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A Comparative Study of GARCH (1,1) and Black-Scholes Option Prices

Abstract

This paper examines the behaviour of European option price (Duan (1995)) and the Black-Scholes model

bias when stock returns follow a GARCH (1,1) process. The GARCH option price is not preference-

neutral and depends on the unit risk premium (λ) as well as the two GARCH (1,1) process parameters (α1 ,

β1). In general, the GARCH option price does not seem overly sensitive to these parameters. Deep-out-of-

the-money and short maturity options are an exception. The variance persistence parameter, γ = α1 + β1,

has a material bearing on the magnitude of the Black-Scholes model bias. The risk preference parameter, l,

on the other hand, determines the so called “leverage effect” and can be important in determining the

direction of the Black-Scholes model bias. Consequently, a time varying risk premium (l) may help explain

a general underpricing or overpricing of traded options (Black  (1975)).

Consistent with "volatility smile" and similar to the bias noted by Merton (1976), deep-out-of-the-

money and deep-in-the-money (at-the-money) options with a very short time to expiration are found to be 

underpriced (overpriced) by the Black-Scholes model. The direction of striking price bias for longer

maturities is mostly influenced by GARCH option valuation parameters, a result that could be useful in

resolving conflicting striking price biases observed empirically.

This paper makes a novel attempt to decompose the Black-Scholes model bias into components related

to three important features of GARCH option valuation: level of   the unconditional variance of the locally

risk-neutral return process, relative level of the initial conditional variance,  and path dependence of the

terminal stock price distribution.  An analysis of their behaviour sheds light on the making of the overall

systematic biases mentioned above as well as the time to maturity bias reversal phenomenon (Rubinstein

(1985) and Sheikh (1991)).

One modification to the Black-Scholes model that corrects only the unconditional variance bias does

not improve accuracy enough to justify the additional input requirement. Another modification corrects the

unconditional variance bias and the conditional variance bias, but not the path dependence bias. This latter

modification, which we call the Pseudo-GARCH or PGARCH formula, performs rather well when the

impact of a given period’s variance innovation is low (small α1) but nearly permanent (γ close to 1.0). In

these empirically relevant situations, the Black-Scholes type PGARCH formula offers practical

approximations to the theoretically correct simulated GARCH prices.
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A Comparative Study of GARCH (1,1) and Black-Scholes Option Prices

A key determinant of option value is the variance of the underlying asset. Variance also affects the

sensitivity of option value with respect to the asset price, option's time to maturity, interest rate, and

variance itself. Thus, in principle, an accurate specification of variance could have significant bearings

on the valuation of options, and the calculation of option value sensitivities.

In deriving their seminal European option valuation formula, Black and Scholes (1973) assumed a

normal diffusion process for the stock return with a constant instantaneous variance. If the

instantaneous variance is a deterministic function of time, the average instantaneous variance  over the

life of the option can instead be used in the Black-Scholes formula (Merton (1973)). However, neither

constancy nor a time-deterministic behaviour is supported by empirical studies.1 A type of variance

behaviour which has gained widespread acceptance in the literature is Generalized

Autoregressive Conditional Heteroskedasticity or GARCH (Engle (1982), Bollerslev (1986)).

Using a discrete time equilibrium asset pricing framework (Rubinstein (1976),  Brennan

(1979)), Duan (1995) has recently developed a European stock option valuation model when the

continuously compounded stock returns follow a GARCH process. Duan's model contains the

Black-Scholes model as a special case of homoskedasticity. As shown by Duan (1994a,1994b),

the basic GARCH option pricing framework can be extended or generalized to handle

alternative specifications of conditional variance such as Nelson's (1991) EGARCH, stochastic

interest rates, and the bivariate stochastic variance diffusion cases (Hull and White (1987),

Wiggins (1987), Scott (1987), Stein and Stein (1991),  and Heston (1993)) in the limit.

In this paper we use simulations to examine the comparative behaviour of the Black-Scholes

(BS) and Duan's (1995) GARCH stock option prices. The recently proposed Empirical

Martingale Simulation (EMS) method of Duan and Simonato (1995) is combined with standard

simulation methods to generate the GARCH option prices.  We also propose two modifications

to the Black-Scholes formula and examine their accuracy in tracking the GARCH option price.

One modification, which we shall refer to as the Modified Black-Scholes formula (MBS), uses

the unconditional variance under the locally risk-neutral GARCH process of Duan (1995) in the

Black-Scholes formula. Under the other modification, called the Pseudo-GARCH (PGARCH)

                    
ee, for example, Fama (1965), Black (1976), Merton (1980), Christie (1982), Poterba and  Summers (1986), French, Schwet, and Stambaugh (1987),
 Schwert (1989).
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formula, the expected average conditional variance under the same process is inserted into the

Black-Scholes formula.

Our results show that the GARCH option valuation effect, i.e., the divergence between the

BS and the GARCH option price, varies widely from a negligible magnitude to a substantial

one. The same can be said about the accuracy of the proposed formulas (MBS, PGARCH).

Further, the sampling error associated with the simulated GARCH option price varies with

parameter combination. The results of this study should thus help a researcher or practitioner

in assessing the importance of GARCH in a given option valuation situation and in selecting the

BS, MBS, or PGARCH as an approximation if desired.

In some early works following the Black-Scholes model, heteroskedasticity was incorporated

in the form of stock-price-dependent  variance (Cox and Ross (1976)),  jumps in the stock price

which otherwise follows a lognormal diffusion process (Merton (1976)), and dependence of the

stock return variance on leverage (Geske (1979) or asset structure (Rubinstein (1983)). More

recently, heteroskedasticity of the optioned asset's returns and its effect on option valuation

have been the primary focus in a number of papers where the asset return variance  is modelled

as a separate stochastic variable from the asset return. A majority of these works assume a

bivariate diffusion model.2  In a similar vein, Madan and Seneta (1990) assume a gamma

distribution for asset return variance.  All models are in continuous form.

Modelling heteroskedasticity has several notable implications for option valuation in theory

as well as in practice. First, even in the limit (continuous time), Black-Scholes type preference-

free option valuation no longer prevails; an equilibrium asset pricing relationship is needed to

determine an unique option value.

Second, the unconditional distribution of asset return is no longer lognormal even when the

conditional distribution is lognormal. In most cases, the unconditional asset return distribution

is either quite intricate or analytically intractable. Thus a series approximation or the use of a

Monte Carlo simulation method is usually required to calculate the option value. These

methods are certainly computationally more involved than using a Black-Scholes type formula.

Further, the simulated option price is subject to sampling error and the series approximation

                    
See Hull and White (1987, 1988a,1988b), Johnson and Shanno (1987), Wiggins (1987),  Heston (1993), Melino and Turnbull (1990), Scott (1987),
sney and Scott (1989), Finucane (1989), and Stein and Stein (1991).  A stochastic volatility framework has been closely examined  by Lee, Lee, and
 (1991), Finucane (1994), and Hull and White (1993).
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method also leads to approximation error even when the series is convergent.3 Similar

comments also apply to calculation of the hedge ratio and other option value sensitivities such

as the theta or the gamma.

Third,  for bivariate diffusion models, parameter estimation could be a challenging task  as

the asset return variance is not directly observable. While the GARCH parameters can be

estimated using historical returns, an additional assumption needs to be made about parameter

stability and sometimes estimation may not converge (Figlewski (1994)).

Fourth, it is not clear how a practitioner could imply volatility expectations by the market

from the observed option prices. Even if it was possible to invert a theoretical option valuation

model that incorporates heteroskedasticity (see Engle and Mustafa (1992) for an attempt), one

could at best hope to estimate the implied parameter(s) of the assumed volatility process but not

the implied volatility  in the traditional sense. While some researchers (Day and Lewis (1992),

Harvey and Whaley (1992), Stein (1989)) have examined the behaviour of the volatilities

implied by the Black-Scholes model, the results are in general tenable only to the extent that the

Black-Scholes model produces reasonable estimate of the theoretical option price incorporating

heteroskedasticity.4

The above considerations lead to some interesting issues. First, how important is the

preference-based nature of option pricing under heteroskedasticity? In other words, are option

prices sensitive to the preference related parameter? We may also ask the same question about

the heteroskedasticity related parameters. Answers to these questions may lead to simpler

approximations to the theoretical valuation model or they may identify parameters which

should be estimated with care by practitioners in implementing the model.

Second, relative to the Black-Scholes model, is there any systematic pattern in the option

valuation effect of heteroskedasticity? Is it possible to decompose the effect into components

that can be identified with specific aspects of the option valuation model? 5 If so, the

                                                                              

Ball and Roma (1994, p.597) note potential instabilities when using a Hull and White (1987) type third-order series approximation.
See, for example, footnote 3 of Stein (1989), p.1012.
For example, in the stochastic variance option valuation model of Hull and White (1987),  the unconditional distribution of the terminal stock price 
ot lognormal. Further, when the  stock return and the change in its variance rate are instantaneously correlated, the conditional (upon an average
ance rate) distribution of the terminal stock price is not lognormal either and its mean depends on the specific path followed by the variance rate.
s two specific aspects of the Hull and White (1987) model are the departure from lognormality and the path dependence of the stochastic variance
on price.
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decomposition may offer insights into the option valuation effect of heteroskedasticity and the

observed empirical biases of the BS model.

Third, when is the Black-Scholes formula (with a constant variance) in gross error so that a

more complex option valuation model incorporating heteroskedasticity may be worth pursuing

despite the accompanying sampling or approximation errors? The 'when' can of course be

defined according to the option types (call, put),  option features such as moneyness and time to

maturity, the option exercise rule (European, American), the parameters of the variance

process, the preference or equilibrium asset pricing parameter(s), and the riskfree rate or

parameters of an interest rate process.

Fourth, if practitioners continue to rely on the Black-Scholes formula (with a single variance

measure) because of its convenience and intuitive appeal, is it worthwhile to use a single

variance measure that attempts to capture the nature of assumed heteroskedasticity?

In this paper, we address the above issues, focusing exclusively on the European stock

option valuation problem when the stock returns follow a GARCH (1,1) process. While Duan's

(1995) GARCH option valuation model encompasses higher order GARCH processes, GARCH

(1,1) seems by and large to be a popular choice in modelling volatility behaviour

parsimoniously.6

Regarding the first and third issues, Duan presents simulation results for only one set of

parameter values for the GARCH(1, 1) process.  In this paper, we present a more

comprehensive set of simulation results with respect to the GARCH  parameters, namely, the

unit risk premium  and the two slope parameters of the GARCH (1,1) process.  In general, we

do not find  the GARCH option price or the BS model bias to be overly sensitive to the

preference parameter except for the deep-out-of-the-money options with a very short time to

expiration. This latter group of options are also the ones where the BS model bias and the

simulation sampling error of the GARCH price are the largest in percentage terms.

In most cases, the two GARCH (1,1) process slope parameters have similar effects on the

GARCH price, the simulation error, and the bias of the Black-Scholes model, when one of the

two parameters is held constant. At higher levels of either parameter, the simulation error is

relatively higher and most notably the bias of the Black-Scholes model can be substantial. This

                    
That low-order GARCH models describe stock return volatility behaviour very well is shown by  Akgiray (1989) and Pagan and Schwert (1990)
ng others.
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suggests that in general the sum of the two parameters, viz., the variance persistence parameter,

γ, plays an important role and needs to be estimated carefully.

The  issue of using a modified variance estimate in the Black-Scholes formula is motivated

by the continued widespread use of the formula by practitioners despite the growing evidence of

heteroskedasticity in stock returns.  If a practitioner, aware of the possible temporal variations

in the variance, wishes to use the Black-Scholes formula, more efforts are likely to be made to

capture the temporal behaviour in the single variance estimate to be used in the formula.

If the variance behaviour is presumed to be of GARCH type, one such estimate would be

the unconditional variance under Duan's locally risk-neutral GARCH process. This leads to our

MBS (Modified Black-Scholes) formula. The BS formula in Duan's paper, on the other hand,

uses the unconditional variance of the assumed GARCH process. These two variance measures

differ in that the former is affected by the preference parameter while the latter is not.

Like the BS formula, the MBS formula ignores the conditional nature of the variance. A

variance estimate which attempts to capture this conditional nature is the average of the

expected conditional variances at various points during the life of the option. Noh, Engle, and

Kane (1994) have recently found that using an average GARCH (1,1) variance forecast in the

Black-Scholes formula returns greater profits from trading straddles on the S&P 500 Index

than using an implied standard deviation (ISD) (Whaley (1982), Day and Lewis (1988)).

However, they have not examined the average expected conditional variance under the locally

risk-neutral pricing measure of Duan (1995). Our PGARCH (Psuedo-GARCH) formula uses

this variance measure in the Black-Scholes formula. Previously, Heynen, Kemna, and Vorst

(1994) found that the average expected volatility under Duan's locally risk-neutral measure is

close to the implied standard deviation which equates the Black-Scholes price to Duan's

GARCH option price for at-the-money and near-the-money options. But they do not report

simulation results for deep-out-of-the-money and deep-in-the-money options. Their report is

also limited to just one set of values for the preference and GARCH process parameters.

Our simulation results suggest that the MBS formula does not offer particular benefit over

the BS formula given the additional input requirements (unit risk premium, GARCH process

parameters). The PGARCH formula, however, improves substantially over the BS formula

when the persistence in variance is  high (γ close to 1.0, nearly integrated variance) and when
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the options are  at-the-money or out-of-the-money. In the  nearly integrated variance situations

the PGARCH error is under 5% (with the exception of very short maturity deep-out-of-the-

money options) and thus offers a computationally attractive alternative to the more accurate

simulated GARCH prices.

Additionally, an important benefit of the two new formulas considered in this paper, viz.,

MBS and PGARCH, is that they allow a rough breakdown of the GARCH option valuation

effect (difference between BS and GARCH) into three components: the effect of change in the

unconditional variance under Duan's locally risk-neutral measure (BS - MBS), the effect of the

conditional nature of the variance process (MBS - PGARCH), and the nonlinear and path-

dependent nature of GARCH option pricing (PGARCH - GARCH). An examination of these

effects offers a number of useful insights into GARCH option valuation and the associated bias

of the Black-Scholes model.

Our simulation results indicate that the three components of the BS model bias are not

always of the same sign. Their relative importance (magnitude) also varies across different

option valuation situations. The interaction of these factors leads to the determination of the

direction of the BS model bias in a given option valuation situation. These include the “smile

effect”, the  conflicting striking price biases (Black (1975), MacBeth and Merville (1979), and

Rubinstein (1985)), and the general overpricing or underpricing bias (Black (1975)).

The rest of this paper is organized as follows. In section I, we first review Duan's (1995)

GARCH option pricing model, then discuss conceptually the BS model bias and its three

components, and finally describe the MBS and the PGARCH valuation formulas. Section II

delineates the design of our simulation study. The simulation results are presented in section III.

 Lastly,  concluding remarks are given in section IV.          

I. GARCH Option Pricing

A. Duan's (1995) GARCH (1,1) Option Valuation Model

Let St  be the stock price at time t. The one-period stock price relative is assumed to follow the

following process:

St/St-1= exp(r +l√ ht -0.5 ht +et )
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where et has a normal distribution with mean 0 and conditional variance ht under probability measure P;

r is the constant one-period continuously compounded risk-free rate; and l is the constant unit risk

premium on the stock. It is further assumed that ht, the conditional variance of et, follows a GARCH

(1,1) process of Bollerslev (1986) under measure P:

et |ft-1~   N(0,  ht)

ht =a0+ α1e2
t-1 + β1ht-1

where ft-1 is the s-field generated by all information up to and including time t - 1; a0>0, α1>0, β1> 0. To

ensure covariance stationarity of et, γ (=α1 +β1) is assumed be less than one.  The lognormal process for

the stock price with a constant variance is a special case of GARCH (1,1) with α1=0, β1= 0. The

parameter, g, can be viewed as a measure of the persistence of shocks to the conditional variance.  7  A

high value of g means a very slow rate of decay for the effect of any innovation in the conditional

variance process on the future conditional variances. 8  This may cause the conditional variance to

deviate from its long-term mean (stationary level) for a long time. The degree of persistence or

accumulation of  innovations in the conditional variance process as typified by the parameter, g, could

thus have important implications for option valuation in a GARCH (1,1) environment.

