-out-of-the-noney (S/X=0.9)

BS- G 35 0.101  0.155 0.038 0.110 -0.041 0.094
| BS-g§ 35 0.113 0.146 0.064  0.097 0.074 0.071
100*| BS-§ /G 35 8.996 13.617 3.257 5.105 7.364 12.570
D. At-the-noney (S/X=1.0)

BS- G 35 0.160 0.219 0.055 0.133 -0.071 0.118
| BS-g§ 35 0.181 0.201 0.091 0.110 0.105 0.089
100*|BS-§ /G 35 3.919 5.784 1. 456 1.916 1.973 2.384
E. Near-in-the-noney (S/ X=1.1)

BS- G 35 0.056 0.132 -0.021 0.093 -0.117 0.122
| BS-g§ 35 0.092 0.109 0.064 0.069 0.128 0.110
100*|BS-g /G 35 0.637 0.738 0.450 0.441 0.971  0.922
F. Deep-in-the-noney (S/ X=1.2)

BS- G 35 -0.017 0.075 -0.064 0.081 -0.126 0.129
| BS-g§ 35 0.048 0.059 0.072 0.074 0.127  0.128
100*| BS-§ /G 35 0.206 0.234 0.322 0.325 0.566 0.575

G T = 30 Days

BS- G 35 0. . . 0. . 0.
| BS- g 35 0. 063 0.120 0.035 0.044 0. 097 0. 100
100*|BS-§ /G 35 17. 8 1

H T = 90 Days

BS- G 35 0. 067 0.151 -0.011 0. 090 -0. 107 0.116
| BS- g 35 0. 089 0. 139 0.054 0.073 0.109 0.114
100*|BS-§ /G 35 4.618 8. 043 3. 495 8. 545 6.252 12.436
I. T = 180 Days

BS- G 35 0. 076 0. 161 0.005 0.109 -0.084 0.111
| BS- g 35 0. 097 0. 149 0.064  0.087 0.098 0.098
100*|BS-§ /G 35 2.911 4.974 1.272 2.208 2. 253 3.532



| BS-G§ 35 0.110 0.141  0.079 0.094  0.089 0.086
100*|BS-G/G 35  1.919 3.223  1.187 1

K. T = 720 Days

BS- G 35 0. 066 0.171 0.021 0. 141 -0. 036 0.123
| BS- g 35 0.122 0. 135 0. 093 0. 106 0. 083 0. 096
100*| BS-g /G 35 1.227 1.822 0.911 1. 347 0. 706 0.977




Tabl e 2 (Conti nued)
The Bl ack-Schol es Prices (BS) Conpared to GARCH Prices (G for European
Call Options

(I'nitial Standard Deviation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1.00 1.25

_ N Mean St dev Mean St dev Mean
St dev
L. 1=0.01

BS- G 25 0. 043 0. 036 0. 009 0. 019 -0.034 0. 028
| BS- g 25 0. 044 0. 034 0.018 0.012 0. 036 0. 026
100*|BS-G /G 25 3.967 12.852 3.855 14.750 5.609 16.849
M |=0.10

BS- G 125 0. 099 0. 162 0.023 0. 109 -0.071 0.123
| BS- g 125 0. 108 0. 156 0. 066 0. 089 0. 096 0. 104
100*|BS-G /G 125 6.314 14.408 4.667 14.634 6.638 17.395
N. 1=0.20

BS- G 25 -0. 070 0. 092 -0.106 0. 085 -0.151 0. 085
| BS- g 25 0. 088 0. 075 0. 106 0. 085 0. 151 0. 085
100*|BS-G /G 25 3. 858 9.278 3.596 11.996 6.183 14.805
P. a;=0. 050

BS- G 25 0. 015 0. 016 -0. 005 0. 007 -0.031 0.018
| BS- g 25 0. 015 0. 016 0. 006 0. 006 0.031 0.018
100*|BS-G /G 25 1. 257 2.522 0. 790 3.624 2.763 7.745
Q a:=0.175

BS- G 125 0. 046 0. 140 -0.018 0. 086 -0.098 0. 105
| BS- g 125 0. 083 0.122 0. 055 0. 068 0. 099 0. 104
100*|BS-G /G 125 5.330 13.287 4.153 14.130 6.500 16.960
R a;=0.300

BS- G 25 0.221 0.198 0. 115 0.172 -0.017 0. 167
| BS- g 25 0. 241 0.172 0.172 0.111 0. 143 0. 084
100*|BS-G /G 25 11.488 18.914 9.231 19.657 9.718 22.273
S. bi=0.50

BS- G 25 0. 009 0. 022 -0. 010 0.014 -0.033 0. 019
| BS- g 25 0.016 0.017 0.013 0.012 0. 033 0. 019
100*|BS-G /G 25 2.501 7.902 2.145 9. 657 3.554 11.918
T. b1:O. 65

