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Abstract

We study the problem of a principal who relies on the reports of a monitor to provide
incentives to an agent. The contracting difficulty that the principal faces is that the
monitor and the agent can collude. We show that the principal can improve incentive
provision by randomizing over the contract he offers to the monitor, and by informing
only the monitor about the realization of this randomization. This randomization adds
incomplete information between the monitor and the agent, making collusion between
them harder. We characterize the optimal randomized contracts by the principal and
quantify the potential gains from using random incentive schemes versus deterministic
ones. In practice, a principal can implement this endogenous adverse selection by hiring
different monitors and offering them different compensation schemes, and by randomly
assigning the monitors to the agents that need to be monitored.
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1 Introduction

This paper studies how random incentive schemes can temper the negative effects of collusion

in organizations. We consider a principal who relies on the reports of a monitor to provide

incentives to an agent. We show that the principal can improve incentive provision by

randomizing over the incentive contract that he offers the monitor, and by informing only

the monitor about the realization of her contract. These randomizations add asymmetric

information between the monitor and the agent, making it harder for them to reach a collusive

agreement. We derive the optimal randomized contracts by the principal and quantify the

potential gains from using random incentive schemes relative to deterministic ones. We also

explore practical ways in which a principal can implement this endogenous adverse selection.

The agent in our model decides whether to take a “good” action or a “bad” action,

which is unobservable to the principal. Taking the bad action provides a private benefit

to the agent, but it inflicts a cost on the principal. The principal hires a monitor, who

perfectly observes the agent’s action and who sends a report to the principal. With a small

probability, the principal receives additional information that he can use to assess the validity

of the monitor’s report. This can represent other sources of information that the principal

might have access to, or can represent information that the principal might obtain by double-

checking the agent’s report. The principal decides whether or not to punish the agent based

on the monitor’s report and the additional information she might receive. The principal

offers a wage contract to the monitor to incentivize truthful reporting.

The contracting difficulty that the principal faces is that the monitor and the agent

may collude: after the agent chooses her action, the monitor and the agent can write a

side-contract stipulating the message that the monitor sends to the principal and a transfer

from the agent to the monitor.1 Our model allows agents to have private information about

the benefit they derive from taking the bad action, and allows also for different levels of

1Therefore, collusion in our model occurs ex-post, after the agent takes her action. In an extension we
consider a setting in which the monitor and the agent can collude ex-ante, before the agent takes the action.
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bargaining power between the monitor and the agent at the side-contracting stage.

For a concrete example, suppose the agent is a firm that can choose between using a low

cost technology that produces high levels of pollution or a more expensive clean technology.

The principal is a regulatory agency whose goal is to maintain low levels of contamination.

The principal hires a monitor to audit the firm and check its pollution level. The risk that

the principal faces is that a corrupt firm may bribe the monitor in exchange of a favorable

report. Other examples may include hygiene inspections to restaurants, financial auditing,

or monitoring of employees within a firm.

Our analysis highlights how random incentives can help deter corruption by making

collusion harder. Suppose the principal randomizes over the incentive scheme that he offers

to the monitor, and informs only the monitor the outcome of this randomization. Since

monitors with more high-powered incentives face a higher opportunity cost from colluding,

this randomization by the principal makes a misbehaving agent uncertain about the cost of

bribing the monitor. We show how the principal can leverage this endogenous asymmetric

information to reduce the cost (in terms of wage payments to the monitor) of providing

incentives to the agent. We derive the optimal randomization by the principal, and illustrate

through numerical examples that the potential gains from using random incentive schemes

can be substantial.

One potential concern with the mechanism we propose in this paper is that the mon-

itor may be able to signal her incentive contract to the agent and undo the endogenous

asymmetric information that the principal generates. We show that the endogenous adverse

selection is robust to signaling: the randomization by the principal maintains its incentive

properties even if, at the side-contracting stage, the agent can offer the monitor any in-

centive compatible and individual rational mechanism to extract her (endogenous) private

information.

Under the optimal randomization, the principal offers the monitor a wage contract drawn

from a distribution whose support has a continuum of wages. We show that the principal
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can achieve a substantial fraction of the gains from random incentive schemes by using

a simpler distribution with only two wage contracts in its support. In practice, if there

are many agents that need to be monitored, the principal can implement this two-wage

randomization by hiring two types of monitors: a fraction of “elite” monitors who have

high-powered incentives, and a fraction of “normal” monitors with low-powered incentives.

The principal can then generate asymmetric information at the side-contracting stage by

randomly assigning different monitors to different agents.

Finally, the optimal randomization by the principal depends on the agent’s bargaining

power at the side-contracting stage vis-a-vis the monitor. We show how the principal can

design random incentive schemes that have good incentive properties regardless of the relative

bargaining power between the agent and monitor. In this way, a principal who is uncertain

about the details of how bargaining will take place at the side-contracting stage can still

benefit from using randomized incentive schemes.

Our paper is relates primarily to the literature on collusion in mechanism design (i.e.,

Tirole (1986), Laffont and Martimort (1997, 2000), Baliga and Sjöström (1998), Felli and

Villa-Boas (2000), Faure-Grimaud et al. (2003), Mookherjee and Tsumagari (2004), Che

and Kim (2006), Celik (2009)). Papers in this literature typically assume that agents have

common knowledge about the contracts that the principal offers to each of them. Our point

of departure from this literature is the observation that, when there is a threat of collusion,

a principal can benefit from maintaining different agents asymmetrically informed about the

incentive schemes in place. In our model, the principal achieves this by randomizing over the

contracts he offers to the monitor, and by informing only the monitor about the realization

of this randomization.

Baliga and Sjöström (1998) also analyze the role of random contracts in agency models

with collusion. They consider a setting in which agents face limited liability constraints

at the side-contracting stage, so any side-payment that an agent pays must come from the

wage she gets from the principal. Baliga and Sjöström (1998) show that a principal can
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deter collusion by randomizing ex-post over the agents’ wages: if the principal pays wages of

zero with positive probability, an agent can always claim she has received such a wage and is

therefore unable to make a side-payment. The role of randomizations in Baliga and Sjöström

(1998) is different than in our setting. The randomizations in their model are ex-post, after

the agents collude, so they don’t add asymmetric information at the side-contracting stage.

Instead, these randomizations interact with the limited liability constraints so as to make it

impossible for agents to commit to paying any side-transfers they had agreed to ex-ante.

Our paper relates to Rahman (2012) and Chassang and Padró i Miquel (2013), who also

highlight the role of random incentives in a principal-monitor-agent setting. In Rahman

(2012), the randomizations allow the principal to jointly provide incentives to the agent and

to the monitor who is in charge of supervising the agent. In Chassang and Padró i Miquel

(2013), the randomizations allow the principal to garble the information that the monitor

provides so as to reduce the agent’s incentives to retaliate against the monitor. In contrast

to these papers, monitoring is costless in our setting and there is no threat of retaliation.

Instead, the randomizations by the principal introduce asymmetric information between the

agent and the monitor, and make collusion between them harder.2

Finally, other papers have also considered randomized mechanisms that endogenously

generate asymmetric information. Calzolari and Pavan (2006a) consider the problem of a

monopolist who expects her buyer to resell the good she is purchasing. They show that

the optimal selling mechanism is stochastic, with the monopolist selling to different types of

buyers with different probabilities. Such a stochastic mechanism allows the monopolist to

manipulate the beliefs of the third party regarding the buyers’ valuation, and induces this

third party to make higher offers at the resale stage.3 Fudenberg and Tirole (1990) and Ma

(1991) study agency models in which the principal can renegotiate the terms of the agent’s

contract after the agent provides effort. They show that the optimal contract may induce

2Strausz (2006), Lazear (2006), Eeckhout et al. (2010), Jehiel (2012), Ederer et al. (2013) and Rahman
and Obara (2010) have also emphasized the usefulness of random incentives.

3A similar stochastic mechanism is present in Calzolari and Pavan (2006b).
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the agent to randomize over the effort she exerts. This randomization generates asymmetric

information between the principal and the agent and relaxes renegotiation-proof constraints.

The remainder paper is organized as follows. Section 2 introduces the framework that we

study. Section 3 illustrates the main points of our analysis using a simple example. Section 4

studies our general framework and presents our main results. Section 5 extends our analysis

to settings in which the agent has two-dimensional private information. Section 6 concludes.

Appendix A presents several extensions. Omitted proofs are contained in Appendix B.

2 Framework

The paper explores different cases, depending on the degree of asymmetric information be-

tween players, or their ability to commit. They all share the following common structure.

Players and actions. We consider a game with three players: a principal, an agent and a

monitor. The agent takes an action e ∈ {0, 1}. The agent obtains a payoff e×α if she takes

action e, where α > 0 is the private benefit that she gets from taking action e = 1. Our

general model in Section 4 allows α to be private information of the monitor, drawn from a

distribution with support [α, α]. The principal obtains a payoff of −e× β if the agent takes

action e ∈ {0, 1}, where β > 0 measures the cost that the principal incurs if the agent takes

action e = 1. The agent’s action is unobservable to the principal.

As an example, suppose the agent is a firm that can choose between using a low cost

technology that produces high levels of pollution or a more expensive clean technology, and

the principal is a regulatory agency whose goal is to maintain low levels of contamination.

In this setting, the parameter α measures the savings from choosing the low cost technology,

and β is the cost that the principal incurs when a firm pollutes.

The principal hires the monitor to audit the agent. The monitor observes the agent’s

action perfectly and at no cost. After observing the agent’s action, the monitor sends a
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messagem ∈ {0, 1} to the principal. The principal can detect false messages with probability

q ∈ (0, 1): if the monitor sends a false message m ̸= e, the principal observes signal s = e

with probability q and observes signal s = m with probability 1 − q; if the monitor sends

a truthful message m = e, the principal observes signal s = m with probability 1. For

instance, in the case of a firm that may pollute the environment, the regulatory agency

might obtain information regarding the firm’s actions from other sources such as complaints

by employees/locals, an audit by a different governmental agency or through the press.