The slope parameter, α1, measures the marginal impact of the most recent innovation in the

conditional variance. The slope parameter, β1, on the other hand, captures the combined marginal

impacts of the lagged innovations. Empirical studies of financial returns show that the β1 estimates are

markedly higher than α1 estimates, i.e., variance persistence is often characterized by a low but

prolonged effect of variance innovation in a given period 9. This corresponds to a low but slowly

decaying autocorrelation of squared returns (Taylor (1986)). Roughly speaking, α1's primary impact is

on the degree of autocorrelation while β1's primary impact is on the decay of autocorrelation through

the persistence parameter, γ. While the rate of decay underscores the importance of the conditional

nature of the variance process,  a higher α1 increases the conditional kurtosis of multiperiod returns and

can thus have important effect on option values (Engle and Bollerslev (1986), Engle and Mustafa

                    
 See Engle and Mustafa (1992, p.292) and Bollerslev, Chou, and Kroner (1992) for discussions on the persistence of volatility shocks. Bollerslev (1988,
5) shows that the second and higher order autocorrelations of shocks to the conditional variance are increasing in the persistence parameter, γ. Empirically,

degree of persistence in the stock return variance seems to be related to the size of the firm with larger stocks exhibiting a greater degree of persistence than
ller stocks (Engle and Mustafa (1992), Engle and Gonzalez-Rivera (1991), Schwert and Seguin (1990)).  
Nelson (1990, p.325) points out that the persistence in conditional variance in the sense of  Engle and Bollerslev (1986) actually means a near permanent
t on the forecast moments of the conditional variances of future periods.
See, e.g., Taylor (1986), Akgiray (1989), Lamoureux and Lastrapes (1990), Ng (1991),  Engle and Mustafa (1992), and Heynen and Kat (1994).
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(1992)).         In the GARCH model, there is just one source of randomness.  Unlike the bivariate

diffusion models, the return volatility over the next period of time is known with certainty in the

GARCH model, given the information set f which includes the current and past realizations of the

stock returns. This allows Duan (1995) to define an equilibrium price measure Q which is absolutely

continuous with respect to the measure P, and under which one plus the conditionally expected stock

return is exp(r) instead of exp(r+ l√ ht); the conditional variance, however, remains the same almost

surely as under measure P.  10  Since the conditional mean of one plus the one-period stock return

under Q is independent of any preference-related parameter and is equal to exp(r), measure Q is said to

satisfy a locally risk-neutral valuation relationship (LRNVR). In the case of a constant variance, the

LRNVR reduces to the conventional risk-neutral valuation relationship. It is important to note that

measure Q does not lead to global risk neutralization.

Under pricing measure Q, the stock return process is as follows:

ln (St / St-1 ) = r - 0.5 ht + zt

zt |ft-1~   N(0, ht) and

ht =a0+ α1(zt-1-l√ht-1)2 + β1ht-1

Note that the above conditional variance model is in fact the Nonlinear Asymmetric GARCH

model of Engle and Ng (1993) and is a special case of the Generalized Asymmetric GARCH family of

Hentschel (1995). In this model, for λ>0, conditional variance is negatively related to lagged return,

i.e., the volatility impact of a negative news (return surprise) is greater than that of a positive news.

This asymmetric volatility effect is sometimes referred to as the “leverage effect”. Thus, Duan’s results

show that options on an asset following the traditional linear and symmetric GARCH model should be

valued as if the asset follows the Nonlinear Asymmetric GARCH model instead with the risk premium

parameter,  λ, affecting the degree of departure.    

By repeated substitution, ht can be expressed as a function of  the lagged values of a non-central

chi-square variable zt
2 with the unit risk premium, l, being the non-centrality parameter:

h_t~=~h_0`G_t~+~alpha_0`sum from {k`=`0} to {t`-`1}`G_k

where zt = (zt-1/√ht-1) - l , and Gk =Gk-1 (α1 zt-k
2 + β1) , and G0 = 1.

     The terminal stock price under measure Q can be expressed as:

                    
  Duan's (1995) GARCH option valuation model is for a general GARCH(p,q) process. In this paper, we limit our attention to the GARCH (1,1) process
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S_T~=~S_t`exp left [`(T~-~t`)`r~-~0.5`sum from {s`=`t} to T`h_s~+~sum from {s`=`t} to T`

zeta_s``right ]

The value of a European call option with strike price X is obtained by taking conditional expectation of

the terminal payoff under measure Q and then discounting at the risk-free rate:

GARCH: Ct
GH  = exp (-r (T-t)) EQ [ max ( ST - X, 0) | ft ]

The put option value can be calculated using the European put-call parity relationship. In this paper, we

only focus upon call options.

B. The Black-Scholes Model vs. Duan's  GARCH (1,1) Option Valuation Model

The Black-Scholes formula for a European call option is a special case of  GARCH option valuation

where the variance rate  is constant through time, i.e., ht = sP
2 for all t. In this situation,  the call option

formula assumes the familiar form:

BS:  Ct
BS = St N(d1) - X exp(-r(T-t)) N(d2 )

where d1 = [ln(St/X)+ r(T-t) + 0.5 sP
2(T-t)] / sP√(T-t),  d2 = d1 - sP√(T-t), and  sP

2 is the unconditional

variance under measure P and is calculated as sP
2 =  a0 /(1- α1 - β1).

If the variance follows a lognormal diffusion process as in Hull and White (1987) and others, the

terminal stock price is lognormally distributed conditional on the path followed by the variance. When

the stock price is instantaneously uncorrelated with the variance, this conditional lognormal distribution

depends on the average variance only and is not affected by other attributes of the variance path. Thus,

conditional upon an average variance, the option price is merely the Black-Scholes price; the

unconditional or final option price is then the expected Black-Scholes price, with the expectation being

taken over the distribution of the average variance.11 However, the distribution of the average variance

is not lognormal, and Hull and White propose a Taylor series approximation involving the moments of

this distribution.

When the stock price and the variance are correlated, the mean of the conditional lognormal

distribution of the stock price depends on the specific path followed by the variance  and not just on the

average variance along the path. The option price conditional upon the path followed by the variance is

                                                                              
.
A similar conclusion has been drawn by Amin and Ng (1993), Stein and Stein (1991),  Madan and Seneta (1990).
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no longer the Black-Scholes price (with the average variance  inserted). In this case, Hull and White

(1987) use simulation to calculate the option price. 

In Duan's GARCH option pricing model, the stock return variance over the next time period is

known with certainty conditional upon the current information set, and hence the conditional

distribution of one-period ahead stock return is lognormal with a known conditional variance. Beyond

the immediate period, the one-period conditional variances evolve stochastically according to the

assumed GARCH process. While the distribution of a future-period conditional variance may be

tractable according to H-function properties (Springer (1979)), it is certainly not  lognormal. Hence,

unlike the bivariate diffusion models, the joint distribution for the logarithmic stock price and the

logarithmic (conditional) variance is not bivariate normal; accordingly, the distribution of the terminal

stock price is unlikely to be lognormal given the path of the one-period conditional variance.

Further, local risk-neutralization in Duan's model increases the unconditional stock return variance;

it also induces correlation between the conditional variance and the lagged stock return when the unit

risk premium parameter, l, is non-zero.

To better understand the relationship between the BS option price and the GARCH (1,1) option

price, assume, for a moment, the following option valuation conditions prevail:

(a) any correlation between stock return and conditional variance can be ignored (say, l is small);

(b) the time to maturity of the option is quite long ; and

(c) the conditional distribution of the terminal stock price under measure Q can be reasonably

approximated by a lognormal distribution (say, the GARCH slope parameters are small);

Then, due to (a) and (c), following Hull and White's (1987, pp.285-286) logic, the GARCH option

price is approximately the expected Black-Scholes price, with the expectation taken over the

distribution of average conditional variance under measure Q. Using Hull and White's series approach,

the GARCH option price can thus be calculated as a function of the moments of the average

conditional variance. Because of (b), the expected average conditional variance would be fairly close to

the unconditional variance under measure Q and the second- and higher-order moments of the average

conditional variance would be negligible.12 Given a small or negligible unit risk premium in (a), the

unconditional variance under measure Q would be roughly the same as that under the original

probability measure P. Consequently, the BS price would be fairly close to the GARCH price.  

                    
 For an at-the-money option, the derivatives would be small too.
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If condition (a) is not applicable, the BS price would deviate from the GARCH price for two

reasons. First, as mentioned by Duan (1995), the BS price is based upon an incorrect unconditional

variance, viz., the measure P unconditional variance. Since the measure Q unconditional variance is

higher for a nonzero l, this reason by itself would cause the BS price to be lower than the GARCH

price for any degree of moneyness and any initial conditional variance situation. Let us call this

GARCH option valuation effect the u.v. (unconditional variance) bias. Second, the GARCH price

would deviate from the expected BS price as a function of the average conditional variance. This

second GARCH option valuation effect, which we shall refer to as the p.d. (path dependence) bias,

would also result when condition (c) is violated. The direction of the p.d. bias is not immediately clear.

If condition (b) does not hold, i.e., the option in question has a short time to expiration, the initial

conditional variance situation is likely to play an important role. If the initial conditional variance is

lower than the measure Q unconditional variance, the conditional variances through maturity would

tend to stay below  the measure Q unconditional variance. One clear implication is that the expected

average conditional variance would be lower than the measure Q unconditional variance. Similar

results apply when the initial conditional variance is high.13 Hence even if we were to use the measure

Q (as opposed to measure P) unconditional variance in the BS formula, a pricing difference between

the BS and GARCH option valuation models would arise due to a lack of recognition of the initial

condition. This GARCH option valuation effect shall henceforth be referred to as the c.v. (conditional

variance) bias.

Note that the three biases that we have identified are not necessarily of the same sign for a given

option. For example, consider a situation where the initial conditional variance is below measure Q (as

well as measure P) unconditional variance. The u.v. bias would always cause the BS price to be low.

The c.v. bias, on the other hand, is likely to cause the BS price to be high. As we shall see later, the

direction of the p.d. bias is ambiguous and depends upon other option valuation parameters or variables

such as moneyness and time to maturity of the option. Thus the direction of the overall GARCH option

valuation effect is not uniform. Our simulation study considers variation in a broader set of parameters

and is expected to shed light on this situation-specific nature of the overall GARCH option valuation

effect and its components. An additional area where we hope to gain insight is the relative importance

of the three GARCH effects.   

                    
 Higher-order moments of the average conditional variance would also likely depend on the initial condition.
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C. Modified Black-Scholes (MBS) and Pseudo-GARCH (PGARCH) Models

Depending upon the specific option valuation situation, it is possible  that either the BS model or the

BS formula with some GARCH-based variance figure would yield option value not too far from

Duan's GARCH option value. Duan's simulation results  already bear some evidence in this regard. In

49 of the 63 cases that Duan reports, the GARCH option price is within 5% of the BS model (with

measure P unconditional variance) value. Motivated by such possibilities, we explore in this paper two

other variants of the BS model, viz., the Modified Black-Scholes (MBS) model and the Pseudo-

GARCH (PGARCH) model. Both use the Black-Scholes functional form. These models differ from

the conventional BS model in that  measure Q-based  variance figures are inserted in the Black-Scholes

pricing function:

MBS:  Ct
MBS = St N(d1) - X exp(-r(T-t)) N(d2 )

where d1 = [ln(St/X)+ r(T-t) + 0.5 s2(T-t)] / s√(T-t),  d2 = d1 - s√(T-t), s2 is the unconditional variance

under measure Q and is calculated as  s2 = a0 /[1- α1(1+l2) - β1]; and

PGARCH:  Ct
PGH = St N(d1) - X exp(-r(T-t)) N(d2 )

where d1 = [ln(St/X) + r(T-t) + 0.5 v(T-t)] / √v(T-t),  d2 = d1 - √v(T-t), and v is the  average expected

conditional variance under measure Q. The average expected conditional variance over an n-day period

is calculated as follows. Let h0 be the known initial variance. Define D=α1(1+l2)+ β1. Then, as shown in

Duan (1995), the expected conditional variance for day k is  given by

E`(h_k`)~=~h_0`DELTA^{k}~+~alpha_0`{1~-~DELTA^k} over {1~-~DELTA}.

Therefore the average annualized expected conditional variance over the n-day period is:

360 over n``sum from {k`=`1} to n`E`(h_k`)~=~{alpha_0`n} over {1~-~DELTA}~+~left [`h_0~-

~alpha_0 over {1~-~DELTA}

right ]`{DELTA``(1~-~DELTA^n`)} over {1~-~DELTA}.

The MBS model attempts to eliminate the u.v. bias of the BS model by using the unconditional

variance under measure Q which is greater than that under measure P. The MBS price is thus always
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higher than the BS price. The PGARCH model attempts to eliminate both the u.v. bias and the c.v.

bias. It does so by using the average expected conditional variance under measure Q, v, which is lower

than, equal to, or greater than s2 depending upon whether h1 is lower than, equal to, or greater than s2.

Accordingly, the PGARCH price is lower than, equal to, or greater than the MBS price depending

upon whether h1 is lower than, equal to, or greater than s2.  Since the PGARCH model is subject only

to the path dependence bias, it is expected to track the true GARCH price closely in option valuation

situations where the path dependence (unconditional variance plus conditional variance) bias is a

relatively small (large) part of the overall bias of the Black-Scholes formula.

The MBS and PGARCH prices allow us to estimate the three components of the BS model bias.

This can be seen by expressing the BS model bias as follows:

BS - GARCH = (BS - MBS) + (MBS - PGARCH) + (PGARCH - GARCH)

The u.v. bias can be estimated as (BS - MBS), the c.v. bias can be estimated as (MBS - PGARCH),

and the p.d. bias can be estimated as (PGARCH - GARCH). 

II. Simulation Design

In this paper, we simulate a total of 525 option valuation situations. An option valuation situation is a

specific combination of the values of the initial conditional variance (h1), the unit risk premium (l) , the

GARCH process slope parameters (α1, β1), the moneyness (S/X) and the time to maturity (T) of the

option.  In all 525 cases, we assume r = 0 and s = 0.25. ( σ is the unconditional volatility under measure

Q.) For a given combination of the GARCH process slope parameters (α1, β1) and the unit risk

premium (λ),  the a0 value is adjusted  to maintain a constant s of  0.25. We do so to focus upon the

option valuation effect of the process for the variance as opposed to its level. The specific values that

we consider for the different variables and parameters are as follows:

√h1 : 0.75 s (low initial conditional variance), σ (equal to unconditional volatility),  1.25 σ (high

initial conditional variance);

 λ  : 0.01 (low), 0.10 (medium), 0.20 (high);

α1 : 0.05 (low), 0.175 (medium), 0.30 (high);

β1 : 0.50 (low), 0.65 (medium), 0.80 (high);
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S/X : 0.8 (deep-out-of-the-money), 0.9 (near-out-of-the-money), 1.0 (at-the-money), 1.1 (near- in-

the-money), and 1.2 (deep-in-the-money); and

T : 30 days, 90 days, 180 days, 360 days, and 720 days.

Whenever an option valuation situation involves the low or the high value for one of the three

parameters (α1, β1, l), the medium value is assumed for the other two parameters. For example, when

α1 = 0.05 or α1 = 0.30 , we use β1 =  0.65 and l = 0.10. Thus the variance persistence parameter,  g

(=α1+ β1), varies between 0.675 (α1 = 0.175, β1 =  0.50) and 0.975 (a1 = 0.175, β1 =  0.80). Given the

empirical evidence of heavy persistence (g close to 1.0) driven by a high β1 value in many situations, we

also separately examine in a later section of this paper an additional set of cases with g=0.99 (a1 = 0.05,

β1 =  0.94).   

