NCG UNIVERSITY

Quantitative Stability Analyses of Multiwall Carbon Nanotube Nanofluids following water/ice phase change cycling

Introduction

- Aqueous MWCNT-nanofluids possible due to oxygen functionalization of MWCNT surface
 - Negative surface charge in water
- In freezing applications (latent heat thermal energy storage, gas hydrates)
 - accelerated nucleation, rates of sensible cooling, crystallization, increased conversion
- Success of nanofluid technologies depends on ability to retain stable dispersion
- **Problem:** Loss of stable dispersion upon freezing

Research Question

- Assess stability of oxygen functionalized MWCNT nanofluids over repeated phase change cycling - Use of ultrasonication to restore dispersion
- Employ quantitative metrics to characterize stability

Experimental Schedule

Time 9:00 – 10:30	Procedure Samples removed from freezer and thawed
10:30 - 11:30 11:30 - 14:00 14:30 - 15:30	Samples sonicated Particle size measurements Zeta potential & UV-Vis
16:00	measurements Samples placed in freezer (-23 °C) overnight

Six samples tested, concentrations 15 – 91 ppm

	T cycle	
	Pre-freeze	Post-thav
Sample	at.% O	at.% O
F-1	5.5 ± 0.4	5.8 ± 0.2
F-2	11.7 ± 0.4	$11.5 \pm 1.$
F-3	7.0 ± 0.6	6.6 ± 0.4
P-1	3.3 ± 0.5	2.8 ± 0.5
P-2	1.8 ± 0.2	1.3 ± 1.6
P-3	1.2 ± 0.8	0.6 ± 0.8

Gabriel Langlois-Rahme, Jason Ivall, Sylvain Coulombe, Phillip Servio