The principal relies on the monitor’s message and his own information to provide incen-

tives to the agent. To induce her to reveal the information she acquired, the principal offers

the monitor a wage contract w = w(m, s). The wage is made contingent on the monitor’s

message and on the principal’s information: w(m, s) is the wage in case the monitor sends

message m ∈ {0, 1} and the principal observes signal s ∈ {0, 1}. The monitor is protected

by limited liability, so w(m, s) ≥ 0 for all m, s. Throughout the paper we focus on efficiency

wage contracts: under an efficiency wage contract, the principal pays the monitor a wage

w ≥ 0 when the signal he observes matches the message (i.e., when s = m), and pays the

monitor a wage of 0 when the signal reveals that the monitor had lied (i.e., when s ̸= m).

An efficiency wage contract is therefore fully characterized by a wage w ≥ 0. We focus on

efficiency wage contracts because they allow us to illustrate the value of endogenous asym-

metric information in a cleaner way. In Appendix A.1 we show how our results extend when

we allow the principal to offer general wage contracts w = w(m, s).

The principal can punish the agent based on the monitor’s message and on his own

signal. The agent incurs a cost t > α when the principal punishes her. The assumption

that t > α guarantees that the principal can incentivize all types of agents to take the right

action if the monitor always sends a truthful message. The principal punishes the agent if

the monitor sends a message indicating that the agent took action e = 1 and the principal

gets a signal indicating that the monitor’s message is truthful (i.e., if m = s = 1) or if the

monitor sends a message indicating that the agent took action e = 0 but the principal gets a
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signal indicating that the message is false (i.e., if m = 0 and s = 1). Otherwise, if m = s = 0

or if m = 1 ̸= s = 0, the principal doesn’t punish the agent.

Finally, we assume that α > qt. This assumption puts a bound on the cost that the

agent incurs when punished and implies that the principal cannot provide incentives to all

types of agent using only his own signal: if this condition did not hold, the principal would

be able to provide incentives to the agent to take action e = 0 by punishing her whenever

he receives a signal s = 1, regardless of the monitor’s report. Therefore, in this case the

principal would not need to incentivize the monitor.4

Timing. The timing of the game is as follows:

1. The principal commits to paying the monitor an efficiency wage w drawn from some

distribution with support in [0,∞). The principal’s strategy (i.e., the distribution from

which the principal draws the monitor’s wage) is common knowledge. After drawing

the wage, the principal informs the monitor (and not the agent) about its realization.

2. The agent chooses an action e ∈ {0, 1}, which is observed only by the monitor.

3. The agent and the monitor write a side-contract. At the side-contracting stage, one

player (either the agent or the monitor) is randomly chosen to make a take-it-or-leave-

it offer; λ ∈ [0, 1] denotes the probability with which the monitor is selected to make

the offer. The offer stipulates the message that the monitor will send to the principal

and a transfer from the agent to the monitor. If the other player accepts the offer, the

monitor commits to send the message that the side-contract stipulates. Otherwise, the

monitor sends the message that maximizes her expected compensation.5

4The assumption that punishments are bounded may come from a limited liability constraint for the
agent. Also, in a richer model in which the monitor’s observations are noisy and in which an agent who takes
the right action gets punished with positive probability, bounded punishments would arise endogenously if
the agent has a participation constraint.

5In Appendix A.2 we show how our results extend when, instead of making take-it-or-leave-it offers, at the
side-contracting stage the agent and the monitor can use an efficient incentive compatible and individually
rational bilateral bargaining mechanism.
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4. The monitor sends message m ∈ {0, 1} to the principal. The principal receives the

monitor’s message and his own signal. He then pays the monitor and punishes the

agent based on the monitor’s message and his own signal.

Payoffs. If an agent with type α takes action e = 1, pays a transfer T to the monitor, and

the monitor sends message m ∈ {0, 1} to the principal, her payoffs are

UA = α− T − t× [1{m=1} + q × 1{m=0}],

where 1{·} is the indicator function. The agent earns a benefit α by taking action e = 1 and

pays T to the monitor. By taking action e = 1, the agent gets punished with probability 1

if the monitor sends a truthful message m = 1, and she gets punished with probability q if

the monitor lies and sends message m = 0. If the agent takes action e = 0, pays a transfer

T to the monitor, and the monitor sends message m ∈ {0, 1}, her payoffs are

UA = −T − t× (1− q)× 1{m=1}.

In this case the agent doesn’t get punished if the monitor sends a truthful message m = 0,

and gets punished with probability 1− q if the monitor lies and sends message m = 1.

Suppose the agent takes action e ∈ {0, 1} and pays a transfer T to the monitor. Then,

the monitor’s payoff from sending message m ∈ {0, 1} when her wage is w is

UM = T + w × (1− q × 1{m̸=e}).

The monitor receives a transfer T and receives a wage w if he sends message m = e or if he

sends message m ̸= e and the principal doesn’t detect that the message is false.

Finally, the principal’s payoff if she pays the monitor a wage w, if the agent takes action
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e ∈ {0, 1} and if the monitor sends message m ∈ {0, 1} is

UP = −β × e− w(1− q × 1{m̸=e}).

The principal incurs a loss of β > 0 when the agent takes action e = 1 and pays the monitor

a wage w only if he doesn’t detect a lie.

All three players are risk-neutral expected utility maximizers.

3 A motivating example

The premise of our work is that to have a durable effect, counter-corruption schemes must

be robust to collusion between agents and monitors. Using a detailed example, this sec-

tion delineates our main argument and suggests that: 1) collusion can severely undermine

the efficiency of deterministic counter-corruption schemes, including schemes using several

monitors for cross validation; 2) using reward structures that foster asymmetric information

between the agent and the monitor may temper the effects of collusion; 3) this endogenous

adverse selection is robust to arbitrary signaling by the monitor.

For the sake of simplicity, it is assumed throughout this section that payoff parameters

(α, β) are common knowledge among players, with α ∈ (qt, t), and that the agent has all

the bargaining power at the side-contracting stage, i.e. the agent makes the monitor a

take-it-or-leave-it offer.

3.1 Benchmark counter-corruption schemes

To frame ideas, we briefly discuss the effectiveness of prominent deterministic counter-

corruption schemes depending on whether the agent and the monitor can engage in collusion.
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No collusion. Suppose first that the monitor and the agent cannot collude. Note that in

this case the principal can induce the monitor to send a truthful message by offering her an

efficiency wage w = 0. Since the monitor always reports truthfully, the agent would get a

payoff of α − t < 0 if she takes action e = 1 and would get a payoff of 0 if she takes action

e = 0. Therefore, in the absence of collusion the principal can provide incentives at no cost.

Collusion with deterministic contracts. Consider next a setting in which the monitor

and the agent can collude, and in which the principal pays the monitor a deterministic

efficiency wage w ≥ 0.

Suppose the agent takes action e = 1 and makes an offer T to the monitor in exchange of

a message m = 0. The monitor’s payoff from accepting this offer is T + (1− q)w, since with

probability q the principal detects that the message is false and pays her zero. If the monitor

rejects the offer, she finds it optimal to send the truthful message m = 1 to the principal

and receives a wage w. Therefore, the monitor accepts an offer T if and only if T ≥ qw.

The agent’s payoff from taking action e = 1 and making an offer T < qw is then equal to

α− t < 0: the monitor rejects such an offer, sends a truthful message m = 1 to the principal

and the agent gets punished with probability 1. On the other hand, the agent’s payoff from

making an offer T ≥ qw is equal to α−T − qt ≤ α− qw− qt: in this case the monitor sends

a favorable message m = 0 to the principal and the agent only gets punished if the principal

detects that the message is false.

Finally, note that the agent’s payoff from taking action e = 0 is equal to 0, since in this

case the monitor has an incentive to send a truthful message m = 0 to the principal even

if the agent offers a transfer T = 0. Therefore, the agent takes action e = 0 if and only if

0 ≥ α − qw − qt: in order to induce the agent to take action e = 0, the principal must pay

the monitor an efficiency wage w = α/q − t > 0 (where the inequality follows since α > qt).

11



Multiple monitors. An alternative approach that has been proposed in the literature

(and is often used in practice) to fight collusion is for the principal to hire multiple monitors.

Although this can be a practically useful way of fighting collusion and corruption, hiring

multiple monitors is also costly for the principal. As the following example illustrates, the

cost of fighting collusion and corruption with multiple monitors need not be lower than the

cost of fighting collusion with a single monitor.

Suppose that the principal hires two monitors to check the agent’s action. Let w1 and

w2 be the deterministic efficiency wages of monitors 1 and 2, respectively. The timing of

the game is as follows: the agent first takes action e ∈ {0, 1}. The two monitors then

independently observe the agent’s action, and each of them independently sends a message

m ∈ {0, 1} to the principal. The principal detects whether either one or both messages are

false with probability q.6 The principal punishes the agent either if he receives one message

m = 1 and doesn’t detect that the message is false, or if he receives two messages m = 0

and detects that they were false.

The agent can guarantee herself a payoff of zero by taking action e = 0, since in this

case both monitors would find it optimal to send messages m = 0 even without a transfer.

On the other hand, if the agent takes action e = 1 she has to bribe both monitors to avoid

being punished. Monitor i = 1, 2 accepts a bribe T if and only if T ≥ qwi, so the cost of

bribing the two monitors is q(w1 + w2). The agent’s payoff from taking action e = 1 and

bribing the two monitors is α− q(w1 + w2)− qt, so the agent takes action e = 0 if and only

if w1 + w2 ≥ α/q − t. Note that the cost of providing incentives to the agent in this setting

is the same as the cost of providing incentives in a setting with a single monitor who gets a

deterministic efficiency wage.