For each option valuation situation (h1, l, a1, β1, S/X, T), we calculate four option prices. The

BS, MBS, and PGARCH option prices are calculated using the formulas in sections I.B and I.C. For

the GARCH option price, we use stratified simulations with 1000 strata and 50 runs. Therefore, the

GARCH option price in each option valuation situation is based on 50,000 runs. To ensure that the

simulated GARCH option prices do not violate the rational option pricing bounds, the underlying stock

prices in these runs are generated using the Empirical Martingale Simulation (EMS) method recently

proposed by Duan and Simonato (1995). The EMS method has the added benefit of a reduced

standard error for the simulated option price. To further reduce simulation errors, we use a

combination of the antithetic variable technique and the control variate technique. In the latter, the

control variate is the BS price based on the unconditional variance with daily innovations.  

III. Simulation Results

We organize this section in six sub-sections. In III.A, we study how various GARCH parameters and

option contract parameters such as moneyness and time to maturity affect the GARCH option price

and the associated sampling error. Section III.B studies the bias behaviour when we approximate the

GARCH option price using the BS price, the volatility input of the latter being the unconditional

volatility under measure P. In section III.C, we breakdown the overall pricing bias of the BS model 

into three separate components, and examine each component's individual contribution to the direction

and magnitude of the overall bias. Next, in section III.D, we shall attempt to resolve a practical

question: among the approximation models (BS, MBS, PGARCH), is there a model which is
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consistently more accurate in approximating the GARCH option price? Further, under what

circumstances the BS model is more precise than the simulated GARCH option price despite the fact

that the BS model is biased?  In section III.E, we discuss the results for the nearly integrated variance

situations that are often reported for financial time series.  Finally, in section III.F, we discuss the

implications of the findings for other valuation situations such as deposit insurance valuation.

A. Behaviour of the GARCH Price and the Simulation Sampling Error

As is customary, we shall refer to the estimated GARCH price of an option from simulations as the

GARCH price. As such the GARCH price is subject to sampling error and the standard error of the

GARCH price (GARCHSR) is  estimated from the simulations.14  For comparative purposes, the

standard error is reported as a percentage of the GARCH price.

Table 1 presents the GARCH price and the standard error as a percentage of the GARCH

price (GARCHPSR) averaged over all cases of an initial conditional variance situation (low, equal, or

high) and also under an initial variance condition averaged over all cases of a given level of moneyness,

time to maturity, unit risk premium, or a GARCH process parameter.15

-----------------------
Table 1 here

-----------------------

As expected, the GARCH option price increases with the level of the initial conditional variance,

the level of moneyness, and the time to maturity of the option. 16 However, in general, the GARCH

option price does not seem overly sensitive to the level of the initial conditional variance. Variation in

                    
    The standard error reported in this paper for a given option valuation situation is the standard deviation of the simulated option prices divided by the
re root of the number of runs. The standard error calculated in this usual way, call it the naive standard error, assumes that the simulated option prices are
pendent. However, this is not a valid assumption due to the martingale correction of the simulated stock price paths under the Empirical Martingale
ulation (EMS) method. As shown by Duan and Simonato (1995), the martingale correction reduces simulation errors. Hence the naive standard errors
rted in this paper overestimate the true standard errors of the simulated GARCH prices. We also ran simulations without the martingale correction and
ulated standard errors (which are valid estimates) that are slightly greater than the naive standard errors. The magnitude of these differences in the standard
s are not material enough to affect the major findings of this paper.      
  With some exceptions, the comparisons based upon the averages in Table 1 and the other  tables to follow  fairly reflect the full set of  525 cases (available

n request from the authors).

  While we do not report the results in the table, we have also examined whether the GARCH price of an in-the-money European
on falls below its intrinsic value and found that it does not.  This is not surprising since we employed the Equivalent Martingale
ulations technique.  Even when this technique is not used, the use of a 0% riskfree interest rate in the BS formula would yield the
e of a pure option (option on futures with futures-style margining) when the spot asset price follows a lognormal diffusion with a
stant variance rate (Lieu (1990)).  It has been shown (Lie (1990), Chen and Scott (1993), Chaudhury and Wei (1994)) that the

ue of a pure European option never dips below its intrinsic value.  This results also prevails in a stochastic interest rate regime (Chen
 Scott (1993)). 
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the GARCH option price across the different levels of moneyness and time to maturity is considerably

more than that across the three situations of the initial conditional variance. For example, the average

GARCH price moves from $9.878 to $10.021 as the initial conditional volatility (square root of the

initial conditional variance) changes from its low level to its high level, i.e., a 1.45 percent change in

average price for a 67% increase in initial conditional volatility.

A distinct feature of Duan's GARCH option valuation model is its preference-based nature. The

unit risk premium, l, increases the unconditional variance under the locally risk-neutral pricing measure

Q; it is the noncentrality parameter for the innovations driving the conditional variance process under

measure Q; and it induces correlation between the conditional variance and the lagged asset return

under measure Q. A priori, the net impact of the unit risk premium is unclear.

Results in Table 1 suggest that a change in the unit risk premium does not always move the

GARCH price in the same direction. Further inspection of the full set of cases reveals that the GARCH

option price is decreasing (increasing) in the unit risk premium for out-of-the-money and at-the-money

(in-the-money) options. The economic significance of this intriguing result, however, becomes

questionable once we consider the magnitude of price change for the different levels of l. As l increases

from 0.01 to 0.20, the GARCH price change is less than 5 percent for all options other than the deep-

out-of-the-money ones. For this latter group of options, the same change in l induces a large

percentage drop (as high as 50 percent) in the GARCH price.

The two slope parameters (a1, β1) of the GARCH (1,1) conditional variance process are at the

heart of the GARCH option valuation problem. If they were close to zero, a constant variance

assumption would be reasonable and the BS price should provide a close approximation to the

appropriate theoretical price. If, on the other hand, the two slope parameters and their sum are not

negligible in value, the conditional and stochastic nature of the variance process becomes quite

relevant.

Results in Table 1 confirm the above expectations. The two slope parameters have similar effects

on the GARCH price and the simulation error when one of the two parameters is held constant. Since

holding one of the slope parameters (a1, β1) constant while increasing the other leads to a higher γ or

heavier persistence in variance, we also observe similar behaviour for the GARCH price and its

standard error as γ varies. At higher levels of either parameter or their sum, the simulation error is

relatively higher. This suggests that in general the sum of the two parameters, viz., the variance
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persistence parameter, γ, plays an important role and needs to be estimated carefully. However, no

uniform directional pattern for the GARCH price can be discerned as the parameters vary.

The GARCHPSR (simulation standard error as a percentage of the GARCH price) average figures

in Table 1 reveal that  on average GARCHPSR is about 1 percent or less except in the case of deep-

out-of-the-money and shortest maturity options. Case by case analysis indicates  that GARCHPSR is in

excess of 7 percent when the option is deep-out-of-the-money (S/X=0.8) and has a very short maturity

(T = 30 days). While the volume of such exchange-traded options is typically low, they could still be

relevant to practitioners and researchers dealing with custom-made derivative products and potential

application of Duan's (1995) model to other option-like valuation situations.

GARCHPSR consistently goes down as the level of moneyness and time to maturity increases. The

preference parameter λ has no material impact on the simulation precision level. In general, although

not always, simulation precision is somewhat lower for the low initial conditional variance situations.  

B. BS Model Bias

Table 2 presents summary statistics for the bias (BS -GARCH), the absolute bias (|BS - GARCH|), and

the absolute percentage bias (100*|BS - GARCH|/GARCH) of the BS model when the appropriate

theoretical price is the simulated GARCH option price.

-----------------------
Table 2 here

-----------------------

Averaging over all 175 cases of an initial conditional variance situation (Panel A), the BS bias is

within a dime and is about 4 to 6 percent of the GARCH price. The initial conditional variance situation

appears to have a bearing on the direction of the bias although not necessarily on the percentage bias.

Given that the standard deviations are rather large compared to the means and also in the light of our

discussion in the previous section, we shall now examine the bias figures classified by the moneyness

(Panels B-F) and the time to maturity (Panels G-K) of options, the unit risk premium (Panels L-N), and

the GARCH process parameters (Panels P-X).

The absolute percentage biases are more comparable across the various levels of a variable or a

parameter since they are adjusted for the price level. Once again it appears from Panels B-K that the

bias of the BS model is significant for the shortest maturity and deep-out-of-the-money options.

Depending upon the initial conditional variance situation, the average absolute percentage bias of the
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BS model ranges from 14 to 21 percent (15 to 22 percent) for deep-out-of-the-money (shortest

maturity) options. In contrast, most other option categories have a mean bias of less than 5 percent.17

We also note that the absolute percentage bias of the BS model decreases as the moneyness and the

time to maturity of the option increase.

Notice that the standard deviation of the absolute percentage bias is rather large compared to the

means for all categories of moneyness and time to maturity. Our examination of the full set of cases

shows that this is due to the presence of deep-out-of-the-money and/or the shortest maturity options in

each of the Panels B-K. The BS model bias in percentage terms is the highest for the deep-out-of-the-

money shortest maturity options.

Regarding the direction of the BS model bias, it seems that the deep-in-the-money (S/X = 1.2) and

the longest maturity (T = 720 days) options tend to be underpriced by the BS model, especially in

equal and high conditional variance situations. An inspection of the individual cases also show that the

deep-out-of-the-money and deep-in-the-money shortest maturity options are always underpriced by the

BS model. At-the-money options are overpriced in low conditional variance situations, otherwise they

are underpriced. This striking price bias is qualitatively similar to that noted by Merton (1976) when the

stock returns follow a jump diffusion process and a low conditional variance situation prevails.

However, unlike the jump diffusion context, the sign of the bias for at-the-money (S/X = 1.0) options

reverses when the conditional variance is near to or higher than the stationary level of variance. Also,

for near-the-money (S/X = 0.9, 1.1) options, the bias is not uniform and depends on other option

valuation parameters. An inspection of the individual cases also reveal that the sign of the bias for deep-

out-of-the-money and deep-in-the-money options varies for maturities longer than 30 days. For

example, consider in Table 3 the BS model bias (BS-GARCH) for the option valuations situations

where time to maturity is 180 days (0.5 year), a1 = 0.175, β1 = 0.65.

-----------------------
Table 3 here

-----------------------

When the initial conditional variance is low and the unit risk premium is at its low level (0.01), all

options including the deep-out-of-the-money and deep-in-the-money ones are overpriced by the BS

model. Under the same variance situation but now at a high unit risk premium level (0.20), all deep-

                    
   As can be seen in Panel C of Table 2, the average absolute percentage bias is 7 to 9 percent for the near-out-of-the-money
ons in low and high initial conditional variance situations.
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out-of-the-money options are overpriced while near-out-of-the-money, at-the-money and in-the-money

options are underpriced. Moving to the high initial conditional variance situation, all options above are

underpriced by the BS model.

One implication of the above bias behaviour for the same maturity is that the striking price bias may

take different forms depending upon the variance situation and the level of the unit risk premium. Thus

the GARCH option valuation model seems general enough to accommodate the various striking bias

patterns and "reversals" that have been reported in empirical studies (e.g., Black (1975), MacBeth and

Merville (1979), and Rusinstein (1985)). 

It is also worth noting in Table 2 that the BS model bias tends to move from a general overpricing

in low initial conditional variance situation to a general underpricing in high initial conditional variance

situation.18 This is in conformity with Duan's (1995)  simulation results.19 Duan (1995, p.23) mentions

that the GARCH conditional variance process is known to generate more low-variance states more

frequently. Accordingly, we should expect the BS model to overprice options more often. We,

however, find that a high unit risk premium on the stock (l = 0.20) often leads to more options being

underpriced by the BS model even in the low initial conditional variance situation. This can also be seen

from Panels L-N of Table 2. For both the low and equal initial conditional variance situations, a

positive average BS model bias at low unit risk premium changes to a negative average bias at high

unit risk premium. An examination of the individual option valuation situations under the low and equal

variance conditions also reveal a high frequency of overpricing (underpricing) by the BS model when

the unit risk premium is at its low (high) level. Since the low and equal variance conditions are more

likely than the high variance condition, a time varying risk premium may explain why the BS model

with a constant variance overprices most traded options sometimes while underpricing them at other

times (Black (1975), p.41).

Panels P-X as well as our examination of the full set of cases show that the alternate values for the

GARCH process slope parameters (a1 , β1) do not have any noticeable impact on the direction of the

BS model bias, given an initial conditional variance situation. However, as they increase (i.e. as the

variance persistence increases), the absolute percentage bias of the BS model increases significantly.

Panel X shows that when γ>0.90, the average absolute percentage bias is more than 8 percent

regardless of the variance situation.  

                    
  The zero bias point is, however, not necessarily at the exact at-the-money (S/X = 1.0) position.
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Similar to our general finding regarding the behaviour of GARCH option prices, panels L-N

indicate that the absolute percentage bias is not greatly affected by the level of the unit risk premium, l.

The mean absolute percentage bias ranges from 4 to 7 percent for all three levels of l. But, as noted

above, l could have an important bearing on the direction of the BS model bias.  

C. The Three Components of the BS Model Bias

In the previous section, we have looked into the magnitude and the direction of the BS model bias

when Duan's (1995) GARCH option valuation model is the appropriate theoretical model. Earlier in

this paper, we have identified three sources of bias for the BS model, viz., the u.v. (unconditional

variance) bias, the c.v. (conditional variance) bias, and the p.d. (path dependence) bias. It is useful to

know how the three sources of bias interact to determine the overall or net BS model bias in a given

option valuation situation. It is also useful to find out the principal source(s) of the BS model bias in a

given option valuation situation, or how the relative importance of the three sources of bias vary (if at

all) across different option valuation situations. It would be equally interesting to determine if the p.d.

bias is always in one direction.

Table 4 contains some simulation results that should help address these issues. In this table, we

report the mean figures for the u.v. bias (BS - MBS), the c.v. bias (MBS - PGARCH), the p.d. bias

(PGARCH - GARCH), and the respective percentage bias proportions (PROP). For each option

valuation situation (combination of S/X, t, a1, β1, l, initial conditional variance), the bias proportions

(PROP) are calculated as follows:

UVPROP = 100* |BS - MBS| / ABSUM

CVPROP = 100* |MBS - PGARCH| / ABSUM

PDPROP = 100* |PGARCH - GARCH| / ABSUM

where ABSUM = |BS - MBS| +  |MBS - PGARCH|  +  |PGARCH - GARCH|.  PROP for a bias is an

indicator of how important its magnitude is in determining the overall or net bias of the BS model. A

large (small) PROP figure for a bias means that it is relatively more (less) important.

Strictly speaking, the difference between PGARCH and GARCH has two components: the p.d.

bias (expected Black-Scholes price as a function of the average conditional variance - GARCH), and

the bias (PGARCH - expected Black-Scholes price as a function of the average conditional variance)

                                                                              
Duan (1995) reports bias figures as: GARCH - BS. In this paper, we use: BS - GARCH.
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of the BS formula due to its nonlinearity in the average conditional variance rate. Following Hull and

White's (1987) series approach, we attempted to estimate the expected BS price using the first and

second central moments of the average conditional variance (based upon Duan's (1995) results) in a

second-order Taylor series. This, however, resulted in considerable instability in some option valuation

situations. Hence we decided not to pursue the decomposition of the difference between PGARCH and

GARCH. Consequently, while we refer to this difference as the p.d. bias, strictly speaking, it is also

inclusive of the nonlinearity bias.20

Some comments about the biases can be made on an a priori basis. First,  the u.v. bias is always

negative since the measure Q unconditional variance is greater than the measure P unconditional

variance as long as the unit risk premium, l , is nonzero. Second, the u.v. bias should increase

(decrease) as the magnitude of l increases (decreases). Third,  the c.v. bias is positive, zero, or negative

depending upon whether the initial conditional variance is less than, equal to, or greater than the

measure Q unconditional variance.

If we consider the possibility of either a positive or negative p.d. bias in conjunction with the above

comments, it seems that the overall or net GARCH option valuation effect would very likely depend on

the option valuation situation at hand. To see this, we now turn to Table 4.