BS- G 125 0. 045 0.138 -0.001 0.111 -0. 059 0. 098
| BS- g 125 0. 084 0. 119 0. 065 0. 090 0. 084 0.077
100*|BS-G /G 125 4,878 12.437 4,127 13.749 5.909 16.057
U. b;=0.80

BS- G 25 0. 232 0.193 0. 034 0.134 -0. 210 0. 147
| BS- g 25 0. 238 0. 185 0. 116 0.071 0.212 0. 145
100*|BS-G /G 25 12. 500 20.208 8.007 19.497 11.884 23.501




Tabl e 2 (Conti nued)
The Bl ack-Schol es Prices (BS) Conpared to GARCH Prices (G for European
Call Options

(I'nitial Standard Deviation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithmc Stock

Ret urns) :
0.75 1.00 1.25

_ N Mean St dev Mean St dev Mean
St dev
V. ai;+b;=0. 675, 0. 700

BS- G 50 0.012  0.019 -0.007 0.011 -0.032 0.018
| BS-g§ 50 0.016 0.016 0.009 0.010 0.032 0.018
100*|BS-§ /G 50 1.879 5. 839 1.470 7.250 3.160 9.960
W ai+b;=0. 825

BS- G 75 -0.004 0.078 -0.038 0.072 -0.082 0.074
| BS-g§ 75 0.054 0.056 0.049 0.064 0.083 0.073
100*| BS-§ /G 75 3.880 11.000 3.540 13.200 5.690 15.600
X. ap+b;=0. 950, 0. 975

BS- G 50 0.227 0.194 0.074 0.158 -0.114 0.184
| BS-g§ 50 0.240 0.177 0.144  0.096 0.177  0.122
100*|BS-§ /G 50 11.990 19.380 8.620 19.390 10. 080 22.690

(a) When conparing prices for the alternative levels of a given GARCH process
or preference parameter (say, |), the middle values for the other such

paraneters (a;=0.175, b;=0.65) are assumed. Thus the nunber of cases (N)
corresponding to the mddle value of any of these paraneters is high (125).



Table 3

The Bias of the Bl ack-Schol es Mddel (BS - GARCH) Under Low, Equal and High
Initial Conditional Variance for Options Maturing in 180 Days and the Mddle
Val ues of the GARCH Process Sl ope Paranmeters [Measure Q Unconditi onal

Vol atility (s)=0.25; Initial Conditional Voaltility (Chi)=0.75s (low), s
(equal), 1.25s (high)]

Initial Conditional Variance:
Low Equal Hi gh ai b1 I T S/ X

0.011 -0.007 -0.031 0.175 0. 65 0.01 180 0.8
0. 052 0.013 -0.036 0. 175 0. 65 0.01 180 0.9
0. 073 0.024 -0.038 0.175 0. 65 0.01 180 1.0
0. 053 0.010 -0.047 0. 175 0. 65 0.01 180 1.1
0.020 -0.011 -0.051 0.175 0. 65 0.01 180 1.2
0. 022 0.004 -0.020 0. 175 0. 65 0.10 180 0.8
0. 050 0.011 -0.038 0. 175 0. 65 0.10 180 0.9
0.043 -0.006 -0.069 0. 175 0. 65 0.10 180 1.0
0.005 -0.039 -0.096 0. 175 0. 65 0.10 180 1.1
-0.029 -0.060 -0.101 0.175 0. 65 0.10 180 1.2
0.009 -0.009 -0.033 0.175 0. 65 0.20 180 0.8
-0.001 -0.041 -0.092 0.175 0. 65 0.20 180 0.9
-0.053 -0.103 -0.168 0.175 0. 65 0.20 180 1.0
-0.107 -0.153 -0.211 0.175 0. 65 0.20 180 1.1
-0.127 -0.159 -0.201 0. 175 0. 65 0. 20 180 1.2




Table 4

The Three conponents of the GARCH Option Valuation Effect: the Unconditiona
Variance (U.V.) Bias (BS-MBS), the Conditional Variance (C.V.) Bias (MS-
PGARCH), and the Path Dependence (P.D.) Bias (PGARCH GARCH)®

(I'nitial Standard Devi ation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1.00 1.25