6Since monitors observe the agent’s action perfectly, if the principal detects that a monitor’s message is
false then he knows whether the other monitor’s message was true or false.
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3.2 Adverse selection as a counter-corruption device

We now illustrate how random contracts can improve incentive provision when there is a

threat of collusion. Suppose that the principal hires a single monitor and randomizes over

the efficiency wage he offers her: with probability x ∈ [0, 1] the principal offers the monitor a

wage w = 0, and with probability 1−x the principal offers the monitor a wage w = α/q− t.

The principal informs only the monitor about the realization of the wage. This randomization

by the principal creates asymmetric information between the monitor and the agent, since

now the agent is uncertain about the whether the monitor’s wage is w = 0 or w = α/q − t.

Suppose the agent takes action e = 1 and makes an offer T to the monitor. The monitor

will accept this offer if only if T ≥ qw. An offer T ≥ α − qt will then be accepted by the

monitor regardless of whether her wage is w = 0 or w = α/q − t. The agent’s payoff from

making such an offer is α − qt − T ≤ 0. On the other hand, an offer T ∈ [0, α − qt) will

be accepted only by a monitor with wage w = 0. The agent’s payoff from making an offer

T ∈ [0, α− qt) is then equal to α−x(T + qt)− (1−x)t ≤ α−xqt− (1−x)t: with probability

x the offer is accepted and the agent gets a payoff of α− qt− T , and with probability 1− x

the offer is rejected and the agent gets a payoff of α− t.

The agent’s payoff from taking action e = 0 is equal to 0, since in this case the monitor has

an incentive to send a truthful message m = 0 even in the absence of collusion. Therefore,

the agent will take action e = 0 if and only if α − xqt − (1 − x)t ≤ 0, or x ≤ t−α
(1−q)t

.

The assumption that α ∈ (qt, t) implies that t−α
(1−q)t

∈ (0, 1). It follows that the principal

can provide incentives to the agent by paying the monitor a wage w = 0 with probability

x = t−α
(1−q)t

and paying her a wage w = α/q− t with probability 1− x = α−qt
(1−q)t

. The expected

wage that the principal pays the monitor under this randomization is α−qt
(1−q)t

(α
q
− t), which is

a fraction of the deterministic wage w = α/q − t derived above.

Intuitively, when the principal randomizes over the monitor’s wage, the agent is uncertain

about the type of monitor she is facing: she could be facing a low-paid monitor who is easy
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to corrupt, or a high-paid monitor who has a higher cost of accepting a bribe. Given this

uncertainty, the principal no longer needs to pay the monitor a high wage all the time: the

agent will still have an incentive to take the right action if the probability of encountering a

high-paid monitor is large enough.

In practice, if there are many agents that need to be monitored, the principal can im-

plement this two-wage randomization by hiring two types of monitors: a fraction 1 − x of

“elite” monitors, who have a high efficiency wage equal to w = α/q − t, and a fraction x of

“normal” monitors, who have a low efficiency wage of w = 0. The principal can then gen-

erate asymmetric information at the side-contracting stage by randomly assigning different

monitors to different agents.

3.3 Robustness to signaling

A potential concern with the randomization in Section 3.2 is that the monitor may be able

to signal her wage to the agent and undo the endogenous asymmetric information that the

principal creates. We now show that the endogenous adverse selection is robust to signaling:

the agent would still have an incentive to take action e = 0 even if, instead of making a take-

it-or-leave-it offer at the side-contracting stage, she could design any incentive compatible

and individually rational mechanism to extract the monitor’s private information.

Suppose that the principal uses the randomization in Section 3.2: he offers the monitor

a wage w = 0 with probability x = t−α
(1−q)t

and a wage w = w = α/q − t with probability

1−x = α−qt
(1−q)t

. If an agent takes action e = 1, then at the side-contracting stage she can offer

the monitor any incentive compatible and individually rational bargaining mechanism. By

the revelation principle we can focus on mechanisms in which the monitor reports her wage

truthfully. A bargaining mechanism is characterized by four quantities (P0, T0, Pw, Tw): Pw

is the probability that the monitor and the agent reach an agreement when the monitor’s

wage is w, and Tw is the expected transfer from the agent to a monitor with wage w.
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Under mechanism (P0, T0, Pw, Tw), the agent’s payoff from taking action e = 1 when the

monitor’s wage is w is α − Tw + Pw(−qt) + (1 − Pw)(−t) = α − t + Pw(1 − q)t − Tw. The

agent earns α from taking action e = 1 and pays the monitor an expected transfer Tw. With

probability Pw the agent and the monitor reach an agreement, the monitor sends message

m = 0 to the principal, and the principal punishes the agent only if he detects that the

message is false. With probability 1− Pw there is no agreement, the monitor sends message

m = 1 and the agent gets punished with probability 1. The agent’s expected payoff from

taking action e = 1 and offering the monitor a mechanism (P0, T0, Pw, Tw) is then given by

α− t+ x(P0(1− q)t− T0) + (1− x)(Pw(1− q)t− Tw).

Under mechanism (P0, T0, Pw, Tw), a monitor with wage w who reports that her wage is

w′ obtains a payoff UM(w,w′) = Tw′ + Pw′(1− q)w + (1− Pw′)w = Tw′ + w(1− qPw′). The

monitor gets a transfer Tw′ . If there is no agreement, the monitor sends a truthful message

to the principal and gets her wage w. Otherwise, if there is agreement, the monitor sends

a message m = 0 and gets an expected wage of (1 − q)w. By incentive compatibility, it

must be that UM(w,w) ≥ UM(w,w′) for w,w′ ∈ {0, w}. By individual rationality, it must

be that UM(w,w) ≥ w: the monitor’s payoff cannot be smaller than her payoff from not

participating in the mechanism and sending a truthful message.

The agent’s problem is to design a mechanism that maximizes her payoff subject to these

constraints. By standard arguments, the constraints that bind in this setting are: (i) the

IR constraint of a monitor with wage w, and (ii) the IC constraint of a monitor with zero

wage. Constraint (i) implies that UM(w,w) = w, which is satisfied when Tw = Pwwq, while

constraint (ii) implies that T0 = Tw. Therefore, the agent’s payoff is from taking action e = 1

and offering an optimal mechanism (P0, T0, Pw, Tw) is α − t + x(P0(1 − q)t − Pwwq) + (1 −

x)Pw((1− q)t− qw). Note that it is always optimal to set P0 = 1 and Pw equal to either 0 or

1 (since this expression is linear in Pw). If Pw = 0 the agent’s payoff is α− t+x(1− q)t = 0,

while if Pw = 1 the agent’s payoff is α− t+ (1− q)t− qw = 0. The agent gets a payoff of 0

in either case, which is what she gets by taking action e = 0.
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4 The General Case

4.1 Framework

The model in this section generalizes the example of Section 3 in three ways. First, we allow

agents to have private information about the benefit that they derive from taking action

e = 1. We assume that the agent’s private benefit α is drawn from a distribution with cdf

G and with support [α, α]. Recall from Section 2 that the support [α, α] of possible agent

types is such that α ∈ (qt, t) (see Section 2 for a justification of this assumption). Second,

we allow situations in which the monitor also has bargaining power: at the side-contracting

stage the monitor makes a take-it-or-leave offer to the agent with probability λ ∈ [0, 1]

and the agent makes a take-it-or-leave offer to the monitor with probability 1− λ. Finally,

instead of focusing on a two-wage distribution as in Section 3.2, we place no restrictions on

the randomization over the monitor’s wage that the principal uses. The timing of the game

and the players’ payoffs are the same as in Section 2.

4.2 Analysis

Incentives for a given wage schedule. Let F be the set of all cumulative density

functions (cdfs) with support on [0,∞). Suppose that the principal randomizes over the

wage he offers to the monitor according to a distribution with cdf F ∈ F , and consider an

agent with type α ∈ [α, α] who takes action e = 1. Suppose first that the agent is selected

to make an offer to the monitor at the side-contracting stage. The monitor’s payoff from

accepting an offer T is T + (1− q)w, while her payoff from rejecting the offer and sending a

truthful message is w. Therefore, a monitor accepts an offer T if and only if T ≥ qw. From

the agent’s perspective, the monitor accepts an offer T with probability F (T/q).

Let T be the offer that the agent makes when selected to make an offer after taking action

e = 1. When the agent takes action e = 1 and is selected to make an offer, her payoff is
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α+F (T/q)(−T − qt)+ (1−F (T/q))(−t) = α− t+F (T/q)((1− q)t−T ). The agent earns α

from taking action e = 1. If the monitor accepts the offer, she sends message m = 0 and the

agent gets punished only if the principal detects that the message was false. If the monitor

rejects the offer, she sends message m = 1 and the agent gets punished with probability 1.

Suppose next that the monitor is selected to make an offer at the side-contracting stage

after the agent took action e = 1. The agent’s payoff from accepting an offer T is α−T − qt,

since in this case the monitor sends message m = 0 and the agent will only get punished if

the principal detects that the monitor’s message was false. The agent’s payoff from rejecting

the monitor’s offer is α− t, since the monitor sends a message m = 1 if her offer is rejected.

Therefore, the agent will accept the monitor’s offer T if and only if T ≤ (1− q)t.

The monitor’s payoff from making an offer T = (1−q)t that the agent accepts is (1−q)t+

(1 − q)w, since with probability q the principal detects that the monitor’s message is false

and pays her a wage of zero. The monitor’s payoff from making an offer T > (1−q)t that the

agent rejects is w. Hence, the monitor makes an offer T = (1−q)t if qw ≤ (1−q)t and makes

an offer T > (1− q)t otherwise. Note that, regardless of whether the monitor makes an offer

T = (1− q)t or an offer T > (1− q)t, the agent’s payoff from taking action e = 1 when the

monitor makes the take-it-or-leave-it-offer is α − t: if the monitor makes offer T = (1− q)t

the agent’s payoff is α − qt − T = α − t, while if the monitor makes offer T > (1 − q)t the

agent gets α − t since she gets punished with probability 1. The agent’s expected payoff

from taking action e = 1 and making offer T is equal to α− t+ (1− λ)F (T/q)((1− q)t− T )

(where λ is the probability with which the monitor makes the offer).