-----------------------
Table 4 here

-----------------------

Panel A indicates that averaging across all 175 cases under an initial conditional variance situation, 

the p.d. bias is positive for all three (low, equal, high) initial conditional variance situations. In the low

initial conditional variance situation, the positive p.d. bias (0.085) combined with a positive c.v. bias

(0.064) outweighs the negative u.v. bias (-0.083). This results in an average net GARCH option

valuation effect of 0.067 (Panel A, Table 2) or general overpricing by the BS model. In the equal initial

conditional variance situation, the c.v. bias is zero and the positive p.d. bias (0.085) barely exceeds the

negative u.v. bias (-0.083). This leads to a  small overpricing by the BS model, the average magnitude

of the net GARCH valuation effect being the lowest (0.003, Panel A, Table 2) of the three variance

situations. A negative net GARCH Option valuation effect (-0.077) or a general underpricing by the

                    
   For an at-the-money option, the BS formula is approximately linear in the variance. The nonlinearity bias is thus roughly zero, and the difference between

ARCH and GARCH solely reflects the p.d. bias.
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BS model occurs in the high initial conditional variance situation; the negative u.v. bias (-0.083) and the

negative c.v. bias (-0.081) together outweigh the positive p.d. bias (0.087).

Thus we have a general overpricing by the BS model turning into a general underpricing as the

initial conditional variance moves from a low to a high state, a pattern that we have previously noted.

This pattern is also supported by a redistribution of the relative importance (measured by mean PROP

figures, Panel A, Table 4) away from the p.d. bias to the c.v. bias when the initial conditional variance

is high rather than low.21

The nature of the p.d. bias (which also includes the nonlinearity bias in this paper) is an interesting

issue since this is the component that mainly captures the effect of both path dependence and departure

from lognormality of the terminal stock price. Since under the GARCH model  the (log) stock return is

leptokurtic (under both P and Q), both out-of-the-money and  in-the-money options should be more

valuable (Duan (1995), p.20). Accordingly, we would expect the p.d. bias to be negative (underpricing

by the BS model).    

Considering the average p.d. bias figures for the different levels of moneyness and time to

maturities in Panels B-K of Table 4, the high variance, shortest maturity options (Panel G) are the only

group where the average p.d. bias is negative. Case by case analysis confirms the preponderance of

negative p.d. bias in high variance situations. Across all three variance situations, deep-in-the-money

options maturing in 180 days or earlier have mostly negative p.d. bias figures. A negative p.d. bias is

not as prevalent for the deep-out-of-the-money options. For these options, a negative p.d. bias is more

common when the option maturity is short and the conditional variance equals or exceeds the

stationary level. For maturities longer than 30 days, the p.d. bias is largely positive for deep-out-of-the-

money options. Further, while the average p.d. bias is positive for at-the-money, near-out-of-the-

money, near-in-the-money, and deep-in-the-money options under all three variance situations (Panels

C-F, Table 4), studying the full set of cases we find that the p.d. bias is most consistently positive for

the at-the-money options. 

An evaluation of the average PROP figures in Panels B-K of Table 4 indicates that: (a) the average

p.d. bias PROP reaches its highest values in the case of the deep-out-of-the-money (45.04%, 64.09%,

40.27%) and the shortest maturity  (45.23%, 77.00%, 45.65%) options; (b) the p.d. bias is consistently

the most dominant source of bias for deep-out-of-the-money, deep-in-the-money, and the shortest

                    
 This redistribution pattern is largely supported by a case-by-case analysis except for the shortest maturity (T = 30 days) options.
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maturity options only; and (c) as the option's maturity gets longer, the relative importance of the p.d.

bias tends to diminish although not monotonically in the high variance situation. Further analysis of the

full set of cases reveals that the individual (not average) p.d. bias PROP reaches its highest values in the

case of the shortest maturity deep-out-of-the-money and deep-in-the-money options, and the

dominance of the p.d. bias is also the greatest in these cases.

There are several insights that we can draw from the above simulation results. First, the p.d. bias

(inclusive of the nonlinearity bias in this paper) is not uniformly negative for an out-of-the-money

option, that is, it does not always lead to underpricing of an out-of-the-money option by the BS model.

While leptokurtosis in (log) stock returns caused by the GARCH process creates underpricing by the

BS model, for longer maturities this effect tends to be more than offset by other features of the

distribution of the terminal stock price.

Second, the effect of these other features is not as important in the case of a deep-in-the-money

option, thus resulting in a negative p.d. bias (underpricing) in a large number of cases.

Third, the overall underpricing of the shortest maturity deep-out-of-the-money and deep-in-the-

money options by the BS model noted earlier is due to the dominance of the negative p.d. bias in these

cases augmented by the universally negative u.v. bias. 

Previously, we found at-the-money options to be overpriced (underpriced) by the BS model in low

and equal (high) initial conditional variance situations (Panel D, Table 2). It appears (from Panel D,

Table 4) that the positive p.d. bias of an at-the-money option either by itself (equal variance situation)

or pairing with the positive c.v. bias (low variance situation) outweighs the universally negative u.v.

bias to cause this underpricing. In the high initial conditional variance situation, the negative c.v. bias

coupled with the negative u.v. bias outweighs the positive p.d. bias (Panel D, Table 4) and leads to an

underpricing of an at-the-money option (Panel D, Table 2). Notice that the main source of this variance

bias of at-the-money options is the change in the signed value of the c.v. bias and its relative

importance across the three variance situations.

Rubinstein (1985) and Sheikh (1991) noted a time to maturity bias reversal phenomenon over

different time periods for at-the-money options when the BS model is inverted to imply  volatility from

the observed option prices. Duan  (1995) shows that under the GARCH model, when the initial

conditional variance is low, the BS model ISD increases with maturity.22 The ISD pattern reverses

                    
   This means that the BS bias (BS-G) becomes more negative, i.e., underpricing by the BS model increases with maturity.
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when the initial conditional variance is high.23 To facilitate a better understanding of this phenomenon,

we report in Table 5 the three components of the BS model bias and their relative magnitude figures

(PROP) for at-the-money options, under the low and high initial conditional variance situations and the

middle values of the GARCH valuation parameters. Under both variance situations, the absolute as

well as the relative magnitude of the c.v. bias decreases as the maturity gets longer. Given that the c.v.

bias is positive under the low variance situation, overall overpricing is more (underpricing is less) for

shorter maturity options relative to longer maturity options. This of course translates a relatively lower

ISD for a shorter maturity option in Duan's (1995) Table 4.1. Thus it appears that the c.v. bias or the

initial conditional variance situation under the GARCH (1,1) model could be at the heart of the time to

maturity bias reversal phenomenon.

-----------------------
Table 5 here

-----------------------

Previously we noted a general tendency of overpricing by the BS model turning into underpricing

as the unit risk premium, l, increases. The unit risk premium, l, is of course the key determinant of the

u.v. bias. Panels L-N of Table 4 show that average u.v. bias PROP increases from about 1% to over

50% as l changes from its low state (0.01) to its high state (0.20). When l is low, the positive p.d. bias

either by itself (equal variance) or coupled with the positive c.v. bias (low variance) produces

overpricing . However, when l is high, the dominance of the negative u.v. bias produces underpricing in

all three variance situations.

By examining Panels P-U of Table 4, we find that the GARCH process slope parameter a1 affects

the relative importance of the three types of bias much more than the parameter β1. With a higher a1,

the average p.d. bias and the average p.d. bias PROP go up significantly. For example, under the low

variance condition, the average p.d. bias (p.d. bias PROP) goes up from 0.006 (30%) when a1  = 0.05

to 0.291 (49%) when a1 = 0.3. To a lesser extent, this effect also shows up in Panels V-X where the

bias results are reported for alternative levels of the variance persistence parameter γ.
While both a1 and l  lead to significant shifts in the relative importance of the three types of bias of

the BS model, the simulation results from Tables 1-4 suggest that the unit risk premium, l, is perhaps

more important in determining the direction of the overall bias or GARCH option valuation effect. The

                    
 This means that the BS bias (BS-G) becomes less negative, i.e., underpricing by the BS model decreases with maturity. While we do not report the ISD
lts here, we have confirmed Duan's explanation for various combinations of the unit risk premium and the GARCH process parameters.
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GARCH process persistence parameter γ, on the other hand, is more important when it comes to the

size of the overall bias while the slope parameter a1 has significant influence on the composition of the

bias.       

D. Comparison of BS, MBS, PGARCH, and GARCH Prices

From the simulation results discussed so far, we gather that the BS price is a biased estimate of the

true option price when the stock returns follow a GARCH (1,1) process. The direction and the

magnitude of the bias vary across different option valuation situations and depend on the interaction of

the three components of the bias (u.v. bias, c.v. bias, p.d. bias). While the BS price is biased, it has no

variance as an estimate of the true option price when the unconditional stock return variance is known.

The simulation-based  GARCH option price, on the other hand, has no bias, but it has variance as an

estimate of the true option price caused by simulation sampling error. As noted earlier, this sampling

error varies across different option valuation situations too. Thus, it is possible,  at least in theory, that

the BS model absolute percentage bias in a given option valuation situation is less than the

GARCHPSR (simulation standard error as a percentage of the simulation-based GARCH price).

Econometricians often use a  mean square error (MSE) criterion to choose between biased and

unbiased estimates of population parameters. The MSE of an estimate is equal to its variance plus bias

squared. The MSE of the BS price is its absolute bias squared. For the simulation-based GARCH

option price, the MSE is the GARCHSR squared. Thus a comparison of the absolute percentage bias

of the BS model and the GARCHPSR is similar to a comparison of their root mean square error

(RMSE). With estimation risk, an estimate with a lower RMSE is preferred under a squared error loss

criterion.

This opens up the possibility that a practitioner may be better off  using the BS model instead of 

the GARCH option pricing model in some option valuation situations. In other situations where the

GARCH option pricing model is to be preferred on a RMSE basis, it is possible that the gain in RMSE

is not perhaps large enough to a practitioner facing the significantly higher computational involvement

of the GARCH model.

Another interesting issue is whether removing one or more but not all of the three components of

the BS model bias leads to an improvement (in RMSE sense) over either the BS price or the

simulation-based GARCH price. In other words, does MBS (removes u.v. bias) or PGARCH

(removes u.v. bias and c.v. bias) outperform the BS price or the simulation-based GARCH price in a
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RMSE sense? The answer to this question is not clear a priori since the three biases are not always of

the same sign.

Table 6 presents the absolute percentage bias for each of BS, MBS, PGARCH, and the simulation

standard error as a percentage of the GARCH price (GARCHPSR), averaged over all option valuation

situations under a given (low, equal, high) initial conditional variance state and also by monyeness, time

to maturity, the unit risk premium, and the GARCH process slope parameters. The absolute percentage

bias for each of BS, MBS and PGARCH is in fact its RMSE as a percentage of the GARCH price.

Similarly,  the GARCHPSR is the RMSE of the simulated GARCH price expressed as a percentage.24

We report the percentage figures as they are more comparable across different option valuation

situations. However, for the sake of brevity, we shall refer to these percentage figures as simply RMSE

in the discussion to follow.

-----------------------
Table 6 here

-----------------------

Panel A of Table 6 shows that on average the BS model's RMSE is about 4 to 6 percent higher

than that of the simulated GARCH model. Removing either the u.v. bias (using MBS) or both the u.v.

bias and the c.v bias (using PGARCH) does not offer any significant advantage over the BS model on

average. However, as noted earlier, the BS model bias,  its components, and GARCHPSR vary widely

across different option valuation situations. Hence the average across all option valuation situations

could be potentially misleading. One indication of this are the large standard deviations reported beside

the mean RMSE figures in Table 6.

Panels B-K indicate that on average for any level of moneyness and time to maturity, the GARCH

model's RMSE is lower than either of BS, MBS, or PGARCH. This advantage is, however, marginal

for at-the-money and in-the-money (near and deep) options and those maturing in 6 months (180 days)

or later. The RMSE advantage of the GARCH model is about 4 (2) percent or less for at-the-money

(in-the-money) and 180 (360, 720) days options. In these and other cases, on average the MBS and

PGARCH formulas do not offer any particular benefit over the BS model. In fact, it appears that

sometimes trying to remove the u.v. and/or the c.v. bias leads to a higher RMSE. But once again we

should not ignore the rather large standard deviations of the RMSE.   

                    
  Strictly speaking, the true absolute percentage bias for BS, MBS and PGARCH and the true standard error of the simulated GARCH price as a percentage
e GARCH price (GARCHPSR) are not known. This is because the true GARCH price is not known. Since the simulated GARCH price is an estimate itself,
eported absolute percentage bias and GARCHPSR figures are actually estimates of the corresponding true figures. 
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The RMSE results in Panel C (near-out-of-the-money options), Panel H (90 day options), and

Panels L-N (different levels of the unit risk premium, λ) of Table 6 are fairly similar.  With the

exception of near-out-of-the-money options under a low variance condition, the MSE gain of the

GARCH model over the BS model is on average in the range of 3 to 7 percent and the alternative

formulas (MBS,PGARCH) do not seem to offer any notable improvement over the BS model. Largely

similar comments also apply to the RMSE results in Panels S and T for low to medium β1 values and

the RMSE results in Panels P-Q for low and medium a1  values.25 The RMSE results in Panels Rand U

for the high a1 and β  levels are different in that the GARCH model's RMSE gain over the BS model is

on average 8 percent or more for these cases.  Panels V, W, and X show that a higher γ produces

similar RMSE behaviour as the high a1 and β  levels.

The RMSE results that are noticeably different from the rest in Table 6 are the ones in Panel B

(deep-out-of-the-money options) and Panel G (30 day options). In these cases, the RMSE of the BS

model is on average 14 percent or more while the GARCH model's RMSE is on average about 2

percent. Thus for these options, there is an average gain of 12 percent or more in accuracy (RMSE) in

computing the GARCH simulation-based price rather than using the conventional BS model. While the

alternative formulas (MBS, PGARCH) attempt to remove some biases of the BS model, this does not

result in any clear improvement in accuracy (RMSE) over the BS model. 

On the basis of the average RMSE results in Table 6, it seems that GARCH option pricing is most

important for  deep-out-of-the-money options (S/X = 0.8), very short maturity (T = 30 days) options,

and options on stocks with high  γ or variance persistence.

While the above results compare the average RMSE figures for the GARCH model, the BS model,

and the alternative models (MBS, PGARCH) by one option variable (S/X, T) or parameter (a1, β1, l) at

a time, it would be useful to know under what option valuation situations the BS model fares better

(lower RMSE) or worse than the GARCH model.

The RMSE of the BS model is less than that of the GARCH model in 18 of the 175 low variance

cases, in 32 of the 175 equal variance cases, and in 9 of the 175 high variance cases. The corresponding

numbers for the MBS (PGARCH) formula are 7 (14), 17 (7), and 18 (23).  In a large majority of these

cases, the RMSE gain over the GARCH model is, however, quite modest (typically less than 1

percent). While the MBS and PGARCH formulas sometimes offer a more accurate price estimate

                    
For the highest b1 level, the RMSE averages are a bit higher.
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(lower RMSE) than the BS model and the simulated GARCH price, the gain in RMSE is not

significant. Further, compared to the BS model, implementation of the MBS or PGARCH model leads

to additional data requirements (the unit risk premium and the GARCH process parameters).

Some of the distinguishing features of the cases where the BS model has a RMSE advantage over

the GARCH model are: (a) the highest a1 value (0.30) occurs in none of the  low variance, 1 of 32 

equal variance, and 3 of 9 high variance cases; (b) the highest β  value (0.80) occurs in 2 of 18 low

variance, 3  equal variance, and 1 high variance cases; (c) the highest  λ  value (0.20) occurs in only 1

low variance, none of the equal and high variance cases; in contrast, the lowest λ  value (0.01) occurs

in 4 equal variance and 5 high variance cases;26  and (d) the time to maturity is 6 months or longer in 17

of 18  low variance, 25 of 32 equal variance, and all 9 high variance cases.27 None of the cases involve

the shortest maturity (T=30 day) options.