a N Mean  Mean Mean  Mean Mean  Mean
Bias PROP'® Bias PROP Bias PROP

A. Al Cases
U V. Bias 175 -0.083 26.881 -0.083 41.172 -0.083 25.311
C. V. Bias 175 0.064 35.945 0.000 0.000 -0.081 40.735
P.D. Bias 175 0.085 37.174 0.085 58.828 0.087 33.955
B. Deep- out - of -t he- noney ( S/ X=0. 8)
U V. Bias 35 -0.053 24.075 -0.053 35.907 -0.053 23.145
C. V. Bias 35 0.028 30.888 0.000 0.000 -0.037 36.586
P.D. Bias 35 0.059 45.037 0.060 64.093 0.061 40. 269
C. Near-out-of-the-noney (S/X=0.9)
U V. Bias 35 -0.084 24.770 -0.084 44.436 -0.084 24.628
C. V. Bias 35 0.065 37.644 0.000 0.000 -0.084 45.280
P.D. Bias 35 0.120 37.586 0.122 55.564 0.126 30.092
D. At-the-noney (S/X=1.0)
U V. Bias 35 -0.105 26.536 -0.105 42.532 -0.105 27.030
C. V. Bias 35 0.106 35.992 0.000 0.000 -0.128 45.753
P.D. Bias 35 0.159 37.472 0.160 57.468 0.162 27.217
E. Near-in-the-noney (S/ X=1.1)
U V. Bias 35 -0.095 31.501 -0.095 46.365 -0.095 27.172
C. V. Bias 35 0.076 43.588 0.000 0.000 -0.098 43.666
P.D. Bias 35 0.074 24.911 0.074 53.635 0.076 29.162
F. Deep-in-the-noney (S/ X=1.2)
U V. Bias 35 -0.076 27.521 -0.076 36.621 -0.076 24.578
C. V. Bias 35 0.044 31.613 0.000 0.000 -0.059 32.388
P.D. Bias 35 0.014 40.866 0.012 63.379 0.009 43.034
G T =30 Days
U V. Bias 35 -0.014 8.591 -0.014 23.000 -0.014 6.632
C. V. Bias 35 0.061 46.174 0.000 0.000 -0.078 47.717
P.D. Bias 35 0.006 45.234 0.000 77.000 -0.005 45.650
H T = 90 Days
U V. Bias 35 -0.040 19.465 -0.040 37.476 -0.040 17.288
C. V. Bias 35 0.079 47.384 0.000 0.000 -0.101 52.790
P.D. Bias 35 0.027 33.150 0.029 62.524 0.034 29.922



J. T = 360 Days

U V. Bias 35 -0.115 36.684 -0.115 50. 349 -0.115 34.461
C. V. Bias 35 0.060 29.352 0.000 0.000 -0.076 34.974
P.D. Bias 35 0.127 33.965 0.128 49.651 0.130 30.565
K. T = 720 Days

U V. Bias 35 -0.173 41.039 -0.173 49.220 -0.173 42.139
C. V. Bias 35 0.045 16.814 0.000 0.000 -0.058 22.790
P.D. Bias 35 0.194 42.147 0.194 50.780 0.195 35.072




Tabl e 4 (Conti nued)

The Three conponents of the GARCH Option Valuation Effect: the Unconditional
Variance (U.V.) Bias (BS-MBS), the Conditional Variance (C.V.) Bias (MS-
PGARCH), and the Path Dependence (P.D.) Bias (PGARCH GARCH)®

(I'nitial Standard Devi ation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1. 00 1. 25

- N Mean  Mean Mean  Mean Mean  Mean

Bias PROPY® Bias PROP Bias PROP
L. 1=0.01
U. V. Bias 25 0.000 0.635 0.000 2.909 0.000 0.621
C. V. Bias 25 0.029 56.046 0.000 0.000 -0.037 65.177
P.D. Bias 25 0.015 43.319 0.010 97.091 0.003 34.202
M 1=0.10
U. V. Bias 125 -0.091 26.963 -0.091 44.416 -0.091 25.161
C. V. Bias 125 0.078 35. 436 0.000 0.000 -0.099 39.577
P.D. Bias 125 0.112 37.602 0.114 55.584 0.119 35.262
N. 1=0.20
U. V. Bias 25  -0.123 52.718 -0.123 63.217 -0.123 50.750
C. V. Bias 25 0.030 18.389 0.000 0.000 -0.039 22.080
P.D. Bias 25 0.023 28.893 0.018 36.783 0.011 27.170
P. a1=0. 050
U. V. Bias 25 -0.005 17.993 -0.005 45.064 -0.005 17.178
C. V. Bias 25 0.014 52.379 0.000 0.000 -0.018 55.317
P.D. Bias 25 0.006 29.629 0.000 54.936 -0.007 27.505
Q a;=0.175
U V. Bias 125 -0.077 28.668 -0.077 41.391 -0.077 27.164
C. V. Bias 125 0.063 34.980 0.000 0.000 -0.080 40.430
P.D. Bias 125 0.060 36. 353 0.060 58.609 0.060 32.406
R a;=0. 300
U. V. Bias 25 -0.185 26.834 -0.185 36.186 -0.185 24.177
C. V. Bias 25 0.116 24.336 0.000 0.000 -0.148 27.677
P.D. Bias 25 0.291 48.830 0.300 63.814 0.316 48.146
S. b:=0. 50
U V. Bias 25 -0.016 31.347 -0.016 48.196 -0.016 31.542
C. V. Bias 25 0.013 28.961 0.000 0.000 -0.016 35.970
P.D. Bias 25 0.013 39.692 0.007 51.804 0.000 32.488
T b1:O. 65
U. V. Bias 125 -0.069 25.878 -0.069 39.505 -0.069 24.453
C. V. Bias 125 0.044 37.163 0.000 0.000 -0.056 41.931
P.D. Bias 125 0.071 36. 960 0.068 60. 495 0.066 33.616
U bi=0. 80