The payoff that an agent gets by taking action e = 0 is 0, since in this case the monitor

has an incentive to send a truthful message even if there is no collusion. An agent with type

α has an incentive to take action e = 0 if and only if,

∀T ≥ 0, α− t+ (1− λ)F (T/q)((1− q)t− T ) ≤ 0. (1)

17



From equation (1) it follows that if an agent with type α finds it optimal to take action

e = 0, then all agents with type α′ < α will also find it optimal to take action e = 0.

Similarly, if an agent with type α finds it optimal to take action e = 1, then all agents with

type α′ > α will also find it optimal to take action e = 1. By choosing the distribution

F ∈ F of wages, the principal effectively chooses the cutoff type α ∈ [α, α] such that agents

with type below α take action e = 0 and agents with type above α take action e = 1.

Finally, note that the principal can induce all agents with type α ≤ t[1− (1− λ)(1− q)]

to take action e = 0 by paying the monitor monitor a wage w = 0 with probability 1. In this

case, an agent who took action e = 1 would offer a transfer T = 0 to the monitor when she

is selected to make offers and her expected payoff would be α− t+ (1− λ)(1− q)t. Hence,

all agents with type α ≤ t[1− (1− λ)(1− q)] would have an incentive to take action e = 0.

Deterministic wages. Consider a principal who wants all agents with type below a cutoff

α > t[1− (1− λ)(1− q)] to take action e = 0. Suppose that the principal pays the monitor

a wage w with probability 1. Using (1), the payoff that an agent with type α gets from

taking action e = 1 and making an offer T = qw when she is selected to make offers is

α − t + (1 − λ)((1 − q)t − qw). This agent will have an incentive to take action e = 0 only

if α − t + (1 − λ)((1 − q)t − qw) ≤ 0. The lowest efficiency wage that induces agents with

types below α to take action e = 0 is wα := α−t+(1−λ)(1−q)t
q(1−λ)

.

Optimal randomization. Consider next a principal who randomizes over the wage he

pays to the monitor. Suppose that the principal wants to provide incentives to agents with

type below α to take action e = 0, with α > t− (1− λ)(1− q)t. The principal’s problem is

to find the cdf in F that minimizes wage payments subject to the constraint that an agent

with type α has an incentive to take action e = 0. That is, the principal’s problem is

inf
F∈F

∫
wdF (w) s.t. (1) (2)

18



Proposition 1. Suppose that the principal wants to provide incentives to all agents with

type below α to take action e = 0. Then, it is optimal for the principal to pay the monitor a

wage drawn from a distribution with cdf Fα ∈ F such that, for all w ≥ 0,

Fα(w) = min

{
t− α

(1− λ)((1− q)t− qw)
, 1

}
. (3)

Proof. We first show that, if F is solves (2), it must be that the constraint (1) holds with

equality for all offers T such that F (T/q) < 1. To see this, suppose by contradiction that

(1 − λ)F (T/q)((1 − q)t − T ) < t − α for some T ≥ 0 such that F (T/q) < 1. Let F̃ ∈ F

be such that, for all T with F̃ (T/q) < 1, (1 − λ)F̃ (T/q)((1 − q)t − T ) = t − α. Note that

F̃ (s) ≥ F (s) for all s, with strict inequality for some s′; i.e., F first order stochastically

dominates F̃ . It follows that the expected wage payments under F̃ are strictly lower than

under F . Note further that the agent would take action e = 0 under distribution F̃ , since

(1− λ)F̃ (T/q)((1− q)t− T ) ≤ t− α for all T ≥ 0. This contradicts the assumption that F

solves (2). Hence, (1) holds with equality for all T ≥ 0 such that F (T/q) < 1.

Let F be the solution to (1) and let T = inf{T : F (T/q) = 1}. The arguments in the

previous paragraph imply that, for all T ∈ [0, T ],

(1− λ)F (T/q)((1− q)t− T ) = t− α ⇒ F (T/q) =
t− α

(1− λ)((1− q)t− T )
. (4)

Applying the change of variable w = T/q in (4), it follows that the solution to (2) is (3).

Proposition 1 characterizes the optimal randomization over wages that induces all agents

with type α′ ≤ α to take action e = 0. Note that the highest wage in the support of this

distribution is wα = α−t+(1−λ)(1−q)t
q(1−λ)

, which is the deterministic wage that induces all agents

with type below α to take action e = 1. Note further that, for all w ≥ 0, Fα(w) is decreasing

in α and is increasing in t and q. Therefore, the cost that the principal has to incur to

provide incentives to agents with type lower than α is increasing in α and is decreasing in
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both t and q.

Finally, note for all w ≥ 0, Fα(w) is increasing λ. Moreover, for all α there exists

λα ∈ (0, 1) such that Fα(0) = 1 for all λ ≥ λα. This implies that it is cheaper for the

principal to provide incentives to the agent when the monitor has more bargaining power

at the side-contracting stage; and when the monitor’s bargaining power is large enough, the

principal can provide incentives to the agent at zero cost (i.e., paying the monitor a wage of

zero with probability 1). Intuitively, the monitor extracts more rents at the side-contracting

stage as her bargaining power increases. This reduces the payoff that the agent gets by

taking action e = 1, and makes it cheaper for the principal to provide incentives.

Using the optimal distribution in Proposition 1, the cost in terms of expected wages of

providing incentives to agents with type lower than α > t[1− (1− λ)(1− q)] is

∫
wdFα(w) =

α− t+ (1− q)t(1− λ)

q(1− λ)
+

t− α

q(1− λ)
ln

(
t− α

(1− λ)(1− q)t

)
(5)

<
α− t+ (1− q)t(1− λ)

q(1− λ)
= wα,

where the inequality follows since α > t[1− (1− λ)(1− q)] implies that t−α
(1−λ)(1−q)t

< 1.

Table 1 compares the cost of providing incentives to agents with type below α for different

parameter values under deterministic wages (second column) and under the optimal wage

distribution in Proposition 1 (third column). As the table shows, the cost of incentives can

potentially be significantly lower with random wage contracts than with deterministic ones.

Optimal cutoffs. Consider the case of a principal who compensates the monitor with a

deterministic efficiency wage. Let wα = min{α−t+(1−q)t(1−λ)
q(1−λ)

, 0} be the wage that the principal

needs to pay to the monitor to provide incentives to agents with types below α to take action

e = 0. The principal’s payoff from paying the deterministic wage wα is

UD
P (α) := G(α)(−wα) + (1−G(α))(−β − (1− q)wα).
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Table 1: Cost of Providing Incentives

Deterministic Optimal wage Two-wage
Parameters wage distribution distribution

α = 3, t = 4, q = 0.1, λ = 0.3 21.7 8.5 13.1
α = 2.5, t = 4, q = 0.1, λ = 0.3 14.6 3.5 5.9
α = 2, t = 4, q = 0.1, λ = 0.3 7.4 0.8 1.5

Deterministic Optimal wage Two-wage
Parameters wage distribution distribution

α = 2.5, t = 4, q = 0.1, λ = 0.2 17.3 5 8.2
α = 2.5, t = 4, q = 0.1, λ = 0.3 14.6 3.5 5.9
α = 2.5, t = 4, q = 0.1, λ = 0.4 11 1.9 3.4

When the agent’s type is lower than α, the agent takes action e = 0, the monitor sends

message m = 0, and the principal pays a wage wα. When the agent’s type is larger than α,

the agent takes action e = 1 and bribes the monitor, the monitor sends message m = 0, and

the principal pays a wage wα only if he doesn’t detect that the message was false. Therefore,

the problem of a principal who compensates the monitor with a deterministic wages is to

choose a cutoff α ∈ [α, α] to maximize UD
P (α). Let αD ∈ argmaxUD

P (α).

Assumption 1. αD > t[1− (1− q)(1− λ)].

Assumption 1 implies that a principal who compensates the monitor with a deterministic

wage would find it optimal to pay a strictly positive wage. Assumption 1 holds when β is

large and when the probability that the agent’s type is below t[1− (1− q)(1− λ)] is small.

Consider next the case in which the principal randomizes over the wage he pays the

monitor. By Proposition 1, the principal will draw the monitor’s wage from the distribution

with cdf Fα if he wants to incentivize agents with type lower than α to take action e = 0.

The principal’s payoff from using distribution Fα is

UR
P (α) := G(α)

(
−
∫

wdFα(w)

)
+ (1−G(α))

(
−β − (1− q)

∫
wdFα(w)

)
.

21



When the agent’s type is lower α, the agent takes action e = 0, the monitor sends message

m = 0 and the principal pays the monitor her wage w drawn from the cdf Fα. When the

agent’s type is larger than α, the agent takes action e = 1 and bribes the monitor, the

monitor sends message m = 0, and the principal pays a wage w only if he doesn’t detect

that the message was wrong. The principal’s problem is to choose α ∈ [α, α] that maximizes

UR
P (α).

7 Let αR be the cutoff that maximizes UR
P (α).

Proposition 2. Suppose Assumption 1 holds. Then, UR
P (αR) > UD

P (αD).

Proof. Assumption 1 implies that wαD
> 0. Since

∫
wdFαD

< wαD
(see equation (5)), it

follows that UD
P (αD) < UR

P (αD) ≤ UR
P (αR).

Robustness to signaling. As in Section 3, a potential concern with randomized incentive

schemes is that the monitor might be able to signal her wage to the agent and undo the

asymmetric information that the principal generates. We now show that the endogenous

adverse selection is robust to signaling.

To illustrate this point, we assume that an agent who took action e = 1 and who is

selected to make a proposal at the side-contracting stage can offer the monitor any incentive

compatible and individually rational bilateral bargaining mechanism to extract the monitor’s

private information. We show that an agent with type α′ ≤ α still has an incentive to take

action e = 0 if the principal randomizes over the monitor’s wage according to Fα.