As for moneyness, the cases seem well spread over all levels including the deep-out-of-the-money

level. As the maturity gets longer (6 months or more), the BS model RMSE drops off significantly

even when the option is deep-out-of-the-money.  It is only when the option maturity is short (90 days)

and γ is not low,  or when the option maturity is very short (30 days), that the BS model RMSE is

quite high for out-of-the-money, especially deep-out-of-the-money options.

As shown in Panel A of Table 7, for out-of-the-money options (S/X = 0.8, 0.9) which are maturing

in 90 days or sooner, the average RMSE of the BS model is 24 percent, 22 percent, and 32 percent

respectively for low, equal, and high variance conditions. In contrast, the average RMSE for all other

options is 2.17 percent, 1.06 percent, and 1.48 percent respectively for low, equal, and high variance

conditions.

                    
   The middle value of λ is found in 17 of 18 low variance, 28 of 32 equal variance, and 4 of 9 high variance cases.
    All 9 high variance cases involve the longest maturity (T=720 day) options.

-----------------------
Table 7 here

-----------------------

Panel B of Table 7 shows that for the shortest maturity deep-out-of-the-money options (T=30

days, S/X = 0.8), the average RMSE of the BS model is 54 percent, 65 percent, and 75 percent

respectively for low, equal, and high variance conditions. When the shortest maturity deep-out-of-the-

money options are excluded,  the average RMSE for the remaining 168 cases is 3.60 percent, 1.85

percent, and 3.56 percent respectively for low, equal, and high variance conditions. Examining the bias

proportions for the shortest maturity deep-out-of-the-money options vs. all other options, we find that
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the p.d. bias is at the source of the worst errors of the BS model. For the 7 (168) shortest maturity

deep-out-of-the-money (all other) options, the p.d. bias PROP is 70 (36)  percent, 95 (57), and 75 (32)

percent respectively for low, equal, and high initial variance conditions.

Unfortunately, neither MBS nor PGARCH provides any significant improvement in RMSE over

the BS model for the shortest maturity deep-out-of-the-money options. We further examine the cases

(14 low variance, 9 equal variance, and 15 high variance) where the BS model RMSE is greater than

20 percent. Panel C of Table 7 shows that the average RMSE of the BS model in these cases is 44

percent  for low variance condition, 59 percent for equal variance condition, and 55 percent for high

variance condition.28 The corresponding average RMSE figures for the MBS (PGARCH) formula are

46 (41) percent, 52 (52) percent, and 50 (32) percent respectively.

E.  Nearly Integrated Cases

In dealing with asset returns, empirical studies often find a very high level of variance persistence or

a situation of nearly integrated variance process as indicated by estimated γ values exceeding 0.90.  Ng

(1991) reports γ values in the range of 0.90 to 0.93 for monthly excess returns on both small and large

size portfolios of U.S. stocks during 1931-1987.  Akgiray (1989) finds γ values exceeding 0.96 for the

CRSP value-weighted and equally-weighted daily returns during the various subperiods of 1963-1986.

Engle and Mustafa’s (1992) γ values for daily returns (July 1962 to December 1985) on the S&P 500

and 5 large U.S. stocks are all around 1.0. In Heynen and Kat’s (1994) study of the 1980-1987 daily

returns,  4 of the 7 stock indices and 3 of the 5 currencies show γ values in excess of 0.97.  Lamoureux

and Lastrapes (1990) examine the daily returns of 20 actively traded stocks with CBOE options during

the 1980-1984 period.  They report  γ values in excess of 0.97 for 5 of the 20 stocks in their sample.  In

all these and other cases, γ values are dominated by the β1 parameter for which a value greater than

0.90 is not uncommon.  Thus the empirical evidence on returns of many financial assets seems to

indicate a relatively small immediate impact of a variance innovation which however is nearly

permanent.

                    
   Panel C of Table 7 indicates that when the cases where the RMSE of  the BS model is more than 20 percent are compared with the cases where the RMSE

he BS model is less than 20 percent, the former cases are characterized by a significantly higher and dominant P.D. bias proportion. Thus the p.d. bias
ars to be responsible for the worst errors of the BS model.

Given the empirical relevance of these nearly integrated situations and the fact that our simulation

results so far also indicate larger biases for the BS model and larger simulation errors for the GARCH

price, we report in Appendix A the case by case simulation results for some nearly integrated (α1=0.05,
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β1=0.94, γ=0.99) cases.  For the sake of brevity, we only consider the middle value (0.10) of λ, and

ignore the equal variance cases.

Some key features noted earlier show up in the nearly integrated cases as expected albeit with a

greater intensity.  GARCH simulation errors and the BS model bias in percentage terms decrease with

moneyness and time to maturity. Compared to the results reported earlier, the importance of the

GARCH valuation effect is not limited to the deep-out-of-the-money shortest maturity (30 days)

options only.  Even at-the-money options maturing in 6 months can have BS error in excess of 10

percent.

A very important feature of the nearly integrated cases is that the GARCH valuation effect (BS

model bias) is dominated by the conditional variance bias and the p.d.bias is relatively unimportant.  As

a result, the BS model consistently overprices (underprices) options in low (high) variance conditions. 

With near integration (with α1 approaching zero and β1 approaching 1.0), the conditional variance

innovations are nearly perfectly correlated and their effect decays extremely slowly; if conditional

variance starts at a high level, it is expected to remain high for a long time.  Since the future conditional

variances are highly predictable in this situation, not much variance is expected for them and the

average expected variance is like an average over a deterministic path of variance (the complete

stochastic path of the variance becomes less important).      

This suggests that our PGARCH formula should approximate the GARCH price fairly well in the

nearly integrated situations (where β1 is the major component) since it corrects the c.v. bias as well as

the u.v. bias and the p.d. bias is relatively a small component.  The results in Appendix A lend support

to this contention.  Except for the shortest maturity deep-out-of-the-money options, the percentage

error of the PGARCH formula is  under 6%.  For the widely traded at-the-money options, the

PGARCH bias is about 2% or less.  Thus, in  commonly found empirical situations, the PGARCH

formula may offer an attractive practical alternative to the simulated GARCH price which is more

accurate but computationally more involved.

F.  Some Implications

In what follows, we discuss some key implications of our simulation results for option valuation, the

empirical biases of the BS model, and option-like economic situations. 
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F.1 Option valuation

A number of option valuation implications emerge from our simulation results. First, among the

GARCH process parameters, the level of variance persistence, γ,  is relatively more consequential for

the GARCH option price. This is especially so for out-of-the-money options maturing in 90 days or

earlier.  For these options, the standard error of the simulated GARCH price is also relatively high. 

Researchers and practitioners should  thus strive for accurate estimates of γ in implementing Duan's

GARCH option valuation model for the out-of-the-money short maturity options.

Second, the magnitude of the Black-Scholes (BS) model bias is the largest in percentage terms

(often exceeding 14 percent) for the deep-out-of-the-money options maturing in 30 days or earlier. 

Hence, implementation of the GARCH option valuation model is recommended (strongly) for out-of-

the-money options (deep-out-of-the-money) maturing in 90 (30) days or earlier. These options should,

of course, be avoided if the BS model is inverted to imply the GARCH process parameters from the

observed market prices.

Third, for options other than the deep-out-of-the-money shortest maturity ones, the absolute

percentage bias of the BS model is under 4 percent on average. In fact, the BS model absolute bias is

less than the standard error of the simulated GARCH price in about 11 percent of the cases that we

have considered. These are typically options maturing in 180 days or later.    

With the advent of the new breed of long-dated options (e.g., LEAPS and FLEX) and the

increasing body of evidence indicating that volatility is not constant over an extended period of time,  it

is somewhat reassuring to know that the Black-Scholes model with a constant (unconditional or

stationary) volatility provides a good approximation to the GARCH(1,1) theoretical option price for

longer maturities. For some major asset classes, Figlewski (1994) finds that over horizons extending up

to 10 years the historical volatility estimate produces a better forecast of the future volatility than the

GARCH (1,1) model. Our results suggest that there is hope in implying the unconditional or stationary

volatility from the Black-Scholes model using the observed long-dated option prices. We should

however caution that we have not explored the accuracy of the Black-Scholes model with a constant

volatility in approximating the hedge ratio of long-dated theoretical options under the GARCH (1,1)

model.
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Fourth, if the variance process is nearly integrated,  the BS model bias can be significant even for

options other than the deep-out-of-the-money very short maturity ones. Given that various empirical

studies report nearly integrated situations with a high β1 value, caution should be exercised in using the

BS model in these situations for valuation, ISD estimation, and other purposes.  Duan’s (1995)

GARCH option valuation model is appropriate under these circumstances.

However, for options other than the deep-out-of-the-money very short maturity ones, the Pseudo-

GARCH formula presented in this paper offers an attractive alternative to the more accurate simulated

GARCH price of Duan. This is specially so for at-the-money options where the Pseudo-GARCH error

is 2% or less.  At-the-money options are , of course, the most actively traded contracts on the

organized exchanges.

F.2 Empirical Biases of the BS Model 

To finance researchers, the direction of the BS model bias is of equal, if not more, interest as the

magnitude of the bias. As suggested by Duan (1995), the GARCH option pricing model helps explain

some of the well-known empirical biases of the BS model.  In this paper, we decompose the bias into

three components.  Simulation results on the three components of the BS model bias or the GARCH

valuation effect sheds further light on this issue.

Consistent with the popular "smile effect" in implied volatility and similar to the Black-Scholes bias

under Merton's (1976) jump diffusion model, deep-in-the-money and deep-out-of-the-money (at-the-

money) options with a very short time to expiration are underpriced (overpriced) by the BS model.

This striking price bias of the BS model is caused by the direction and the relative importance of the

bias component related to the nonlinear and path-dependent nature of GARCH option pricing.

However, it should be mentioned that the striking price bias can take different forms depending upon

the initial conditional variance situation and the unit risk premium level. Thus the GARCH option

pricing model seems general enough to accommodate the conflicting striking price biases reported in a

number of empirical studies (e.g., Black (1975), MacBeth and Merville (1979), and Rubinstein (1985)).

Averaging across all maturities, the at-the-money options are overpriced (underpriced) by the BS

model when the initial conditional variance is lower than or equal to (higher than) the unconditional
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variance. This pattern is driven by a change in the direction of the bias component related to the

conditional nature of the variance process. The behaviour of this conditional variance bias also helps

explain the time to maturity bias reversal phenomenon (Rubinstein (1985), Sheikh (1991)). On the

other hand, the relative importance of the bias component related to a change in the unconditional

variance under Duan's locally risk-neutral pricing measure is responsible for consistent underpricing (by

the BS model) of options with a very long time to maturity.

Two decades ago Black (1975, p.41) observed that there are times when most traded options seem

underpriced and times when most traded options seem overpriced relative to the BS model price. One

of the two possible explanations that Black provided was that ".. may be that the market is expecting

volatilities to be generally lower or generally higher than the estimates used in the formula, ..", alluding

in his discussion to a mean reverting conditional variance process. Consistent with this, our simulation

results show that  in general the BS model overprices (underprices) options when the initial conditional

variance is lower than (higher than or equal to) the unconditional variance. A key factor here is the

opposing influences of the change in the unconditional variance and the nonlinear and path-dependent

nature of GARCH option pricing.

The second explanation advanced by Black was that ".. it may be that factors unrelated to option

values are affecting the option prices." From our simulation results, it seems that one such factor could

be a time varying risk premium. As the unit risk premium increases from its low level to its high level, a

general pattern of overpricing by the BS model turns into a pattern of underpricing under the low and

equal initial conditional variance situations. The low and equal initial conditional variance situations are

of course more common place than the high initial conditional variance situation.

We should, however, note that while the unit risk premium affects the direction of the BS model

bias, the GARCH (1,1) process persistence level is more important in determining the size of the bias. 

The immediate impact parameter, α, on the other hand plays an important role in determining the

composition of the bias in most cases. 

 F.3 Option-like situations

Option valuation models are often used to gain insights into other economic situations that are

option-like.  Our simulation results have some important implications in this regard.
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First, equity in a levered firm can be viewed as a call option on the assets of the firm (Black and

Scholes (1973)). For solvent firms, which is the typical situation, value of the assets exceeds the debt

obligations and as such the equity interest would be an in-the-money call option. Our results suggest

that if the asset value is heteroskedastic and follows a GARCH(1,1) process, the constant volatility

Black-Scholes model can still be relied upon to estimate the option-theoretic value of equity in a

levered firm.

Second, for firms which are in a near bankruptcy situation, i.e., the market value of the assets is not

nearly enough to cover the debt obligations and the debt payment date is close, the equity can be

viewed as a deep-out-of-the-money option with a very short time to expiration. Since situations like

this are often characterized by a sharp and sustained increase in volatility of asset value (e.g., real estate

and resource-based companies, financial institutions  lending to real estate and resource-based

companies, firms with significant business interests in locations experiencing political instability, etc.),

volatility models such as the GARCH (1,1) specification may be appropriate. Consequently, as

indicated by our results, the use of a constant volatility Black-Scholes model may lead to serious errors

(underpricing) in estimating the equity value. In the absence of taxes and other market imperfections,

this would also mean errors (overpricing) in estimating the debt value. Practitioners should thus

exercise caution in using the Black-Scholes model with a constant volatility to estimate the value of

risky debt or to assess the implied political risk in the case of sovereign debt.

Third, deposit insurance obtained by a financial institution can be viewed as a put option (Merton

(1977,1978)) on its assets. Obviously, on the basis of our results and the put-call parity relationship, the

insurance will be mispriced if the insurer uses the Black-Scholes model with a constant volatility to

determine the premium when the value of assets follow a GARCH (1,1) process. For solvent financial

institutions, the put option would be deep-out-of-the-money and the mispricing would be modest.

However, when the financial institution is near bankruptcy, the put option is deep-in-the-money with a

short maturity (the next audit date is close) and use of the Black-Scholes model with a constant

volatility will lead to a significant mispricing (undervaluation) of the deposit insurance.

  

IV. Summary
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In this paper, we study the behaviour of European stock option prices when the stock returns follow a

GARCH (1,1) process. The appropriate theoretical price of an option in this case is provided by Duan's

(1995) GARCH option pricing model. Since the terminal stock price distribution does not conform to

known functional forms, the GARCH option price is calculated using simulations and is thus subject to

sampling error.

The GARCH option price is a function of the initial conditional variance, the unit risk premium on

the stock, and the GARCH process parameters. Our simulation results for a variety of option valuation

situations suggest that the  GARCH option price is not, in general, very sensitive to the level of initial

conditional variance. The level of variance persistence appears more consequential for the GARCH

option price. This is especially so for out-of-the-money options maturing in 90 days or earlier.  For

these options, the standard error of the simulated GARCH price is also relatively high.  Researchers

and practitioners should  thus strive for accurate estimates of γ in implementing Duan's GARCH option

valuation model for the out-of-the-money short maturity options.

The magnitude of the Black-Scholes (BS) model bias is the largest in percentage terms (often

exceeding 14 percent) for the deep-out-of-the-money options maturing in 30 days or earlier.  For other

options, the absolute percentage bias is under 4 percent on average. In fact, the BS model absolute bias

is less than the standard error of the simulated GARCH price in about 11 percent of the cases that we

have considered. These cases are typically the ones with low to moderate α1  and λ values and options

maturing in 180 days or later.  