Tabl e 4 (Conti nued)

The Three conponents of the GARCH Option Valuation Effect: the Unconditional
Variance (U.V.) Bias (BS-MBS), the Conditional Variance (C.V.) Bias (MS-
PGARCH), and the Path Dependence (P.D.) Bias (PGARCH GARCH)®

(I'nitial Standard Devi ation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1.00 1.25

B N Mean  Mean Mean  Mean Mean  Mean

Bias PROP(® Bias PROP Bias PROP
V. ai+b;=0. 0. 675, 0. 700
U. V. Bias 50 -0.011 24. 67 -0.011 46.63 -0.011 24.36
C.V. Bias 50 0.014 40. 67 0. 000 0. 00 -0.017 45.64
P.D. Bias 50 0. 009 34. 66 0.004 53.37 -0.004 30.00
W ai+b;=0. 825
U. V. Bias 75 -0.051 28.19 -0.051 38.76 -0.051 26.97
C.V. Bias 75 0. 029 36. 37 0. 000 0. 00 -0.038 42.22
P.D. Bias 75 0. 019 35. 45 0.013 61.24 0.007 30.81
X. ap+bi=0. 950, 0. 975
U. V. Bias 50 -0.201 27.13 -0.201 39.34 -0.201 23.77
C.V. Bias 50 0. 166 30.59 0. 000 0. 00 -0.211 33.60
P.D. Bias 50 0. 261 42.28 0.276 60.66 0.298 42.63

(a) For a given option valuation situation, we first take the absolute val ue
of each of the three biases, sumthese absol ute values, and then express each
absolute value as a percentage of the sumto arrive at the PROP figure. PROP
for a bias is thus an estimate of the relative inportance of the magnitude of
that bias in determning the overall or net GARCH option valuation effect,

BS- GARCH



Table 5

The Bl ack- Schol es Mddel Bias (BS-GARCH), U.V. Bias (BS-MBS), C.V. Bias (MS-
PGARCH), P.D. Bias (PGARCH GARCH), and Respective Percentage Proportion
(PROP) for At-the-Mney (S/X=1.0) Options Under Low and High Initial

Condi ti onal Variance [Measure Q Unconditional Volatility (s)=0.25; Initial
Conditional Volatility (Ch;)=0.75s (low), 1.25s (high)]

U V. C. V. P. D. BS- ai b1 I T U V. C. V. P. D.
Bi as Bi as Bi as GARCH (Days) Bi as Bi as Bi as
PROP(® PROP  PROP

A. Low Variance Situation

-0.014 0. 102 0.067 0.154 0.175 0.65 0.10 30 7.89 55.64 36.47
-0. 025 0. 058 0.045 0.078 0.175 0.65 0.10 90 19.51 45.45 35.03
-0. 035 0. 041 0.038 0.043 0.175 0.65 0.10 180 30.93 35.85 33.22
-0. 050 0. 029 0.035 0.014 0.175 0.65 0.10 360 43.94 25.46 30.59
-0. 070 0. 020 0.049 -0.001 0.175 0.65 0.10 720 50.18 14.49 35.33

B. High Variance Situation

-0.014 -0.126 0.030 -0.111 0.175 0.65 0.10 30 8.50 74.10 17.40
-0. 025 -0.074 0.021 -0.078 0.175 0.65 0.10 90 20.85 61.73 17.42
-0. 035 -0. 052 0.019 -0.069 0.175 0.65 0.10 180 33.15 49.15 17.70
-0. 050 -0. 037 0.022 -0.064 0.175 0.65 0.10 360 45.72 33.86 20.42
-0. 070 -0. 026 0.041 -0.054 0.175 0.65 0.10 720 50.91 18.95 30.14

(a) For a given option valuation situation, we first take the absolute val ue
of each of the three biases, sumthese absolute values, and then express each
absol ute value as a percentage of the sumto arrive at the PROP figure. PROP
for a bias is thus an estimate of the relative inportance of the magnitude of
that bias in determning the overall or net GARCH option valuation effect,

BS- GARCH.