By the revelation principle we can focus on direct revelation mechanisms in which the

agent asks the monitor to report her private information; i.e., her wage. A bilateral bargain-

ing mechanism is characterized by two functions: (i) P (w), the probability with which the

monitor and the agent reach an agreement when the monitor’s wage is w; and (ii) T (w), the

expected transfer from the agent to the monitor when the monitor’s wage is w.

7When computing UR
P (α), we assume that an agent who takes action e = 1 offers a bribe T = qwα that

all monitors accept. From the proof of Proposition 1, it follows that an agent who took action e = 1 is
indifferent between making any offer T ∈ [0, qwα]. However, the principal is strictly better-off when the an
agent who took action e = 1 makes offer T = qwα, since in this case he won’t have to pay the monitor’s
wage after detecting that the monitor’s message was false.
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Suppose the principal offers the monitor a wage drawn from Fα and consider an agent

with type α who took action e = 1. If the monitor is selected to make an offer, then this

agent obtains a payoff equal to α − t: in this case the monitor finds it optimal to make an

offer T = (1− q)t which the agent accepts, and the agent gets α− qt− (1− q)t = α− t.8 If

the agent is selected to be proposer and offers the monitor a mechanism (P, T ), her payoff is

α +

∫
[−T (w) + P (w)(−qt) + (1− P (w))(−t)] dFα(w).

The agent gets a benefit α from taking action e = 1. If the monitor’s wage is w, the

agent pays an expected transfer T (w) and the monitor and agent reach an agreement with

probability P (w). If they reach an agreement the monitor sends message m = 0 and the

agent gets punished with probability q, and if they don’t reach an agreement the monitor

sends message m = 1 and the agent gets punished with probability 1.

Let Uα′
A (P, T ) denote the expected payoff that an agent with type α′ gets by taking action

e = 1 and offering mechanism (P, T ) to the monitor when selected to be proposer:

Uα′

A (P, T ) = (1− λ)

[
α′ +

∫
[−T (w) + P (w)(−qt) + (1− P (w))(−t)] dFα(w)

]
+ λ(α′ − t)

= α′ − t+ (1− λ)

∫
(P (w)(1− q)t− T (w))dFα(w). (6)

Our next result shows that, for any incentive compatible and individually rational mech-

anism (P, T ) that the agent can offer to the monitor, the expected payoff that an agent with

type α gets taking action e = 1 is weakly lower than 0, which is the payoff this agent would

get from taking action e = 0.

Proposition 3. Suppose that the principal offers the monitor a wage drawn from the distri-

bution Fα. Then, for any incentive incentive compatible and individually rational mechanism

8Note that all wages in the support of Fα are strictly lower than (1−q)t
q , so all monitors find it optimal

to make offer T = (1− q)t to the agent.
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(P, T ) and for any α′ ≤ α, Uα′
A (P, T ) ≤ 0.

Proof. See Appendix B.1.

4.3 Practical concerns and the cost of simplicity

Sensitivity to bargaining power. The optimal distribution derived in Proposition 1

depends on the agent’s and monitor’s bargaining power at the side-contracting stage. In

particular, as the agent’s bargaining power increases it becomes more costly to provide

incentives to the agent. This implies that the worst possible situation for the principal is a

setting in which the agent has all the bargaining power (i.e., a setting with λ = 0).

To highlight the dependency of the optimal distribution on the level of bargaining power,

let Fα(w;λ) denote the cdf in Proposition 1 when the monitor makes offers with probability

λ. Note that for every possible wage distribution F ∈ F , the agent’s payoff α − t + (1 −

λ)F (T/q)((1 − q)t − T ) from taking action e = 1 and making offer T is decreasing in λ.

Therefore, if the principal pays the monitor a wage drawn from Fα(w;λ), the agent will have

an incentive to take action e = 0 when the level of bargaining power is λ′ ∈ [λ, 1].

The observations in the two previous paragraphs imply the following result.

Proposition 4. If the principal pays the monitor a wage drawn from the cdf Fα(w; 0), all

agents with type α′ ≤ α will take action e = 0 regardless of the monitor’s bargaining power.

Loss from efficiency wages. A simplification we made so far is to assume that the

principal compensates the monitor with an efficiency wage contract: he pays the monitor a

wage w ≥ 0 unless he detects that the monitor’s message was false. Efficiency wages not

only allow us to illustrate how the principal can benefit from creating endogenous adverse

selection in a clean way, but are also easy to implement in practice.

In Appendix A.1 we show how our results extend when we allow the principal to offer

general wage contracts. There, we show that the optimal wage contract takes the form of a
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bonus contract : the principal pays the monitor a higher wage when she sends message m = 1

than when she sends message m = 0. Moreover, we derive the optimal randomization over

bonus contracts (i.e., the randomization that minimizes the cost of providing incentives).

How much does the principal lose by using efficiency wages instead of the optimal bonus

contract? In Appendix A.1 we show that the cost in terms of expected wages that the

principal incurs to provide incentives to agents with a type lower than α > t[1−(1−λ)(1−q)]

when he uses randomized bonus contracts is equal to 1−q
2−q

times the cost of providing incentives

using randomized efficiency wages. That is, when q is small the expected wage payments are

roughly twice as large with efficiency wages than with bonus contracts.

Loss from two-wage distribution. By Proposition 1, under the optimal randomization

the principal offers a continuum of wages to the monitor with positive probability. We now

quantify the loss that a principal incurs if he instead uses a simpler distribution with two

levels of wages in its support.

Consider a principal who wants to provide incentives to agents with type lower than

α > t[1− (1− λ)(1− q)] to take action e = 1. Suppose that the principal offers the monitor

a wage drawn the following distribution: with probability x ∈ [0, 1] the principal offers the

monitor a wage w = 0, and with probability 1− x her offers a wage w = wα.

Under this distribution, an agent who took action e = 1 would find it optimal to make

either an offer T = 0 that only monitors with wage w = 0 accept, or an offer T = qwα that all

monitors accept. An agent with type α who takes action e = 1 and makes an offer T = qwα

when selected to make an offer earns an expected payoff of α−t+(1−λ)((1−q)t−qwα) = 0.

On the hand, if this agent instead makes an offer T = 0 she earns an expected payoff of

α − t + (1 − λ)x(1 − q)t. An agent with type α has an incentive to take action e = 0 (and

get a payoff of 0) only if α− t+ (1− λ)x(1− q)t ≤ 0, or if x ≤ t−α
(1−λ)(1−q)t

. Therefore, under

this two-wage distribution the expected wage payments that a principal has to make to the

monitor to provide incentives to agents with type lower than α are (1− t−α
(1−λ)(1−q)t

)wα.
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The following result compares the cost of providing incentives using this two-wage dis-

tribution against the cost of providing incentives using the optimal distribution Fα.

Proposition 5. The cost of providing incentives under the two-wage distribution is at most

twice as large as the cost of providing incentives under the distribution in Proposition 1.

Proof. See Appendix B.1.

The last column in Table 1 reports the cost of providing incentives (in terms of expected

wage payments) under the two-wage distribution for different parameter values. As the table

shows, a substantial fraction of the gains from using random wages can be achieved using a

more practical two wage distribution.

As mentioned in Section 3.2, if there are many agents that need to be monitored the

principal can implement this two-wage randomization by hiring two types of monitors: a

fraction 1 − x of “elite” monitors, who have a high efficiency wage equal to wα, and a

fraction x of “normal” monitors, who have a low efficiency wage of w = 0. The principal can

then generate asymmetric information at the side-contracting stage by randomly assigning

different monitors to different agents.

5 Two-dimensional types of agents

The model in the previous sections assumes that all agents incur the same cost t when

punished by the principal. Proposition 1 shows that, in this setting, it is optimal to pay

the monitor an efficiency wage drawn from a distribution with support [0, wα]; that is, it is

optimal for the principal to pay a fraction of monitors the lowest possible wage of 0.

This section studies a setting in which agents differ not only on the benefit α that they

obtain when taking action e = 1, but also in the cost t that they incur when they are punished

by the principal. For instance, some agents might have contacts in the government and are

therefore less likely to incur any actual punishment. Also, if the punishment t represents a
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tax that the agent has to pay when punished, agents that are financially constrained would

face a higher punishment cost than agents who don’t face such constraints. We show that,

in this setting, it might be optimal for the principal to offer the monitor a wage drawn from

a distribution with support bounded away from zero. To illustrate this point, we consider a

simple setting in which agents may have one of two possible levels of punishment cost t1 < t2.

The cost of punishment is also the agent’s private information, and is independent of the

private benefit α. Let p ∈ (0, 1) be the probability that an agent has cost of punishment t2.

To see how this additional dimension of uncertainty affects incentives, consider an agent

with type (α, t) who takes action e = 1, and suppose that the monitor is selected to make an

offer at the side-contracting stage. Note that the payoff that the agent gets from accepting

an offer T is α−qt−T , while her payoff from rejecting the offer is α− t. Therefore, an agent

accepts an offer T if and only if T ≤ (1− q)t. When all agents have the same cost t of being

punished, the monitor always makes an offer at least as large as (1− q)t. This implies that

the agent gets no rents from the collusive agreement when the monitor makes the offer.

When the cost that agents incur from being punished can take values t1 and t2 > t1,

there are three possible optimal offers that a monitor might make at the side-contracting

stage: a low offer T = (1− q)t1 that is accepted by all agents, a middle offer T = (1− q)t2

that is accepted only by agents with type (α, t2), and an offer T > (1 − q)t2 that no agent

accepts. In Appendix B.2 we show that the optimal offer for a monitor with wage w is

T (w) =


(1− q)t1 if w < 1−q

q(1−p)
(t1 − pt2),

(1− q)t2 if w ∈ [ 1−q
q(1−p)

(t1 − pt2),
(1−q)

q
t2],

T > (1− q)t2 if w > (1−q)
q

t2.

(7)

Intuitively, low paid monitor face a lower cost of colluding, so they find it optimal to make

make lower offers that are accepted more frequently.