We have also tried two modifications to the BS model. The first one, modified BS, inserts the

unconditional stock return variance under Duan's locally risk-neutral price measure into the BS

formula. The second one, Pseudo-GARCH, uses the  average expected conditional variance (under

Duan's measure Q) in the BS formula. Our simulation results suggest that the two modified formulas

do not in general result in any material improvement over the BS model.  However, in the commonly

found nearly integrated variance situations, the Pseudo-GARCH formula offers significant

improvement over the BS model.  At-the-money options with maturity more than a month are the most

actively traded options.  For these options, the Pseudo-GARCH formula’s error is about 2 percent or

less for stocks with nearly integrated variance process.
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Duan (1995) suggested that the GARCH option valuation model helps explain some of the well-

known empirical biases of the Black-Scholes model. An important benefit of the two new formulas

considered in this paper (MBS and PGARCH) is that they allow a rough breakdown of the GARCH

option valuation effect (difference between BS and GARCH) into three components: the effect of

change in the unconditional variance under Duan's locally risk-neutral measure (BS - MBS) or the u.v.

bias, the effect of the conditional nature of the variance process (MBS - PGARCH) or the c.v. bias,

and the nonlinear and path-dependent nature of GARCH option pricing (PGARCH - GARCH) or the

p.d. bias. Our simulation results indicate that the three components of the BS model bias are not

always of the same sign. Their relative importance (magnitude) also varies across different option

valuation situations. The interaction of these factors leads to the determination of the direction of the

BS model bias in a given option valuation situation. These include the “smile effect”, the  conflicting

striking price biases (Black (1975), MacBeth and Merville (1979), and Rubinstein (1985)), and the

general overpricing or underpricing bias (Black (1975)).

Additionally, we discuss implications of GARCH effect in some option-like situations, e.g., equity

of a levered firm, claims on firms nearing bankruptcy, and deposit insurance.  
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Table 1
The Behaviour of GARCH European Call Option Prices (GARCH) and the Associated
Simulation Standard Error as a Percentage of the Price (GARCHPSR)(a)
____________________________________________________________________________

   (Initial Standard Deviation of Logarithmic Stock Returns)/
  (Unconditional Standard Deviation of Logarithmic Stock

Returns):
         0.75             1.00         1.25

____________________________________________________________________________
  Mean  Mean      Mean    Mean      Mean   Mean

   N    GARCH GARCHPSR  GARCH   GARCHPSR  GARCH  GARCHPSR
____________________________________________________________________________

    All       175  9.878  0.636     9.942  0.569    10.021   0.54
____________________________________________________________________________
   
    S/X=0.8    35  1.560  2.364     1.587  2.090     1.624  1.949
    S/X=0.9    35  3.528  0.508     3.591  0.444     3.670  0.431
    S/X=1.0    35  7.512  0.167     7.617  0.165     7.743  0.171
    S/X=1.1    35 14.230  0.087    14.306  0.087    14.402  0.091
    S/X=1.2    35 22.559  0.056    22.607  0.057    22.668  0.059
____________________________________________________________________________
   
    T= 30 Days 35  6.622  1.931     6.689  1.649     6.772  1.529
    T= 90 Days 35  7.611  0.492     7.688  0.451     7.785  0.430
    T=180 Days 35  8.977  0.300     9.048  0.290     9.137  0.287
    T=360 Days 35 11.290  0.238    11.349  0.236    11.422  0.236
    T=720 Days 35 14.889  0.218    14.935  0.218    14.991  0.218
____________________________________________________________________________
   
    λ =0.01    25  9.983  0.538    10.017  0.510    10.061  0.484
    λ =0.10   125  9.837  0.668     9.913  0.583    10.007  0.553
    λ =0.20    25  9.974  0.572    10.009  0.555    10.055  0.534
____________________________________________________________________________
   
    α1=0.050   25 10.007  0.206    10.027  0.169    10.053  0.234
    α1=0.175  125  9.904  0.635     9.968  0.572    10.048  0.535
    α1=0.300   25  9.620  1.072     9.727  0.953     9.859  0.871
____________________________________________________________________________

    β1=0.50    25 10.002  0.427    10.020  0.423    10.044  0.428
    β1=0.65   125  9.913  0.587     9.959  0.542    10.017  0.524
    β1=0.80    25  9.578  1.089     9.776  0.850    10.020  0.731
____________________________________________________________________________
    α1+β1:
0.675,0.700  50 10.000  0.316 10.020  0.296    10.050  0.331
      0.825  75  9.979  0.553 10.014  0.529    10.058  0.506
0.950,0.975  50  9.600  1.080  9.750  0.901     9.940  0.801 
____________________________________________________________________________
(a) When comparing prices for the alternative levels of a given GARCH process
or preference parameter (say, λ), the middle values for the other such
parameters (α1=0.175, β1=0.65) are assumed. Thus the number of cases (N)
corresponding to the middle value of any of these parameters is high (125).



Table 2
The Black-Scholes Prices (BS) Compared to GARCH Prices (G) for European
Call Options(a)
_____________________________________________________________________________
_

    (Initial Standard Deviation of Logarithmic Stock Returns)/ 
  (Unconditional Standard Deviation of Logarithmic Stock Returns):

                 0.75       1.00   1.25
_____________________________________________________________________________
_                N     Mean   Stdev     Mean   Stdev     Mean  
Stdev
_____________________________________________________________________________
_
A. All cases
 BS-G        175    0.067   0.154    0.003  0.107   -0.077   0.114
|BS-G|       175    0.096   0.137    0.065  0.085    0.095   0.099
100*|BS-G|/G 175    5.628  13.556    4.398 14.236    6.426  16.887
_____________________________________________________________________________
_
B. Deep-out-of-the-money (S/X=0.8)
 BS-G         35    0.034   0.085    0.007   0.065   -0.030   0.063
|BS-G|        35    0.046   0.079    0.032   0.057    0.044   0.054
100*|BS-G|/G  35   14.380  23.908   16.507  28.509   21.256  31.318
-----------------------------------------------------------------------------
-
C. Near-out-of-the-money (S/X=0.9)
 BS-G         35    0.101   0.155    0.038   0.110   -0.041   0.094
|BS-G|        35    0.113   0.146    0.064   0.097    0.074   0.071
100*|BS-G|/G  35    8.996  13.617    3.257   5.105    7.364  12.570
-----------------------------------------------------------------------------
-
D. At-the-money (S/X=1.0)
 BS-G         35    0.160   0.219    0.055   0.133   -0.071   0.118
|BS-G|        35    0.181   0.201    0.091   0.110    0.105   0.089
100*|BS-G|/G  35    3.919   5.784    1.456   1.916    1.973   2.384
-----------------------------------------------------------------------------
-
E. Near-in-the-money (S/X=1.1)
 BS-G         35    0.056   0.132   -0.021   0.093   -0.117   0.122
|BS-G|        35    0.092   0.109    0.064   0.069    0.128   0.110
100*|BS-G|/G  35    0.637   0.738    0.450   0.441    0.971   0.922
-----------------------------------------------------------------------------
-
F. Deep-in-the-money (S/X=1.2)
 BS-G         35   -0.017   0.075   -0.064   0.081   -0.126   0.129
|BS-G|        35    0.048   0.059    0.072   0.074    0.127   0.128
100*|BS-G|/G  35    0.206   0.234    0.322   0.325    0.566   0.575
_____________________________________________________________________________
_
G. T = 30 Days
 BS-G         35    0.052   0.125   -0.014   0.055   -0.097   0.100
|BS-G|        35    0.063   0.120    0.035   0.044    0.097   0.100
100*|BS-G|/G  35   17.462  25.504   15.126  28.309   21.840  31.055
-----------------------------------------------------------------------------
-
H. T = 90 Days
 BS-G         35    0.067   0.151   -0.011   0.090   -0.107   0.116
|BS-G|        35    0.089   0.139    0.054   0.073    0.109   0.114
100*|BS-G|/G  35    4.618   8.043    3.495   8.545    6.252  12.436
-----------------------------------------------------------------------------
-
I. T = 180 Days
 BS-G         35    0.076   0.161    0.005   0.109   -0.084   0.111
|BS-G|        35    0.097   0.149    0.064   0.087    0.098   0.098
100*|BS-G|/G  35    2.911   4.974    1.272   2.208    2.253   3.532
-----------------------------------------------------------------------------
-
J. T = 360 Days
 BS-G         35    0.072   0.164    0.013   0.122   -0.061   0.109



|BS-G|        35    0.110   0.141    0.079   0.094    0.089   0.086
100*|BS-G|/G  35    1.919   3.223    1.187   1.891    1.080   1.106
-----------------------------------------------------------------------------
-
K. T = 720 Days
 BS-G         35    0.066   0.171    0.021   0.141   -0.036   0.123
|BS-G|        35    0.122   0.135    0.093   0.106    0.083   0.096
100*|BS-G|/G  35    1.227   1.822    0.911   1.347    0.706   0.977
_____________________________________________________________________________
_



Table 2 (Continued)
The Black-Scholes Prices (BS) Compared to GARCH Prices (G) for European
Call Options
_____________________________________________________________________________
_

    (Initial Standard Deviation of Logarithmic Stock Returns)/ 
  (Unconditional Standard Deviation of Logarithmic Stock Returns):

             0.75       1.00   1.25
_____________________________________________________________________________
_                N     Mean   Stdev     Mean   Stdev     Mean  
Stdev
_____________________________________________________________________________
_
L. λ=0.01
 BS-G         25    0.043   0.036    0.009   0.019   -0.034   0.028
|BS-G|        25    0.044   0.034    0.018   0.012    0.036   0.026
100*|BS-G|/G  25    3.967  12.852    3.855  14.750    5.609  16.849
-----------------------------------------------------------------------------
-
M. λ=0.10
 BS-G        125   0.099   0.162    0.023   0.109   -0.071   0.123
|BS-G|       125   0.108   0.156    0.066   0.089    0.096   0.104
100*|BS-G|/G 125   6.314  14.408    4.667  14.634    6.638  17.395
-----------------------------------------------------------------------------
-
N. λ=0.20
 BS-G         25   -0.070   0.092   -0.106   0.085   -0.151   0.085
|BS-G|        25    0.088   0.075    0.106   0.085    0.151   0.085
100*|BS-G|/G  25    3.858   9.278    3.596  11.996    6.183  14.805
_____________________________________________________________________________
_
P. α1=0.050
 BS-G         25    0.015   0.016   -0.005   0.007   -0.031   0.018
|BS-G|        25    0.015   0.016    0.006   0.006    0.031   0.018
100*|BS-G|/G  25    1.257   2.522    0.790   3.624    2.763   7.745
-----------------------------------------------------------------------------
-
Q. α1=0.175
 BS-G        125   0.046   0.140   -0.018   0.086   -0.098   0.105
|BS-G|       125   0.083   0.122    0.055   0.068    0.099   0.104
100*|BS-G|/G 125   5.330  13.287    4.153  14.130    6.500  16.960
-----------------------------------------------------------------------------
-
R. α1=0.300
 BS-G         25    0.221   0.198    0.115   0.172   -0.017   0.167
|BS-G|        25    0.241   0.172    0.172   0.111    0.143   0.084
100*|BS-G|/G  25   11.488  18.914    9.231  19.657    9.718  22.273
_____________________________________________________________________________
_
S. β1=0.50
 BS-G         25    0.009   0.022   -0.010   0.014   -0.033   0.019
|BS-G|        25    0.016   0.017    0.013   0.012    0.033   0.019
100*|BS-G|/G  25    2.501   7.902    2.145   9.657    3.554  11.918
-----------------------------------------------------------------------------
-
T. β1=0.65
 BS-G        125   0.045   0.138   -0.001   0.111   -0.059   0.098
|BS-G|       125   0.084   0.119    0.065   0.090    0.084   0.077
100*|BS-G|/G 125   4.878  12.437    4.127  13.749    5.909  16.057
-----------------------------------------------------------------------------
-
U. β1=0.80
 BS-G         25    0.232   0.193    0.034   0.134   -0.210   0.147
|BS-G|        25    0.238   0.185    0.116   0.071    0.212   0.145
100*|BS-G|/G  25   12.500  20.208    8.007  19.497   11.884  23.501
_____________________________________________________________________________
_



Table 2 (Continued)
The Black-Scholes Prices (BS) Compared to GARCH Prices (G) for European
Call Options
_____________________________________________________________________________
_

(Initial Standard Deviation of Logarithmic Stock Returns)/ 
     (Unconditional Standard Deviation of Logarithmic Stock

Returns):
              0.75       1.00   1.25

_____________________________________________________________________________
_                N     Mean   Stdev     Mean   Stdev     Mean  
Stdev
_____________________________________________________________________________
_
V. α1+β1=0.675,0.700
 BS-G         50    0.012   0.019   -0.007   0.011   -0.032   0.018   
|BS-G|        50    0.016   0.016    0.009   0.010    0.032   0.018
100*|BS-G|/G  50    1.879   5.839    1.470   7.250    3.160   9.960
-----------------------------------------------------------------------------
-
W. α1+β1=0.825
 BS-G         75   -0.004   0.078   -0.038   0.072   -0.082   0.074
|BS-G|        75    0.054   0.056    0.049   0.064    0.083   0.073
100*|BS-G|/G  75    3.880  11.000    3.540  13.200    5.690  15.600
-----------------------------------------------------------------------------
-
X. α1+β1=0.950,0.975
 BS-G         50    0.227   0.194    0.074   0.158   -0.114   0.184
|BS-G|        50    0.240   0.177    0.144   0.096    0.177   0.122
100*|BS-G|/G  50   11.990  19.380    8.620  19.390   10.080  22.690
_____________________________________________________________________________
_
(a) When comparing prices for the alternative levels of a given GARCH process
or preference parameter (say, λ), the middle values for the other such
parameters (α1=0.175, β1=0.65) are assumed. Thus the number of cases (N)
corresponding to the middle value of any of these parameters is high (125).



Table 3

The Bias of the Black-Scholes Model (BS - GARCH) Under Low, Equal and High
Initial Conditional Variance for Options Maturing in 180 Days and the Middle
Values of the GARCH Process Slope Parameters [Measure Q Unconditional
Volatility (σ)=0.25; Initial Conditional Voaltility (√h1)=0.75σ (low), σ  
(equal), 1.25σ (high)]
_____________________________________________________________________________
_

Initial Conditional Variance:
  Low     Equal   High       α1      β1    λ      T    S/X    

         (Days)
_____________________________________________________________________________
_

 0.011  -0.007  -0.031    0.175   0.65   0.01    180   0.8
  0.052   0.013  -0.036    0.175   0.65   0.01    180   0.9
  0.073   0.024  -0.038    0.175   0.65   0.01    180   1.0
  0.053   0.010  -0.047    0.175   0.65   0.01    180   1.1

 0.020  -0.011  -0.051    0.175   0.65   0.01    180   1.2

   0.022   0.004  -0.020    0.175   0.65   0.10    180   0.8
  0.050   0.011  -0.038    0.175   0.65   0.10    180   0.9
  0.043  -0.006  -0.069    0.175   0.65   0.10    180   1.0
  0.005  -0.039  -0.096  0.175   0.65   0.10    180   1.1

-0.029  -0.060  -0.101  0.175   0.65   0.10    180   1.2

 0.009  -0.009  -0.033       0.175   0.65   0.20    180   0.8
-0.001  -0.041  -0.092       0.175   0.65   0.20    180   0.9

 -0.053  -0.103  -0.168       0.175   0.65   0.20    180   1.0
 -0.107  -0.153  -0.211       0.175   0.65   0.20    180   1.1
 -0.127  -0.159  -0.201       0.175   0.65   0.20    180   1.2
_____________________________________________________________________________
_



Table 4
The Three components of the GARCH Option Valuation Effect: the Unconditional
Variance (U.V.) Bias (BS-MBS), the Conditional Variance (C.V.) Bias (MBS-
PGARCH), and the Path Dependence (P.D.) Bias (PGARCH-GARCH)(a)
_____________________________________________________________________________
_

(Initial Standard Deviation of Logarithmic Stock Returns)/ 
   (Unconditional Standard Deviation of Logarithmic Stock Returns):