Table 6

Absol ute Percentage Bias of Bl ack-Scholes (BS), Pseudo- GARCH ( PGARCH), and
Modi fi ed Bl ack- Schol es (MBS) Model s, and Sinulation Standard Error (as a
Percentage of the Price) of GARCH Option pricing Mde

(I'nitial Standard Deviation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1.00 1.25

N Mean St dev Mean St dev Mean St dev
A. Al Cases
BS 175 5.628 13.556 4.398 14.236 6.426 16.887
MBS 175 7.148 14.740 5.040 13.551 5.931 16.023
PGARCH 175 5.533 14.595 5.040 13.551 4.792 12.547
GARCH 175 0. 636 1.729 0.569 1.477 0. 540 1.342
B. Deep-out-of-the-nmoney (S/X=0.8)
BS 35 14.380 23.908 16. 507 28.509 21.256 31.318
MBS 35 16. 158 21.615 17. 244 26. 265 19.933 30.244
PGARCH 35 18.628 28.239 17. 244 26. 265 16. 021 24.145
GARCH 35 2.364 3.315 2.090 2.809 1.949 2.531
C. Near-out-of-the-noney (S/X=0.9)
BS 35 8.996 13.617 3. 257 5.105 7.364 12.570
MBS 35 13.031 19.543 4.533 5. 854 6. 704 10.747
PGARCH 35 5.575 6. 527 4.533 5. 854 4. 456 5. 960
GARCH 35 0.508 0.559 0.444  0.424 0.431 0.375
D. At-the-noney (S/X=1.0
BS 35 3.919 5.784 1. 456 1.916 1.973 2.384
MBS 35 5.215 7.108 2. 486 3.334 1.793 2.098
PGARCH 35 2.593 3. 156 2. 486 3.334 2.443 3.552
GARCH 35 0. 167 0.113 0. 165 0.116 0.171 0.117
E. Near-in-the-noney (S/ X=1.1)
BS 35 0.637 0.738 0.450 0.441 0.971 0.922
MBS 35 1.023 1.468 0.647 0.994 0.809 0.845
PGARCH 35 0.597 0.977 0.647 0.994 0.719 1.030
GARCH 35 0.087 0.078 0.087 0.079 0.091 0.080
F. Deep-in-the-noney (S/ X=1.2)
BS 35 0.206 0.234 0.322 0.325 0.566  0.575
MBS 35 0.315 0.577 0.292 0.433 0.418 0.454
PGARCH 35 0.271 0.425 0.292 0.433 0.321 0.446
GARCH 35 0.056  0.059 0.057 0.060 0.059 0.061
G T = 30 Days
BS 35 17.462 25.504 15.126 28.309 21.840 31.055
MBS 35 18. 468 26.419 14.130 27.050 20.418 30.176

PGARCH 35 15.953 28.751 14.130 27.050 13.296 24.935
GARCH 35 1.931 3.453  1.649 2.945  1.529  2.665

4.618 8. 043 3. 495 8. 545 6.252 12.436
MBS 35 6.351 10.748 3. 887 6. 806 4.723 10.237
PGARCH 35 4.519 8. 281 3. 887 6. 806 3.435 5. 752
GARCH 35 0. 492 0.908 0. 451 0. 805 0.430 0.728
I. T = 180 Days
BS 35 2.911 4.974 1.272 2.208 2. 253 3.532
MBS 35 5.071 8. 568 2.768 4.756 1. 540 2. 361
PGARCH 35 2.730 4.555 2.768 4.756 2.837 5. 032
GARCH 35 0.300 0.467 0.290 0.441 0. 287 0. 419
J. T = 360 Days
BS 35 1.919 3.223 1.187 1.891 1.080 1.106
MBS 35 3.434 5. 956 2.444 4,437 1.519 2.790
PGARCH 35 2.470 4.426 2.444 4,437 2.437 4.474
GARCH 35 0.238 0.286 0. 236 0. 280 0. 236 0. 275



Table 6 (Continued)

Absol ute Percentage Bias of Bl ack-Scholes (BS), Pseudo- GARCH ( PGARCH), and
Modi fi ed Bl ack- Schol es (MBS) Model s, and Sinulation Standard Error (as a
Percentage of the Price) of Duan's (1995) GARCH Option pricing Mde

(I'nitial Standard Deviation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1.00 1.25