Let ŵ := 1−q
q(1−p)

(t1−pt2) and assume that t1 > pt2 (so that ŵ > 0). Suppose the principal

randomizes over the monitor’s wage according to F ∈ F , and let F (ŵ−) = limw↑ŵ F (w) be
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the probability that a monitor’s wage is strictly lower than ŵ. In Appendix B.2 we show

that the expected payoff that an agent with type (α, t2) gets when she takes action e = 1

is equal to α − t2 + (1 − λ)F (T/q)((1 − q)t2 − T ) + λF (ŵ−)(1 − q)(t2 − t1). The last term

in this expression represents the payoff that an agent with type (α, t2) gets if she is facing

a monitor with wage lower than ŵ and the monitor makes the offer at the side-contracting

stage: such a monitor would make a low offer of (1− q)t1, which an agent with type (α, t2)

strictly accepts. Note that this extra payoff that an agent with type (α, t2) gets is strictly

increasing in the fraction F (ŵ−) of monitors that have a wage lower than ŵ.

Let wα(t2) =
α−t2+(1−λ)(1−q)t2

(1−λ)q
. The following result shows that, if the principal wants to

provide incentives to agents with type (α, t2) to take action e = 1, it might be optimal to

pay the monitor a wage drawn from a distribution with support [ŵ, wα(t2)].

Proposition 6. Suppose the principal wants to provide incentives to all agents with type

(α′, t2) with α′ ≤ α for some α > t2(1− (1− λ)(1− q)). Then, there exists t ∈ (pt2, t2) such

that it is optimal for the principal to pay the monitor a wage drawn from the distribution

with support [ŵ, wα(t2)] whenever t1 ∈ (pt2, t).

Proof. See Appendix B.2.

6 Discussion

6.1 Summary

A general message from our analysis is that, when there is threat of collusion, a principal

can gain from allocating private information differently across agents. This adds asymmetric

information between the agents, and makes it harder for them to collude. The way the

principal achieves this in our model is by randomizing over the monitor’s incentive contract,

and by informing only the monitor about the realization of this randomization.
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A practical way in which a principal can implement the mechanism we propose in this

paper is by offering different incentive schemes to the different monitors that he hires, and by

then randomly assigning monitors to audit different agents. This makes the agents uncertain

about the type of monitor they are dealing with, and reduces the cost of providing incentives.

6.2 Further signaling concerns

A real-life concern for taking our mechanism to practice is that the monitor may be able

to signal her wage to the agent, thus undoing the endogenous asymmetric information that

the principal creates. In Section 4 we address this issue by showing that this endogenous

adverse selection is robust to settings in which the agent can design a mechanism to extract

the monitor’s (endogenous) private information.

However, in real-life a monitor may able to signal her wage by taking costly actions

that lie outside of our model. For instance, a monitor with a high wage may be able to

truthfully signal her level of compensation by buying luxury items (i.e., an expensive watch)

that low paid monitors cannot afford. A practical way in which the principal can lessen these

concerns is by giving high paid monitors the same current wage as low paid monitors, and

by collecting their additional wage into a deferred compensation account which can only be

accessed by the monitor if she performs well (i.e., if she is not caught lying).

6.3 The impact of extortion

Our model assumes that the monitor always send the message that maximizes her expected

payoff in case she doesn’t collude with the agent. This assumption implies that the monitor

will not get a bribe when the agent takes action e = 0: since the monitor’s expected wage

from telling the truth is higher than her expected wage from lying, in this case the agent

doesn’t need to bribe the monitor to get a favorable report. We now show how our results

extend to settings in which the monitor can extort an agent who took action e = 0 by
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committing to send an untruthful message. The framework we consider is essentially the

same as in Section 4. The only difference is that a monitor who makes the offer at the side-

contracting stage can commit to send an untruthful message to the principal if the agent

rejects her proposal.

In Appendix B.3 we show that, in this setting, the expected payoff an agent with type α

gets from taking action e = 0 is equal to−λ(1−q)t. The term (1−q)t represents the bribe that

the agent pays when the monitor makes the offer at the side-contracting stage. On the other

hand, by the same arguments as in Section 4, the agent’s payoff from taking action e = 1 and

making offer T ≥ 0 when selected to make a proposal is α− t+(1−λ)F (T/q)((1− q)t−T ).

An agent with type α then takes action e = 0 if and only if,

∀T ≥ 0, α− t+ (1− λ)F (T/q)((1− q)t− T ) ≤ −λ(1− q)t. (8)

Therefore, in this setting the problem of a principal who wants to give incentives to agents

with type α′ ≤ α to take action e = 0 is

inf
F∈F

∫
wdF (w) s.t. (8) (9)

Proposition 7. Suppose the monitor can extort the agent when she takes action e = 0.

Then, it is optimal for the principal to pay the monitor a random wage drawn from the cdf

F̂α ∈ F such that:

F̂α(w) = min

{
t− α− λ(1− q)t

(1− λ)((1− q)t− qw)
, 1

}
. (10)

Proof. Appendix B.3

The distribution F̂α in Proposition 7 first order stochastically dominates the distribution

Fα in Proposition 1. Therefore, when there is a threat that monitors might extort agents

the principal needs to increase wage payments in order to provide incentives.
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6.4 An alternative implementation

This paper shows how the principal can improve incentive provision by adding asymmetric

information between the monitor and the agent. The way the principal generates this en-

dogenous adverse selection in our model is by randomizing over the monitor’s compensation

scheme and by informing only the monitor about the outcome of this randomization. This

subsection illustrates an alternative way in which a principal can add asymmetric information

between the monitor and the agent.

Consider the same setting as in Section 2, with the added feature that the principal can

choose the probability q with which she detects false messages. For simplicity, we focus on

the case in which the agent has all the bargaining power at the side-contracting stage. For

all q ∈ [0, 1], let c(q) be the cost that the principal has to incur to detect false messages by

the monitor with probability q. For instance, the principal may affect the likelihood with

which he detects false messages by choosing how much effort to spend checking reports.

Suppose the principal offers the monitor a deterministic efficiency wage w > 0, but

randomizes over the probability q with which he detects false messages. Suppose further

that the principal informs only the monitor about the outcome of this randomization. As

before, this randomization adds asymmetric information between the monitor and the agent.

Consider first a setting in which the principal uses a deterministic strategy q ∈ (0, 1). In

this case, an agent who takes action e = 1 would have to offer the monitor a transfer T ≥ qw

to induce her to send a favorable report to the principal. The agent’s payoff from taking

action e = 1 and making offer T = qw would then be α − qt− qw. On the other hand, the

agent obtains a payoff of 0 from taking action e = 0, since in this case the monitor has an

incentive to send a truthful message m = 0 even without a bribe. It follows that q must be

at least as large as α
t+w

∈ (0, 1) in order to provide incentives to the agent.

Consider next a setting in which that the principal randomizes over the choice of q. For

instance, suppose that the principal chooses q = 0 with probability x ∈ [0, 1] and q = q̂ ≤ 1
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with probability 1− x. As before, the agent obtains a payoff of 0 by taking action e = 0. If

the agent instead takes action e = 1, there are two potentially optimal offers she can make

to the monitor: an offer T = 0 which the monitor accepts only if q = 0, or an offer T = q̂w

which the monitor always accepts. The agent’s payoff from making offers T = 0 and T = q̂w

is, respectively, α−(1−x)t and α−(1−x)q̂t− q̂w. If x = t−α
t

and q̂ = α
α+w

, the agent’s payoff

from taking action e = 1 is less than zero regardless of the offer she makes. Moreover, the

expected value of q is x× 0+ (1− x)× q̂ = α
t

α
α+w

< α
t+w

. Therefore, if the cost function c(q)

is not too convex, the principal’s expected cost of providing incentives to the agent would

be strictly lower when he randomizes over q than when he uses a deterministic q.
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Appendix

A Extensions

A.1 General wage contracts

Throughout the paper we assume that the principal compensates the monitor with an effi-

ciency wage contract. This appendix shows how our results extend when we allow for general

wage contracts w(m, s) in which the monitor’s compensation depends on the message m she

sends and on the principal’s signal s (i.e., on whether the principal detects that the message

is false or not). We consider the same model as in the main text. The only difference is that

we impose a participation constraint that the agent’s payoff cannot be negative.9

Suppose the principal wants to induce all agents with type α′ ≤ α to take action e = 0.

Since the agent’s payoff should be at least zero, agents with type α′ ≤ α must pay a bribe

T = 0 to the monitor and get punished with probability 0 whenever they take action e = 0:

otherwise the agent would get negative payoff if she pays a positive transfer to the monitor

and/or if she gets punished with positive probability. This implies that the wage contract

w(m, s) must provide incentives to the monitor to report truthfully (even without a transfer)

when agent takes action e = 0. That is, any wage contract w(m, s) that the principal offers

the monitor with positive probability must satisfy w(0, 0) ≥ (1− q)w(1, 1) + qw(1, 0): when

the agent takes action e = 0 the monitor gets a wage w(0, 0) by reporting truthfully, and

she gets an expected wage of (1− q)w(1, 1) + qw(1, 0) by reporting m = 1.

Consider an agent with type α who takes action e = 1. By the same arguments as in

Section 4, when the monitor is selected to make an offer at the side-contracting stage she

will either find it optimal to make an offer T = (1− q)t that the agent barely accepts, or she

9Note that this constraint would not binding when the monitor is compensated with an efficiency wage:
in this case, by taking a action e = 0, the agent can guarantee herself a payoff of 0 since the monitor will have
an incentive to send a truthful message. Therefore, adding this constraint wouldn’t change the results in
the main text. When we allow for arbitrary wage contracts w(m, s) this constraint rules out wage contracts
w(m, s) under which the agent needs to bribe the monitor to get a favorable report after taking action e = 0.
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will find it optimal to make an offer T > (1− q)t that the agent rejects. In either case, the

agent’s payoff is equal to α− t.