           0.75       1.00  1.25
_____________________________________________________________________________
_
               N      Mean   Mean     Mean   Mean     Mean   Mean
                          Bias   PROP(a)   Bias   PROP     Bias   PROP
_____________________________________________________________________________
_
A. All Cases
U.V. Bias    175  -0.083  26.881  -0.083  41.172   -0.083  25.311
C.V. Bias    175   0.064  35.945   0.000   0.000   -0.081  40.735
P.D. Bias    175   0.085  37.174   0.085  58.828    0.087  33.955
_____________________________________________________________________________
_
B. Deep-out-of-the-money (S/X=0.8)
U.V. Bias 35  -0.053  24.075   -0.053  35.907   -0.053  23.145
C.V. Bias 35   0.028  30.888    0.000   0.000   -0.037  36.586
P.D. Bias 35   0.059  45.037    0.060  64.093    0.061  40.269
-----------------------------------------------------------------------------
-
C. Near-out-of-the-money (S/X=0.9)
U.V. Bias 35  -0.084  24.770   -0.084  44.436   -0.084  24.628
C.V. Bias 35   0.065  37.644    0.000   0.000   -0.084  45.280
P.D. Bias 35   0.120  37.586    0.122  55.564    0.126  30.092
-----------------------------------------------------------------------------
-
D. At-the-money (S/X=1.0)
U.V. Bias 35  -0.105  26.536   -0.105  42.532   -0.105  27.030
C.V. Bias 35   0.106  35.992    0.000   0.000   -0.128  45.753
P.D. Bias 35   0.159  37.472    0.160  57.468    0.162  27.217
-----------------------------------------------------------------------------
-
E. Near-in-the-money (S/X=1.1)
U.V. Bias 35  -0.095  31.501   -0.095  46.365   -0.095  27.172
C.V. Bias 35   0.076  43.588    0.000   0.000   -0.098  43.666
P.D. Bias 35   0.074  24.911    0.074  53.635    0.076  29.162
-----------------------------------------------------------------------------
-
F. Deep-in-the-money (S/X=1.2)
U.V. Bias 35  -0.076  27.521   -0.076  36.621   -0.076  24.578
C.V. Bias 35   0.044  31.613    0.000   0.000   -0.059  32.388
P.D. Bias 35   0.014  40.866    0.012  63.379    0.009  43.034
_____________________________________________________________________________
_
G. T = 30 Days
U.V. Bias 35  -0.014   8.591   -0.014  23.000   -0.014   6.632
C.V. Bias 35   0.061  46.174    0.000   0.000   -0.078  47.717
P.D. Bias 35   0.006  45.234    0.000  77.000   -0.005  45.650
-----------------------------------------------------------------------------
-
H. T = 90 Days
U.V. Bias 35  -0.040  19.465   -0.040  37.476   -0.040  17.288
C.V. Bias 35   0.079  47.384    0.000   0.000   -0.101  52.790
P.D. Bias 35   0.027  33.150    0.029  62.524    0.034  29.922
-----------------------------------------------------------------------------
-
I. T = 180 Days
U.V. Bias 35  -0.071  28.624   -0.071  45.814   -0.071  26.034
C.V. Bias 35   0.074  39.999    0.000   0.000   -0.094  45.401
P.D. Bias 35   0.073  31.377    0.076  54.186    0.081  28.565
-----------------------------------------------------------------------------
-



J. T = 360 Days
U.V. Bias 35  -0.115  36.684   -0.115  50.349   -0.115  34.461
C.V. Bias 35   0.060  29.352    0.000   0.000   -0.076  34.974
P.D. Bias 35   0.127  33.965    0.128  49.651    0.130  30.565
-----------------------------------------------------------------------------
-
K. T = 720 Days
U.V. Bias 35  -0.173  41.039   -0.173  49.220   -0.173  42.139
C.V. Bias 35   0.045  16.814    0.000   0.000   -0.058  22.790
P.D. Bias 35   0.194  42.147    0.194  50.780    0.195  35.072
_____________________________________________________________________________
_



Table 4 (Continued)
The Three components of the GARCH Option Valuation Effect: the Unconditional
Variance (U.V.) Bias (BS-MBS), the Conditional Variance (C.V.) Bias (MBS-
PGARCH), and the Path Dependence (P.D.) Bias (PGARCH-GARCH)(a)
_____________________________________________________________________________
_

    (Initial Standard Deviation of Logarithmic Stock Returns)/ 
  (Unconditional Standard Deviation of Logarithmic Stock Returns):

         0.75      1.00  1.25
_____________________________________________________________________________
_
               N    Mean   Mean      Mean   Mean     Mean   Mean
                    Bias   PROP(a)    Bias   PROP     Bias   PROP
_____________________________________________________________________________
_
L. λ=0.01
U.V. Bias 25    0.000   0.635    0.000   2.909    0.000   0.621
C.V. Bias 25    0.029  56.046    0.000   0.000   -0.037  65.177
P.D. Bias 25    0.015  43.319    0.010  97.091    0.003  34.202
-----------------------------------------------------------------------------
-
M. λ=0.10
U.V. Bias 125  -0.091  26.963   -0.091  44.416   -0.091  25.161
C.V. Bias 125   0.078  35.436    0.000   0.000   -0.099  39.577
P.D. Bias 125   0.112  37.602    0.114  55.584    0.119  35.262
-----------------------------------------------------------------------------
-
N. λ=0.20
U.V. Bias 25   -0.123  52.718   -0.123  63.217   -0.123  50.750
C.V. Bias 25    0.030  18.389    0.000   0.000   -0.039  22.080
P.D. Bias 25    0.023  28.893    0.018  36.783    0.011  27.170
_____________________________________________________________________________
_
P. α1=0.050
U.V. Bias 25   -0.005  17.993   -0.005  45.064   -0.005  17.178
C.V. Bias 25    0.014  52.379    0.000   0.000   -0.018  55.317
P.D. Bias 25    0.006  29.629    0.000  54.936   -0.007  27.505
-----------------------------------------------------------------------------
-
Q. α1=0.175
U.V. Bias 125  -0.077  28.668   -0.077  41.391   -0.077  27.164
C.V. Bias 125   0.063  34.980    0.000   0.000   -0.080  40.430
P.D. Bias 125   0.060  36.353    0.060  58.609    0.060  32.406
-----------------------------------------------------------------------------
-
R. α1=0.300
U.V. Bias 25   -0.185  26.834   -0.185  36.186   -0.185  24.177
C.V. Bias 25    0.116  24.336    0.000   0.000   -0.148  27.677
P.D. Bias 25    0.291  48.830    0.300  63.814    0.316  48.146
_____________________________________________________________________________
_
S. β1=0.50
U.V. Bias 25   -0.016  31.347   -0.016  48.196   -0.016  31.542
C.V. Bias 25    0.013  28.961    0.000   0.000   -0.016  35.970
P.D. Bias 25    0.013  39.692    0.007  51.804    0.000  32.488
-----------------------------------------------------------------------------
-
T. β1=0.65
U.V. Bias 125  -0.069  25.878   -0.069  39.505   -0.069  24.453
C.V. Bias 125   0.044  37.163    0.000   0.000   -0.056  41.931
P.D. Bias 125   0.071  36.960    0.068  60.495    0.066  33.616
-----------------------------------------------------------------------------
-
U. β1=0.80
U.V. Bias 25   -0.217  27.430   -0.217  42.484   -0.217  23.370
C.V. Bias 25    0.217  36.839    0.000   0.000   -0.274  39.516
P.D. Bias 25    0.232  35.731    0.251  57.516    0.280  37.114



_____________________________________________________________________________
_



Table 4 (Continued)
The Three components of the GARCH Option Valuation Effect: the Unconditional
Variance (U.V.) Bias (BS-MBS), the Conditional Variance (C.V.) Bias (MBS-
PGARCH), and the Path Dependence (P.D.) Bias (PGARCH-GARCH)(a)
_____________________________________________________________________________
_

      (Initial Standard Deviation of Logarithmic Stock Returns)/ 
   (Unconditional Standard Deviation of Logarithmic Stock Returns):

          0.75      1.00  1.25
_____________________________________________________________________________
_
               N     Mean   Mean    Mean   Mean      Mean   Mean
                    Bias   PROP(a)  Bias   PROP       Bias   PROP
_____________________________________________________________________________
_
V. α1+β1=0.0.675,0.700
U.V. Bias 50  -0.011   24.67   -0.011  46.63    -0.011  24.36       
C.V. Bias 50   0.014   40.67    0.000   0.00    -0.017  45.64
P.D. Bias 50   0.009   34.66    0.004  53.37    -0.004  30.00
-----------------------------------------------------------------------------
-
W. α1+β1=0.825
U.V. Bias 75  -0.051   28.19   -0.051  38.76    -0.051  26.97
C.V. Bias 75   0.029   36.37    0.000   0.00    -0.038  42.22
P.D. Bias 75   0.019   35.45    0.013  61.24     0.007  30.81
-----------------------------------------------------------------------------
-
X. α1+β1=0.950,0.975
U.V. Bias 50  -0.201   27.13   -0.201  39.34    -0.201  23.77
C.V. Bias 50   0.166   30.59    0.000   0.00    -0.211  33.60
P.D. Bias 50   0.261   42.28    0.276  60.66     0.298  42.63
_____________________________________________________________________________
_
(a) For a given option valuation situation, we first take the absolute value
of each of the three biases, sum these absolute values, and then express each
absolute value as a percentage of the sum to arrive at the PROP figure. PROP
for a bias is thus an estimate of the relative importance of the magnitude of
that bias in determining the overall or net GARCH option valuation effect,
BS-GARCH.



Table 5

The Black-Scholes Model Bias (BS-GARCH), U.V. Bias (BS-MBS), C.V. Bias (MBS-
PGARCH), P.D. Bias (PGARCH-GARCH), and Respective Percentage Proportion
(PROP) for At-the-Money (S/X=1.0) Options Under Low and High Initial
Conditional Variance [Measure Q Unconditional Volatility (σ)=0.25; Initial
Conditional Volatility (√h1)=0.75σ (low), 1.25σ  (high)]
_____________________________________________________________________________
_
  U.V.     C.V.     P.D.   BS-     α1    β1     λ      T     U.V.   C.V.   P.D.
  Bias     Bias     Bias  GARCH                   (Days)   Bias   Bias   Bias
                                                           PROP(a) PROP   PROP
_____________________________________________________________________________
_
A. Low Variance Situation

-0.014    0.102    0.067  0.154  0.175  0.65  0.10   30    7.89  55.64  36.47
-0.025    0.058    0.045  0.078  0.175  0.65  0.10   90   19.51  45.45  35.03
-0.035    0.041    0.038  0.043  0.175  0.65  0.10  180   30.93  35.85  33.22
-0.050    0.029    0.035  0.014  0.175  0.65  0.10  360   43.94  25.46  30.59
-0.070    0.020    0.049 -0.001  0.175  0.65  0.10  720   50.18  14.49  35.33
-----------------------------------------------------------------------------
-
B. High Variance Situation

-0.014   -0.126    0.030 -0.111  0.175  0.65  0.10   30    8.50  74.10  17.40
-0.025   -0.074    0.021 -0.078  0.175  0.65  0.10   90   20.85  61.73  17.42
-0.035   -0.052    0.019 -0.069  0.175  0.65  0.10  180   33.15  49.15  17.70
-0.050   -0.037    0.022 -0.064  0.175  0.65  0.10  360   45.72  33.86  20.42
-0.070   -0.026    0.041 -0.054  0.175  0.65  0.10  720   50.91  18.95  30.14
_____________________________________________________________________________
_
(a) For a given option valuation situation, we first take the absolute value
of each of the three biases, sum these absolute values, and then express each
absolute value as a percentage of the sum to arrive at the PROP figure. PROP
for a bias is thus an estimate of the relative importance of the magnitude of
that bias in determining the overall or net GARCH option valuation effect,
BS-GARCH.



Table 6
Absolute Percentage Bias of  Black-Scholes (BS), Pseudo-GARCH (PGARCH), and
Modified Black-Scholes (MBS) Models, and Simulation Standard Error (as a
Percentage of the Price) of GARCH Option pricing Model
_____________________________________________________________________________
_

  (Initial Standard Deviation of Logarithmic Stock Returns)/
(Unconditional Standard Deviation of Logarithmic Stock Returns):

   0.75 1.00   1.25
_____________________________________________________________________________
_

 N     Mean   Stdev     Mean   Stdev     Mean   Stdev
_____________________________________________________________________________
_
A. All Cases
BS      175    5.628  13.556   4.398  14.236    6.426  16.887
MBS     175    7.148  14.740   5.040  13.551    5.931  16.023
PGARCH  175    5.533  14.595   5.040  13.551    4.792  12.547
GARCH   175    0.636   1.729   0.569   1.477    0.540   1.342
_____________________________________________________________________________
_
B. Deep-out-of-the-money (S/X=0.8)
BS       35   14.380  23.908   16.507  28.509   21.256  31.318
MBS      35   16.158  21.615   17.244  26.265   19.933  30.244
PGARCH   35   18.628  28.239   17.244  26.265   16.021  24.145
GARCH    35    2.364   3.315    2.090   2.809    1.949   2.531
C. Near-out-of-the-money (S/X=0.9)
BS       35    8.996  13.617    3.257   5.105    7.364  12.570
MBS      35   13.031  19.543    4.533   5.854    6.704  10.747
PGARCH   35    5.575   6.527    4.533   5.854    4.456   5.960
GARCH    35    0.508   0.559    0.444   0.424    0.431   0.375
D. At-the-money (S/X=1.0)
BS       35    3.919   5.784    1.456   1.916    1.973   2.384
MBS      35    5.215   7.108    2.486   3.334    1.793   2.098
PGARCH   35    2.593   3.156    2.486   3.334    2.443   3.552
GARCH    35    0.167   0.113    0.165   0.116    0.171   0.117
E. Near-in-the-money (S/X=1.1)
BS       35    0.637   0.738    0.450   0.441    0.971   0.922
MBS      35    1.023   1.468    0.647   0.994    0.809   0.845
PGARCH   35    0.597   0.977    0.647   0.994    0.719   1.030
GARCH    35    0.087   0.078    0.087   0.079    0.091   0.080
F. Deep-in-the-money (S/X=1.2)
BS       35    0.206   0.234    0.322   0.325    0.566   0.575
MBS      35    0.315   0.577    0.292   0.433    0.418   0.454
PGARCH   35    0.271   0.425    0.292   0.433    0.321   0.446
GARCH    35    0.056   0.059    0.057   0.060    0.059   0.061
_____________________________________________________________________________
_
G. T = 30 Days
BS       35   17.462  25.504   15.126  28.309   21.840  31.055
MBS      35   18.468  26.419   14.130  27.050   20.418  30.176
PGARCH   35   15.953  28.751   14.130  27.050   13.296  24.935
GARCH    35    1.931   3.453    1.649   2.945    1.529   2.665
H. T = 90 Days
BS       35    4.618   8.043    3.495   8.545    6.252  12.436
MBS      35    6.351  10.748    3.887   6.806    4.723  10.237
PGARCH   35    4.519   8.281    3.887   6.806    3.435   5.752
GARCH    35    0.492   0.908    0.451   0.805    0.430   0.728
I. T = 180 Days
BS       35    2.911   4.974    1.272   2.208    2.253   3.532
MBS      35    5.071   8.568    2.768   4.756    1.540   2.361
PGARCH   35    2.730   4.555    2.768   4.756    2.837   5.032
GARCH    35    0.300   0.467    0.290   0.441    0.287   0.419
J. T = 360 Days
BS       35    1.919   3.223    1.187   1.891    1.080   1.106
MBS      35    3.434   5.956    2.444   4.437    1.519   2.790
PGARCH   35    2.470   4.426    2.444   4.437    2.437   4.474
GARCH    35    0.238   0.286    0.236   0.280    0.236   0.275



Table 6 (Continued)
Absolute Percentage Bias of  Black-Scholes (BS), Pseudo-GARCH (PGARCH), and
Modified Black-Scholes (MBS) Models, and Simulation Standard Error (as a
Percentage of the Price) of Duan's (1995) GARCH Option pricing Model
_____________________________________________________________________________
_

   (Initial Standard Deviation of Logarithmic Stock Returns)/
(Unconditional Standard Deviation of Logarithmic Stock Returns):

  0.75       1.00   1.25
_____________________________________________________________________________
_