N Mean St dev Mean St dev Mean St dev
K. T = 720 Days
BS 35 1.227 1.822 0.911 1. 347 0. 706 0.977
MBS 35 2.419 3.910 1.973 3. 330 1. 456 2.656
PGARCH 35 1.993 3.334 1.973 3. 330 1.954 3.341
GARCH 35 0.218 0. 201 0.218 0. 201 0.218 0. 200
L. | =0.01
BS 25 3.967 12.852 3.855 14.750 5.609 16. 849
MBS 25 3.972 12.851 3.858 14.750 5. 605 16.850
PGARCH 25 4.028 15.609 3.858 14.750 3.797 14.217
GARCH 25 0.538 1.639 0.510 1.542 0. 484 1.411
M | =0.10
BS 125 6.314 14.408 4.667 14.634 6.638 17.395
MBS 125 8.229 15.946 5.515 13.979 6.396 16.411
PGARCH 125 6. 067 15.041 5.515 13.979 5.275 12.849
GARCH 125 0. 668 1.746 0. 583 1.415 0. 553 1. 267
N. | =0.20
BS 25 3. 858 9.278 3.596 11.996 6.183 14.805
MBS 25 4.924 8. 635 3.849 10.000 3.933 13.433
PGARCH 25 4,368 11.254 3.849 10.000 3.375 9. 045
GARCH 25 0.572 1.792 0. 555 1.760 0.534 1. 660
P. a; = 0.050
BS 25 1. 257 2.522 0.790 3.624 2.763 7.745
MBS 25 1. 370 2.598 0. 841 3.615 2.654 7.744
PGARCH 25 1.094 3.527 0. 841 3.615 1.111 4,131
GARCH 25 0. 206 0.742 0. 169 0.613 0.234 0. 887
Q ai = 0.175
BS 125 5.330 13.287 4,153 14.130 6.500 16.960
MBS 125 6.758 14.502 4.616 13.300 5.629 16.115
PGARCH 125 5.104 14. 496 4.616 13.300 4,338 12.262
GARCH 125 0. 635 1.803 0.572 1.562 0.535 1.413
R a; = 0.300
BS 25 11.488 18.914 9.231 19.657 9.718 22.273
MBS 25 14.879 19.594 11.360 18.531 10.720 20.591

PGARCH 25 12. 117 19.484 11. 360 18.531 10. 742 17.184
GARCH 25 1.072 1.981 0. 953 1.590 0.871 1.316

S. b1 = 0.50

BS 25 2.501 7.902 2.145 9. 657 3.554 11.918
MBS 25 2.711 7.231 2.183 9. 023 3.180 11.459
PGARCH 25 2. 487 9. 190 2.183 9. 023 2. 252 9. 473
GARCH 25 0. 427 1. 370 0. 423 1.376 0. 428 1.397
T. b1 = 0.65

BS 125 4.878 12.437 4.127 13.749 5.909 16.057
MBS 125 5.906 12.866 4.624 13.228 5.521 15.411
PGARCH 125 5.041 14.107 4.624 13.228 4.430 12.465
GARCH 125 0. 587 1.625 0.542 1.479 0.524 1.372
U. b1 = . 80

BS 25 12.500 20.208 8.007 19.497 11.884 23.501
MBS 25 17.797 22.823 9.980 17.635 10. 743 21.682



PGARCH 25 11.039 19.729 9.980 17.635 9.141 14.889
GARCH 25 1.089 2. 424 0. 850 1.589 0.731 1. 146




Table 6 (Continued)

Absol ute Percentage Bias of Bl ack-Scholes (BS), Pseudo- GARCH ( PGARCH), and
Modi fi ed Bl ack- Schol es (MBS) Model s, and Sinulation Standard Error (as a
Percentage of the Price) of Duan's (1995) GARCH Option pricing Mde

(I'nitial Standard Deviation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithm c Stock Returns):

0.75 1.00 1.25
N Mean St dev Mean St dev Mean St dev

V. ai+b;=0. 675, 0. 700

BS 50 1.879 5. 839 1.470 7. 250 3. 160 9. 960
MBS 50 2.041 5.420 1.512 6. 837 2.920 9. 680
PGARCH 50 1.790 6. 925 1.512 6. 837 1.680 7.260
GARCH 50 0. 316 1. 096 0. 296 1.062 0. 331 1.162
W a;+b;=0. 825

BS 75 3.880 11. 000 3.540 13.200 5.690 15.600
MBS 75 4. 430 10. 690 3.640 12.510 4,740 15.120
PGARCH 75 4,000 13. 530 3.640 12.510 3.430 11.870
GARCH 75 0. 553 1.687 0. 529 1.618 0. 506 1. 507
X. ai+b;=0. 950, 0. 975

BS 50 11.990 19. 380 8.620 19.390 10.800 22.690
MBS 50 16.340 21.100 10.670 17.920 10. 730 20.930

PGARCH 50 11.580 19. 410 10. 670 17.920 9.940 15.930
GARCH 50 1.080 2.191 0.901 1.574 0. 801 1.223




Table 7

Bi as Proportion(PROP) and Percentage Error for BS, MBS, and PGARCH, and GARCH
Standard Error as Percentage of GARCH Price (GARCHPSR) when (A) the Option is
an Qut-of-the-noney (S/X=0.8,0.9), Short Maturity (T=30,90 Days) one Vs.