When the agent is selected to make an offer after taking action e = 1, the payoff that a

monitor with wage contract w(m, s) gets from accepting an offer T is T + (1 − q)w(0, 0) +

qw(0, 1): with probability 1 − q the principal doesn’t detect the lie and the monitor gets

a wage w(0, 0), and with probability q the principal detects the lie and the monitor gets a

wage w(0, 1). On the other hand, if the monitor rejects the offer she sends message m = 1

and gets a payoff of w(1, 1). Therefore, the monitor accepts an offer T ≥ 0 if and only if

T ≥ w(1, 1)− (1− q)w(0, 0)− qw(0, 1).

Note that it is optimal for the principal to make the wage w(0, 0) as low as possible:

lowering this wage reduces wage payments, and it also makes the monitor less likely to

accept a bribe by an agent who took action e = 1. Therefore, for any wage contract w(m, s)

that the principal offers the monitor with positive probability, it is optimal to set w(0, 0) =

(1−q)w(1, 1)+qw(1, 0). When the wage contract satisfies this property, a monitor accepts an

offer T after the agent took action e = 1 if and only if T ≥ w(1, 1)−(1−q)w(0, 0)−qw(0, 1) =

w(1, 1)q(2 − q) − q(w(1, 0) + (1 − q)w(0, 1)). Note that it is optimal for the principal to

set w(1, 0) = w(0, 1) = 0 for all wage contracts that he offers the monitor with positive

probability, since doing this reduces the monitor’s incentive to accept a bribe from an agent

who took action e = 1. This implies that any wage contract w(m, s) that the principal offers

is fully characterized by w(1, 1), since w(0, 0) = (1− q)w(1, 1) and w(1, 0) = w(0, 1) = 0.

Let F ∈ F be the cdf of wages w(1, 1) that the principal uses. By the arguments

in the previous paragraphs, the monitor accepts an offer T ≥ 0 from an agent who took

action e = 1 if and only if T ≥ q̂w(1, 1), where q̂ = q(2 − q). Therefore, from the agent’s

perspective, an offer T ≥ 0 is accepted by the monitor with probability F (T/q̂). The agent’s

expected payoff from taking action e = 1 and making offer T when she is selected to make

offers is then given by λ(α − t) + (1 − λ)(α + F (T/q̂)(−T − qt) + (1 − F (T/q̂))(−t)) =

α− t+ (1− λ)F (T/q̂)((1− q)t− T ).
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Since the agent gets a payoff of 0 by taking action e = 0, it follows that she will take

action e = 0 if and only if,

∀T ≥ 0, (1− λ)F (T/q̂)((1− q)t− T ) ≤ t− α. (A.1)

The problem of the principal is to choose a distribution F ∈ F that minimizes expected

wage payments, subject to the constraint that the agent takes action e = 0. Recall that F

is the cdf over wages w(1, 1). Moreover, if the agent takes action e = 0, the monitor will

report truthfully and will receive a compensation w(0, 0) = (1−q)w(1, 1) from the principal.

Therefore, the principal’s problem is

inf
F∈F

∫
(1− q)wdF (w) s.t. (A.1) (A.2)

Following the same argument as in the proof of Proposition 1, the solution to (A.2) is

F̃α(w) = min

{
t− α

(1− λ)((1− q)t− q̂w)
, 1

}
.

The expected wage payments to the monitor from paying her a random wage contract drawn

from the distribution F̃α is

∫
(1− q)wdF̃α(w) =

1− q

2− q

(
α− t+ (1− q)t(1− λ)

q(1− λ)
+

t− α

q(1− λ)
ln

(
t− α

(1− λ)(1− q)t

))
.

Comparing the expression above to (5), the expected wage payments to the monitor in this

setting are a fraction 1−q
2−q

of the expected wage payments when the principal is restricted to

use efficiency wages.
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A.2 General bilateral mechanisms

The model in the main text simplifies the side-contracting stage by assuming that either the

agent or the monitor make a take-it-or-leave-it offer. In that setting, the monitor’s bargaining

power vis-a-vis the agent is measured by the likelihood with which she makes an offer. This

appendix extends the model in Section 4 by assuming that, at the side-contracting stage,

the monitor and the agent write an individual rational and incentive compatible bilateral

bargaining mechanism that maximizes the weighted sum of their payoffs.

Let FI ⊂ F be the set of cdfs whose support takes the form [w,w] ⊂ [0,∞). Suppose that

the principal randomizes over the monitor’s efficiency wage according to some cdf F ∈ FI .
10

If the agent takes action e = 0, the monitor finds it weakly optimal to send a truthful message

m = 0 to the principal even without getting a transfer from the agent. Therefore, the agent

gets a payoff of 0 by taking action e = 0, regardless of the bilateral bargaining mechanism

that the monitor and agent use at the side-contracting stage.

When the agent takes action e = 1, the monitor would find it optimal to send a message

m = 1 to the principal if there is no agreement at the side-contracting stage. The agent

would incur a punishment cost of t > 0 if the monitor sends this message. On the contrary,

the agent would incur an expected punishment cost of qt if the monitor sends messagem = 0.

Sending a false message has a cost of qw for a monitor with wage w, so the total gains from

sending message m = 0 instead of m = 1 are (1 − q)t − qw. When the agent takes action

e = 1, the agent and the monitor bargain over how to split these gains.

To determine how the monitor and the agent split these gains from reaching an agree-

ment, we consider the class of bilateral bargaining mechanisms that are individually rational

and incentive compatible. By the revelation principle, we can focus on direct revelation

mechanisms in which the monitor reports her (endogenous) private information; i.e., her

wage. A bilateral bargaining mechanism is characterized by two functions: (i) P (w), the

10Restricting attention to cdfs in FI allows us to use the envelope formula to calculate the payoffs of the
monitor and the agent from any bilateral mechanism.
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probability with which the monitor and the agent reach an agreement when the monitor’s

wage is w; and (ii) T (w), the transfer from the agent to the monitor when the monitor’s wage

is w. The monitor commits to send message m = 0 if there is an agreement. Otherwise, if

there is no agreement the monitor sends a truthful message m = 1.

Given a cdf over wages F ∈ FI , the expected payoff of an agent who took action e = 1

from a bilateral bargaining mechanism (P, T ) is

UA =

∫
(α− T (w) + P (w)(−qt) + (1− P (w))(−t)) dF (w)

=

∫
(P (w)(1− q)t− T (w)) dF (w) + α− t,

The agent’s individual rationality constraint is UA ≥ α− t.

On the other hand, the payoff of a monitor with wage w and who reports wage w′

is UM(w,w′) = P (w′)(1 − q)w + T (w′) + (1 − P (w′))w = T (w′) + (1 − P (w′)q)w. By

incentive compatibility, it must be that UM(w,w) ≥ UM(w,w′) for all w′ ̸= w. By individual

rationality it must be that UM(w,w) ≥ w.

Given a distribution F ∈ FI , the weighted sum of the agent’s and monitor’s payoff is

λ

∫
ŨM(w)dF (w) + (1− λ)UA, (A.3)

where λ ∈ [0, 1] is the weight on the monitor’s payoff. For every F ∈ FI and every λ ∈ [0, 1],

let Γ(F, λ) be the set of incentive compatible and individually rational bilateral bargaining

mechanisms that maximize (A.3). We assume that, at the side-contracting stage, the monitor

and the agent use a bilateral bargaining mechanism in Γ(F, λ). The parameter λ measures

the monitor’s bargaining power. Let Ũα
A(F, λ) be the lowest utility that an agent with type

α gets under a bargaining mechanism in Γ(F, λ) if she takes action e = 1.

The problem of a principal who wants to incentivize agents with type α′ ≤ α to take

action e = 0 is to choose a distribution of wages F ∈ FI that minimizes expected wage
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payments, subject to the constraint that such agents weakly prefer to take action e = 0 than

action e = 1. That is, the principal’s problem is

inf
F∈FI

∫
wdF (w) s.t.Ũα

A(F, λ) ≤ 0 (A.4)

Proposition A1. Suppose that the principal wants to provide incentives to all agents with

type below α to take action e = 0. If λ ∈ [0, 1/2), it is optimal for the principal to pay the

monitor a random wage drawn from the distribution F̄α ∈ F such that, for all w ≥ 0,

F̄α(w) = min

{(
t− α

(1− q)t− qw

) 1−2λ
1−λ

, 1

}
. (A.5)

When λ ∈ [1/2, 1], it is optimal for the principal to pay the monitor a wage of 0 with

probability 1.

Proof. See Appendix B.4.

Proposition A1 generalizes the results in Section 4 to settings in which the monitor and

the agent can use an optimal bilateral bargaining mechanism at the side-contracting stage.

When λ ∈ [0, 1/2), F̄α(w) is increasing in λ. This implies that it is cheaper for the principal

to provide incentives to the agent when the monitor has more bargaining power at the side-

contracting stage. This comparative statics was also present in the model in Section 4, and

its intuition is the same as in that setting.

For all λ ≥ 1/2, the distribution that solves (A.4) has all its mass at w = 0. In these

cases, the principal can incentivize the agent to take action e = 0 at no cost. The proof

of Proposition A1 shows that, for all λ ≥ 1/2, the incentive compatible and individually

rational bargaining mechanism that maximizes (A.3) is the mechanism that maximizes the

monitor’s expected payoff. In this case, the monitor extracts all the benefits that the agent

derives from a favorable message after she takes action e = 1, so the principal can provide

incentives to the agent by paying a wage w = 0 to the monitor with probability 1. Finally,
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note that the the distribution F̄α is continuous in λ: as w ≥ 0, F̄α(w) → 1 as λ ↑ 1/2.

A.3 Ex-ante collusion

The model in the main text assumes that the monitor and the agent can collude after the

agent takes action e ∈ {0, 1}. This appendix studies the role of random incentives in settings

in which the monitor and the agent can collude before the agent chooses her action.