N     Mean   Stdev     Mean   Stdev     Mean   Stdev
_____________________________________________________________________________
_
K. T = 720 Days
BS       35    1.227   1.822    0.911   1.347    0.706   0.977
MBS      35    2.419   3.910    1.973   3.330    1.456   2.656
PGARCH   35    1.993   3.334    1.973   3.330    1.954   3.341
GARCH    35    0.218   0.201    0.218   0.201    0.218   0.200
_____________________________________________________________________________
_
L. λ = 0.01
BS       25    3.967  12.852    3.855  14.750    5.609  16.849
MBS      25    3.972  12.851    3.858  14.750    5.605  16.850
PGARCH   25    4.028  15.609    3.858  14.750    3.797  14.217
GARCH    25    0.538   1.639    0.510   1.542    0.484   1.411
M. λ = 0.10
BS      125   6.314  14.408    4.667  14.634    6.638  17.395
MBS     125   8.229  15.946    5.515  13.979    6.396  16.411
PGARCH  125   6.067  15.041    5.515  13.979    5.275  12.849
GARCH   125   0.668   1.746    0.583   1.415    0.553   1.267
N. λ = 0.20
BS       25    3.858   9.278    3.596  11.996    6.183  14.805
MBS      25    4.924   8.635    3.849  10.000    3.933  13.433
PGARCH   25    4.368  11.254    3.849  10.000    3.375   9.045
GARCH    25    0.572   1.792    0.555   1.760    0.534   1.660
_____________________________________________________________________________
_
P. α1 = 0.050
BS       25    1.257   2.522    0.790   3.624    2.763   7.745
MBS      25    1.370   2.598    0.841   3.615    2.654   7.744
PGARCH   25    1.094   3.527    0.841   3.615    1.111   4.131
GARCH    25    0.206   0.742    0.169   0.613    0.234   0.887
Q. α1 = 0.175
BS      125   5.330  13.287    4.153  14.130    6.500  16.960
MBS     125   6.758  14.502    4.616  13.300    5.629  16.115
PGARCH  125   5.104  14.496    4.616  13.300    4.338  12.262
GARCH   125   0.635   1.803    0.572   1.562    0.535   1.413
R. α1 = 0.300
BS       25   11.488  18.914    9.231  19.657    9.718  22.273
MBS      25   14.879  19.594   11.360  18.531   10.720  20.591
PGARCH   25   12.117  19.484   11.360  18.531   10.742  17.184
GARCH    25    1.072   1.981    0.953   1.590    0.871   1.316
_____________________________________________________________________________
_
S. β1 = 0.50
BS       25    2.501   7.902    2.145   9.657    3.554  11.918
MBS      25    2.711   7.231    2.183   9.023    3.180  11.459
PGARCH   25    2.487   9.190    2.183   9.023    2.252   9.473
GARCH    25    0.427   1.370    0.423   1.376    0.428   1.397
T. β1 = 0.65
BS      125   4.878  12.437    4.127  13.749    5.909  16.057
MBS     125   5.906  12.866    4.624  13.228    5.521  15.411
PGARCH  125   5.041  14.107    4.624  13.228    4.430  12.465
GARCH   125   0.587   1.625    0.542   1.479    0.524   1.372
U. β1 = 0.80
BS       25   12.500  20.208    8.007  19.497   11.884  23.501
MBS      25   17.797  22.823    9.980  17.635   10.743  21.682



PGARCH   25   11.039  19.729    9.980  17.635    9.141  14.889
GARCH         25    1.089   2.424    0.850   1.589    0.731   1.146



Table 6 (Continued)
Absolute Percentage Bias of  Black-Scholes (BS), Pseudo-GARCH (PGARCH), and
Modified Black-Scholes (MBS) Models, and Simulation Standard Error (as a
Percentage of the Price) of Duan's (1995) GARCH Option pricing Model
_____________________________________________________________________________
_

  (Initial Standard Deviation of Logarithmic Stock Returns)/
(Unconditional Standard Deviation of Logarithmic Stock Returns):

    0.75 1.00   1.25
_____________________________________________________________________________
_

 N     Mean   Stdev     Mean   Stdev    Mean   Stdev
_____________________________________________________________________________
_
V. α1+β1=0.675,0.700
BS       50    1.879   5.839    1.470   7.250    3.160   9.960  
MBS      50    2.041   5.420    1.512   6.837    2.920   9.680
PGARCH   50    1.790   6.925    1.512   6.837    1.680   7.260
GARCH    50    0.316   1.096    0.296   1.062    0.331   1.162
W. α1+β1=0.825
BS       75   3.880   11.000    3.540  13.200    5.690  15.600
MBS      75   4.430   10.690    3.640  12.510    4.740  15.120
PGARCH   75   4.000   13.530    3.640  12.510    3.430  11.870
GARCH    75   0.553    1.687    0.529   1.618    0.506   1.507
X. α1+β1=0.950,0.975
BS       50  11.990   19.380    8.620  19.390   10.800  22.690
MBS      50  16.340   21.100   10.670  17.920   10.730  20.930
PGARCH   50  11.580   19.410   10.670  17.920    9.940  15.930
GARCH    50   1.080    2.191    0.901   1.574    0.801   1.223
_____________________________________________________________________________
_



Table 7

Bias Proportion(PROP) and Percentage Error for BS, MBS, and PGARCH, and GARCH
Standard Error as Percentage of GARCH Price (GARCHPSR) when (A) the Option is
an Out-of-the-money (S/X=0.8,0.9), Short Maturity (T=30,90 Days) one Vs.
Other Options,(B) the Option is a Deep-out-of-the-money (S/X=0.8), Shortest
Maturity (T=30 Days) one Vs. Other Options, and (C) the BS Price is More Than
Vs. Less Than 20 Percent Away from the GARCH Price (a)
_____________________________________________________________________________
_
         (Initial Standard Deviation of Logarithmic Stock Returns)/  
                 (Unconditional Standard Deviation of Logarithmic Stock
Returns):

             0.75     1.0    1.25
_____________________________________________________________________________
_
A. Out-of-the-money(S/X=0.8,0.9) and Short Maturity(T=30,90 Days),OS, vs. 

Other Options (Other) 
                                  OS    Other     OS     Other     OS    
Other
                                 N=28   N=147    N=28    N=147    N=28   
N=147

U.V. Bias (BS-MBS) PROP(a)    14.085  29.318   36.697  42.024   12.414 
27.767
C.V. Bias (MBS-PGARCH) PROP    45.843  34.059    0.000   0.000   51.314 
38.719
P.D. Bias (PGARCH-GARCH)PROP   40.072  36.623   63.303  57.976   36.272 
33.513
100*|BS-GARCH|/GARCH           23.770   2.172   21.949   1.055   32.390  
1.481
100*|MBS-GARCH|/GARCH          26.334   3.494   20.634   2.070   29.317  
1.477
100*|PGARCH-GARCH|/GARCH       23.653   2.081   20.634   2.070   19.001  
2.086
GARCHPSR        2.925   0.200    2.521   0.197    2.335  
0.198
_____________________________________________________________________________
_
B. Deep-out-of-the-money(S/X=0.8) and Shortest Maturity(T=30 Days),DVS, vs. 

Other Options (Other) 
                                 DVS   Other     DVS    Other      DVS   
Other
                                 N=7   N=168     N=7    N=168      N=7   
N=168

U.V. Bias (BS-MBS) PROP        5.363  27.777    4.805  42.687     2.594 
26.257
C.V. Bias (MBS-PGARCH) PROP   24.202  36.434    0.000   0.000    21.883 
41.520
P.D. Bias (PGARCH-GARCH)PROP  70.435  35.789   95.195  57.313    75.522 
32.223
100*|BS-GARCH|/GARCH          54.190   3.604   65.461   1.854    75.288  
3.557
100*|MBS-GARCH|/GARCH         48.561   5.423   62.315   2.654    73.343  
3.123
100*|PGARCH-GARCH|/GARCH      66.419   2.996   62.315   2.654    58.523  
2.553
GARCHPSR       8.310   0.316    7.175   0.293     6.609  
0.287
_____________________________________________________________________________
_
C. BS is more than (MORE) vs. less than (LESS) 20 percent away from GARCH
 
                                MORE    LESS     MORE   LESS      MORE   
LESS



                                N=14   N=161     N= 9  N=166      N=15  
N=160

U.V. Bias (BS-MBS) PROP       13.666  28.030    19.469 42.349    9.388 
26.803
C.V. Bias (MBS-PGARCH) PROP   38.320  35.738     0.000  0.000   44.620 
40.370
P.D. Bias (PGARCH-GARCH)PROP  48.014  36.232    80.531 57.651   45.991 
32.826
100*|BS-GARCH|/GARCH          44.132   2.279    59.135  1.431   54.611  
1.909
100*|MBS-GARCH|/GARCH         46.703   3.709    52.227  2.482   50.009  
1.799
100*|PGARCH-GARCH|/GARCH      41.302   2.422    52.227  2.482   31.520  
2.286
GARCHPSR                       4.761   0.277     6.138  0.267    3.937  
0.222
_____________________________________________________________________________
_
(a) For a given option valuation situation, we first take the absolute value
of each of the three biases, sum these absolute values, and then express each
absolute value as a percentage of the sum to arrive at the PROP figure. PROP
for a bias is thus an estimate of the relative importance of the magnitude of
that bias in determining the overall or net GARCH option valuation effect.



Appendix A
Analyses for the Nearly Integrated Variance Case

The table reports the GARCH price (GARCH), simulation standard error as a
percentage of the GARCH price (GARCHPSR), Black-Scholes model mias (BS-
GARCH), absolute percentage biases of the Black-Scholes model (BS), the
Modified Black-Scholes formula (MBS), the Pseudo-GARCH formula (PGARCH), the
relative importance of the unconditional variance (U.V.)  bias (= BS-MBS),
the conditional variance (C.V.)  bias ( = MBS-PGARCH), and the path
dependence (P.D.)  bias (= PGARCH-GARCH) as measured by the respective bias
proportions(a).
GARCH Option Pricing Parameters are α1 = 0.05, β1 = 0.94, σ = 0.25, and λ =
0.10.   
_________________________________________________________________________
     U.V.  C.V.  P.D.  T S/X   GARCH   BS-    Absolute Percentage Bias:
     Bias  Bias  Bias          Price  GARCH     BS   MBS  PGARCH GARCHPSR
     PROP  PROP  PROP
_________________________________________________________________________
A. Low Initial Conditional Variance (√h1/σ =0.75)  

    18.52 62.96 18.52  30 0.8   0.001  0.001 116.67 200.00 83.33 20.747
    12.93 84.78  2.29  30 0.9   0.072  0.125 174.30 206.70  5.73  2.593
    10.16 84.90  4.95  30 1.0   2.234  0.572  25.60  28.87  1.59  0.120
    11.69 80.07  8.24  30 1.1  10.138  0.161   1.58   1.89  0.22  0.028
    14.29 64.29 21.43  30 1.2  20.006  0.006   0.03   0.04  0.02  0.007
    15.93 78.35  5.72  90 0.8   0.065  0.078 120.28 154.07 12.14  3.436
    13.46 79.74  6.80  90 0.9   0.786  0.451  57.35  67.91  5.33  0.577
    12.72 79.77  7.50  90 1.0   4.119  0.738  17.92  20.98  1.80  0.134
    13.91 83.18  2.92  90 1.1  11.115  0.468   4.21   5.09  0.19  0.056
    13.44 71.49 15.07  90 1.2  20.246  0.148   0.73   0.96  0.26  0.026
    18.92 76.18  4.90 180 0.8   0.476  0.231  48.51  63.27  3.82  1.059
    16.66 71.15 12.19 180 0.9   2.137  0.563  26.36  32.94  4.82  0.337
    16.68 72.49 10.84 180 1.0   6.154  0.711  11.55  14.44  1.88  0.145
    18.70 80.14  1.16 180 1.1  12.742  0.538   4.22   5.48  0.08  0.076
    17.15 70.83 12.03 180 1.2  21.128  0.274   1.30   1.83  0.37  0.045
    24.35 59.90 15.75 360 0.8   1.803  0.314  17.42  25.69  5.35  0.523
    23.40 58.30 18.30 360 0.9   4.561  0.494  10.82  15.58  3.72  0.264
    24.06 60.18 15.75 360 1.0   9.157  0.540   5.90   8.64  1.79  0.159
    26.31 65.62  8.07 360 1.1  15.507  0.439   2.83   4.41  0.48  0.102
    27.34 67.64  5.02 360 1.2  23.227  0.270   1.16   2.06  0.17  0.071
    32.62 41.38 26.00 720 0.8   4.496  0.273   6.08  11.79  4.55  0.345
    33.25 42.23 24.51 720 0.9   8.271  0.321   3.88   7.74  2.84  0.231
    34.81 44.23 20.96 720 1.0  13.373  0.307   2.29   4.92  1.58  0.169
    37.08 47.09 15.83 720 1.1  19.656  0.248   1.26   3.07  0.77    1.86 
0.27  0.099
_________________________________________________________________________
B. High Initial Conditional Variance (√h1/σ =1.25)

     2.56 63.08 34.36  30 0.8   0.021 -0.020  93.75  91.35 32.21  5.225
     8.22 89.01  2.76  30 0.9   0.463 -0.267  57.57  52.56  1.69  0.683
     9.68 83.78  6.55  30 1.0   3.460 -0.655  18.92  16.81  1.42  0.106
     8.07 84.04  7.89  30 1.1  10.685 -0.386   3.62   3.33  0.29  0.038
     3.33 58.49 38.18  30 1.2  20.102 -0.090   0.45   0.43  0.17  0.014
     9.81 88.89  1.29  90 0.8   0.362 -0.218  60.36  54.28  0.80  1.250
    10.70 77.75 11.55  90 0.9   1.833 -0.596  32.54  28.01  4.89  0.353
    11.44 78.09 10.48  90 1.0   5.728 -0.871  15.20  13.00  2.01  0.133
    12.10 86.90  1.00  90 1.1  12.377 -0.794   6.42   5.62  0.07  0.066
     9.07 74.80 16.12  90 1.2  20.904 -0.510   2.44   2.22  0.39  0.039
    13.31 73.76 12.93 180 0.8   1.099 -0.392  35.64  29.24  6.22  0.695
    13.73 69.80 16.48 180 0.9   3.388 -0.687  20.29  16.13  4.99  0.292
    14.35 71.25 14.40 180 1.0   7.748 -0.882  11.39   9.09  2.30  0.152
    15.48 78.43  6.09 180 1.1  14.192 -0.912   6.42   5.29  0.45  0.088
    14.42 77.09  8.49 180 1.2  22.186 -0.783   3.53   3.02  0.30  0.058
    19.43 60.50 20.08 360 0.8   2.576 -0.459  17.82  12.04  5.98  0.464
    19.76 59.72 20.52 360 0.9   5.703 -0.648  11.36   7.55  3.95  0.260
    20.56 61.61 17.83 360 1.0  10.481 -0.784   7.48   5.09  2.07  0.168
    22.07 66.65 11.28 360 1.1  16.802 -0.856   5.09   3.64  0.74  0.114
    24.51 75.36  0.13 360 1.2  24.348 -0.851   3.49   2.64  0.00  0.082
    28.49 45.41 26.09 720 0.8   5.200 -0.430   8.28   3.34  4.52  0.336



    29.23 46.14 24.62 720 0.9   9.146 -0.553   6.05   2.57  2.94  0.233
    30.54 48.07 21.39 720 1.0  14.339 -0.659   4.60   2.14  1.72  0.175
    32.28 50.92 16.80 720 1.1  20.635 -0.731   3.54   1.82  0.90  0.136
    34.51 54.77 10.73 720 1.2  27.844 -0.765   2.75   1.54  0.38  0.107
_________________________________________________________________________

(a) For a given option valuation situation, we first take the absolute value
of each of the three biases, sum these absolute values, and then express each
absolute value as a percentage of the sum to arrive at the PROP figure. PROP
for a bias is thus an estimate of the relative importance of the magnitude of
 that bias in determining the overall or net GARCH option valuation effect.