O her Options,(B) the Option is a Deep-out-of-the-noney (S/X=0.8), Shortest
Maturity (T=30 Days) one Vs. Oher Options, and (C) the BS Price is Mre Than
Vs. Less Than 20 Percent Away from the GARCH Price(®

(I'nitial Standard Deviation of Logarithm c Stock Returns)/
(Uncondi tional Standard Deviation of Logarithmc Stock
Ret ur ns) :
0.75 1.0 1.25

A. Qut-of-the- noney(S/ X=0.8,0.9) and Short Maturity(T=30,90 Days), CS, vs.
O her Options (O her)

(03 O her (03] O her (03]
O her
N=28  N=147 N=28 N=147 N=28
N=147
U. V. Bias (BS-MBS) PROP(® 14.085 29.318 36.697 42.024 12.414
27.767

C. V. Bias (MBS-PGARCH) PROP 45. 843 34.059 0. 000 0. 000 51. 314
38. 719
P.D. Bias (PGARCH GARCH) PROP  40.072 36.623 63. 303 57.976 36. 272
33.513

100* | BS- GARCH| / GARCH 23.770 2.172 21. 949 1.055 32.390
ioggﬁwss GARCH| / GARCH 26. 334 3.494 20. 634 2.070 29. 317
iOngPGARCH- GARCH| / GARCH 23. 653 2.081 20. 634 2.070 19. 001
%A:RSZISPSR 2.925 0.200 2.521 0.197 2.335

B. Deep- out - of -t he- noney( S/ X=0. 8) and Shortest Maturity(T=30 Days), DVS, vs.
O her Options (O her)

DVS O her DVS O her DVS
O her
=7 N=168 N=7 N=168 =7
N=168
U V. Bias (BS-MBS) PROP 5.363 27.777 4,805 42.687 2.594
26. 257

C. V. Bias (MBS-PGARCH) PROP  24.202 36.434 0. 000 0. 000 21. 883
41. 520
P.D. Bias (PGARCH GARCH) PROP 70.435 35.789 95.195 57.313 75.522
32. 223

100* | BS- GARCH| / GARCH 54.190 3.604 65.461 1.854  75.288
fbgerBS-GARCHllGARCH 48.561 5.423 62.315 2.654  73.343
fbéffPGARCH-GARCHllGARCH 66.419 2.996 62.315 2.654  58.523
%AEEEPSR 8.310 0.316  7.175 0.293 6. 609

C. BSis nore than (MORE) vs. less than (LESS) 20 percent away from GARCH

MORE LESS MORE  LESS MORE

LESS



N=14 N=161 N= 9 N=166 N=15

N=160

U. V. Bias (BS-MBS) PROP 13.666 28.030 19. 469 42. 349 9. 388
26. 803

C. V. Bias (MBS-PGARCH) PROP  38.320 35.738 0.000 0.000 44.620
40. 370

P.D. Bias (PGARCH GARCH) PROP 48.014 36.232 80. 531 57.651 45. 991
32. 826

100* | BS- GARCH| / GARCH 44,132 2.279 59.135 1.431 54. 611
i089|9|\/BS GARCH| / GARCH 46. 703 3.709 52.227 2.482 50. 009
iogg?PGARCH- GARCH| / GARCH 41. 302 2.422 52.227 2.482 31. 520
%AiRg]gPSR 4.761 0. 277 6.138 0.267 3.937

(a) For a given option valuation situation, we first take the absolute val ue
of each of the three biases, sumthese absol ute values, and then express each
absolute value as a percentage of the sumto arrive at the PROP figure. PROP
for a bias is thus an estimate of the relative inportance of the magnitude of
that bias in determning the overall or net GARCH option valuation effect.



Appendi x A
Anal yses for the Nearly Integrated Variance Case

The table reports the GARCH price (GARCH), sinulation standard error as a
percentage of the GARCH price (GARCHPSR), Bl ack-Schol es nodel m as (BS-
GARCH), absol ute percentage bi ases of the Bl ack-Schol es nodel (BS), the
Mbdi fi ed Bl ack-Schol es fornmula (MBS), the Pseudo- GARCH fornula (PGARCH), the
relative inportance of the unconditional variance (U V.) bias (= BS-MS)
the conditional variance (C.V.) bias ( = MBS-PGARCH), and the path
dependence (P.D.) bias (= PGARCH GARCH) as neasured by the respective bias
proportions®.

GARCH Option Pricing Paraneters are a; = 0.05, b; = 0.94, s = 0.25, and | =

0. 10.

Uuv. CV. P.D TS X GARCH BS- Absol ut e Percent age Bi as:
Bias Bias Bias Price GARCH BS MBS PGARCH GARCHPSR
PROP PROP PROP

A Low Initial Conditional Variance (Chi/s =0.75)

18.52 62.96 18.52 30 0.8 0.001 0.001 116.67 200.00 83.33 20.747
12.93 84.78 2.29 30 0.9 0.072 0.125 174.30 206.70 5.73 2.593
10.16 84.90 4.95 30 1.0 2.234 0.572 25.60 28.87 1.59 0.120
11.69 80.07 8.24 30 1.1 10.138 0.161 1.58 1.89 0.22 0.028
14.29 64.29 21.43 30 1.2 20.006 0.006 0.03 0.04 0.02 0.007
15.93 78.35 5.72 90 0.8 0.065 0.078 120.28 154.07 12.14 3.436
13.46 79.74 6.80 90 0.9 0.786 0.451 57.35 67.91 5.33 0.577
12.72 79.77 7.50 90 1.0 4.119 0.738 17.92 20.98 1.80 0.134
13.91 83.18 2.92 90 1.1 11.115 0.468 4.21 5.09 0.19 0.056
13.44 71.49 15.07 90 1.2 20.246 0.148 0.73 0.96 0.26 0.026
18.92 76.18 4.90 180 0.8 0.476 0.231 48.51 63.27 3.82 1.059
16.66 71.15 12.19 180 0.9 2.137 0.563 26.36 32.94 4.82 0.337
16.68 72.49 10.84 180 1.0 6.154 0.711 11.55 14.44 1.88 0.145
18.70 80.14 1.16 180 1.1 12.742 0.538 4.22 5.48 0.08 0.076
17.15 70.83 12.03 180 1.2 21.128 0.274 1.30 1.83 0.37 0.045
24.35 59.90 15.75 360 0.8 1.803 0.314 17.42 25.69 5.35 0.523
23.40 58.30 18.30 360 0.9 4.561 0.494 10.82 15.58 3.72 0.264
24.06 60.18 15.75 360 1.0 9.157 0.540 5.90 8.64 1.79 0.159
26.31 65.62 8.07 360 1.1 15.507 0.439 2.83 4.41 0.48 0.102
27.34 67.64 5.02 360 1.2 23.227 0.270 1.16 2.06 0.17 0.071
32.62 41.38 26.00 720 0.8 4.496 0.273 6.08 11.79 4.55 0.345
33.25 42.23 24.51 720 0.9 8.271 0.321 3.88 7.74 2.84 0.231
34.81 44.23 20.96 720 1.0 13.373 0.307 2.29 4.92 1.58 0.169
37.08 47.09 15.83 720 1.1 19.656 0.248 1.26 3.07 0.77 1.86
0.27 0.099
B. High Initial Conditional Variance (Chi/s =1.25)
2.56 63.08 34.36 30 0.8 0.021 -0.020 93.75 91.35 32.21 5.225
8.22 89.01 2.76 30 0.9 0.463 -0.267 57.57 52.56 1.69 0.683
9.68 83.78 6.55 30 1.0 3.460 -0.655 18.92 16.81 1.42 0.106
8.07 84.04 7.89 30 1.1 10.685 -0.386 3.62 3.33 0.29 0.038
3.33 58.49 38.18 30 1.2 20.102 -0.090 0.45 0.43 0.17 0.014
9.81 88.89 1.29 90 0.8 0.362 -0.218 60.36 54.28 0.80 1.250
10.70 77.75 11.55 90 0.9 1.833 -0.596 32.54 28.01 4.89 0.353
11.44 78.09 10.48 90 1.0 5.728 -0.871 15.20 13.00 2.01 0.133
12.10 86.90 1.00 90 1.1 12.377 -0.794 6.42 5.62 0.07 0.066
9.07 74.80 16.12 90 1.2 20.904 -0.510 2.44 2.22 0.39 0.039
13.31 73.76 12.93 180 0.8 1.099 -0.392 35.64 29.24 6.22 0.695
13.73 69.80 16.48 180 0.9 3.388 -0.687 20.29 16.13 4.99 0.292
14.35 71.25 14.40 180 1.0 7.748 -0.882 11.39 9.09 2.30 0.152
15.48 78.43 6.09 180 1.1 14.192 -0.912 6.42 5.29 0.45 0.088
14.42 77.09 8.49 180 1.2 22.186 -0.783 3.53 3.02 0.30 0.058
19.43 60.50 20.08 360 0.8 2.576 -0.459 17.82 12.04 5.98 0.464
19.76 59.72 20.52 360 0.9 5.703 -0.648 11.36 7.55 3.95 0.260
20.56 61.61 17.83 360 1.0 10.481 -0.784 7.48 5.09 2.07 O0.168
22.07 66.65 11.28 360 1.1 16.802 -0.856 5.09 3.64 0.74 0.114
24.51 75.36 0.13 360 1.2 24.348 -0.851 3.49 2.64 0.00 0.082
28.49 45.41 26.09 720 0.8 5.200 -0.430 8.28 3.34 4.52 0.336



29.23 46.14 24.62 720 0.9 9. 146 -0.553 6. 05
30.54 48.07 21.39 720 1.0 14.339 -0.659 4. 60
32.28 50.92 16.80 720 1.1 20.635 -0.731 3.54
34.51 54.77 10.73 720 1.2 27.844 -0.765 2.75

2.57
2.14
1.82
1.54

2.94
1.72
0.90
0. 38

0. 233
0. 175
0.136
0. 107

(a) For a given option valuation situation, we first take the absolute val ue
of each of the three biases, sumthese absol ute val ues,

and then express each

absol ute value as a percentage of the sumto arrive at the PROP figure.

for a bias is thus an estimate of the relative inportance of the magnitude of
that bias in determning the overall or net GARCH option valuation effect.