We consider a model in which the agent chooses which action e ∈ {0, 1} to take after side-

contracting with the monitor, but which is otherwise the identical to the model in the main

text. We make two simplifying assumptions: (i) the private benefit α that the agent derives

from taking action e = 1 is common knowledge and satisfies α ∈ (qt, t), and (ii) the agent

has all the bargaining power at the side-contracting stage. At the side-contracting stage

the agent makes a take-it-or-leave-it offer T ≥ 0 to the monitor. If the monitor accepts the

agent’s offer, she commits to send a message m = 0 to the principal regardless of the agent’s

action. Otherwise, if the monitor rejects the agent’s offer, she sends a truthful message to

the principal (since this is the message that maximizes her expected wage payments).

Suppose that the monitor accepts the agent’s offer T . In this case, the agent’s payoff

from taking action e = 1 is α − qt− T , since she will only get punished when the principal

detects that the agent had lied. On the other hand, by taking action e = 0 the agent gets a

payoff of −T < α− qt−T . Therefore, the agent always takes action e = 1 after the monitor

accepts her offer. On the other hand, the agent always takes action e = 0 if the monitor

rejects her offer: in this case she obtains a payoff of 0 by taking e = 0, while her payoff from

taking e = 1 is α− t < 0.

Consider the best-response of a monitor with efficiency wage w to an offer T by the

agent. The monitor’s payoff from accepting such an offer is T + (1− q)w, since in this case

the agent will take action e = 1 and the principal will detect that the monitor had lied with

probability q. On the other hand, by rejecting the offer the monitor obtains a wage payment
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w. Therefore, the monitor accepts the agent’s offer T if and only if T ≥ qw.

Suppose the principal pays the monitor an efficiency wage drawn from the cdf F ∈ F .

Then, the agent’s payoff from making an offer T ≥ 0 is F (T/q)(α− qt− T ): the agent takes

action e = 1 if the offer is accepted and obtains a payoff of α− qt− T ; otherwise, the agent

takes action e = 0 if the offer is rejected and obtains a payoff of 0. The agent’s optimal offer

is T ∗ ∈ argmaxF (T/q)(α− qt− T ).

The principal’s problem is

sup
F∈F

−F (T ∗/q)β −
∫ T ∗/q

0

(1− q)wdF (w)−
∫ ∞

T ∗/q

wdF (w) s.t. (A.6)

T ∗ ∈ argmaxF (T/q)(α− qt− T )

When w ≤ T ∗/q the agent successfully bribes the monitor and takes action e = 1. In this

case, the principal incurs a cost β and pays the monitor an expected wage of (1 − q)w.

When w > T ∗/q, the monitor rejects the agent’s offer, the agent takes action e = 0 and the

principal pays the monitor her wage w with probability 1.

Suppose first that the principal offers a deterministic wage w to the monitor. If w <

α/q− t, the agent will find it profitable to offer T = qw and take action e = 1. Otherwise, if

w ≥ α/q − t the agent will find it optimal to take action e = 0. Thus, the principal’s payoff

in this case is max{−β,−(α/q − t)}: the principal can either pay the monitor a high wage

and induce the agent to take action e = 0, or can pay the monitor a wage of zero and let the

agent take action e = 1.

The following proposition characterizes the optimal randomization by the principal.

Proposition A2. Suppose the agent and the monitor can collude ex-ante. Then, it is optimal

for the principal to pay the monitor a random wage drawn from the cdf FEA
α ∈ F such that,

for all w ≥ 0,

FEA(w) = min

{
e

−qβ
α−qt (α− qt)

α− qt− qw
, 1

}
. (A.7)
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Table A1: Principal’s payoff with ex-ante collusion

Parameters Deterministic wage Optimal distribution

α = 2.5, β = 20, t = 5, q = 0.1 -20 -12.6

α = 2, β = 20, t = 5, q = 0.1 -15 -11

α = 1.5, β = 20, t = 5, q = 0.1 -10 -8.6

When the principal pays the monitor a wage drawn from FEA, the agent makes an offer

T ∗ = 0 to the monitor, and monitor and agent collude with probability FEA(0) ∈ (0, 1).

Proof. Appendix B.5

Proposition A2 shows that, when collusion is ex-ante, the principal finds it optimal to

let the monitor and the agent collude a fraction of the time. Intuitively, when collusion is

ex-ante the only way in which the principal can deter the agent from taking action e = 1 is

by always paying the monitor a wage w = α/q − t: if the principal pays lower wages with

positive probability, the agent will make an offer T ≥ 0 that a fraction of low paid monitors

will accept and will take action e = 1 every time she faces a monitor with a sufficiently low

wage. If principal pays wages lower than w = α/q − t with positive probability, then the

monitor and the agent will collude a fraction of the time. The optimal randomization in

Proposition A2 balances the cost β of letting the monitor and the agent collude, and the

benefit of paying lower expected wages to the monitor.

The principal’s payoff from paying the monitor a wage drawn from the cdf FEA is

−FEA(0)β −
∫

wdFEA(w) = −e
−qβ
α−qtβ −

(
α

q
− t

)(
1− e

−qβ
α−qt

(
1− −qβ

α− qt

))
.

Table A1 compares the principal’s payoff for different parameter values under the optimal

deterministic wage and under the optimal distribution in Proposition A2.11 As the table

shows, the gains from using random incentive contracts can also be substantial in this setting.

11The parameters in Table 2 are all such that β > α/q − t, so the optimal deterministic wage is α/q − t.
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B Proofs

B.1 Proofs for Section 4

Proof of Proposition 3. Fix a mechanism (P, T ). If a monitor with wage w reports that

her wage is w′, she obtains a payoff UM(w,w′) = T (w′) + P (w′)(1 − q)w + (1 − P (x))w =

w(1 − qP (w′)) + T (w′): by reporting w′, she gets a transfer T (w′), an expected wage of

(1−q)w if she reaches an agreement with the agent, and a wage of w is there is no agreement.

By incentive compatibility, it must be that UM(w,w) ≥ UM(w,w′) for all w′. From these

incentive compatibility constraints, it follows that for all w,w′,

(w − w′)(1− qP (w)) ≥ UM(w,w)− UM(w′, w′) ≥ (w − w′)(1− qP (w′)).

The equation above imply that P (w) is decreasing in w and that UM(w,w) =
∫ wα

w
qP (ŵ)dŵ+

w+ c for some constant c. By individual rationality UM(w,w) ≥ w for all w, since a monitor

with wage w can always get a payoff of w by not participating in the mechanism and sending

the principal a truthful message. Since UM(wα, wα) = wα + c, it must be that c ≥ 0.

Since UM(w,w) = T (w) + (1− qP (w))w = w+
∫ wα

w
qP (ŵ)dŵ+ c, it follows that T (w) =

P (w)qw +
∫ wα

w
qP (ŵ)dŵ + c. Note that we can set c = 0, as this minimizes the transfers to

the monitor and hence it maximizes the agent’s payoff. Replacing this in (6),

Uα
A(P, T ) = α− t+ (1− λ)

[∫ wα

0

P (w)((1− q)t− qw)dFα(w)−
∫ wα

0

∫ wα

w

qP (ŵ)dŵdFα(w))

]
= α− t+ (1− λ)

[∫ wα

0

P (w)((1− q)t− qw)dFα(w)−
∫ wα

0

qP (w)Fα(w)dw

]
,

where the second inequality follows from changing the order of integration. Note that the

cdf Fα(w) has a jump at 0, and then has a strictly positive density F ′
α(w) for all w ∈ (0, wα).
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Therefore, the expression above can be written as

Uα
A(P, T ) = α− t+ (1− λ)

[
Fα(0)(1− q)t+

∫ wα

0

P (w)

(
(1− q)t− qw − q

Fα(w)

F ′
α(w)

)
F ′
α(w)dw

]
.

Using Fα(w) in Proposition 1, one can check that (1−q)t−qw−q Fα(w)
F ′
α(w)

= 0 for all w ∈ (0, wα].

Hence, Uα
A(P, T ) = α − t + (1 − λ)Fα(0)(1 − q)t = 0 for all mechanisms (P, T ), where the

second equality follows since Fα(0) =
t−α

(1−λ)(1−q)t
.

Proof of Proposition 5. Note first that the principal can provide incentives to agents with

type α ≤ t[1− (1− λ)(1− q)] at zero cost using a deterministic wage w = 0. Therefore, to

prove the statement of Proposition 5 we can focus on the case with α > t[1− (1−λ)(1− q)].

For each α > t[1− (1−λ)(1− q)], let R(α) =
∫
wdFα(w)/(1− t−α

(1−λ)(1−q)t
)wα be the ratio

of the cost of providing incentives with the optimal distribution Fα to the cost of providing

incentives with the two-wage distribution. To prove Proposition 5, it suffices to show that

R(α) ≥ 1/2 for all for all α > t[1− (1− λ)(1− q)].

Using (5), for all α > t[1− (1− λ)(1− q)]

R(α) =

α−t+(1−q)t(1−λ)
q(1−λ)

+ t−α
q(1−λ)

ln
(

t−α
(1−λ)(1−q)t

)
(1− t−α

(1−λ)(1−q)t
)α−t+(1−q)t(1−λ)

q(1−λ)

.

Applying L’Hopital’s rule twice in the expression above, it follows that limα→t[1−(1−λ)(1−q)] R(α) =

1/2. Given this, to complete the proof of the proposition it suffices to show that R(α) is

increasing in α for all α > t[1− (1− λ)(1− q)]. From the expression above,

R′(α) = −
(1− q)t(1− λ)

[
2(α− t(q + λ− qλ)) + (t(2− q − (1− q)λ)− α) ln

(
t−α

(1−q)t(1−λ)

)]
(α− t(q + λ− qλ))3

.

To show that R′(α) ≥ 0 for all α > t[1 − (1 − λ)(1 − q)] it suffices to show that r(α) :=

2(α− t(q+ λ− qλ)) + (t(2− q− (1− q)λ)− α) ln
(

t−α
(1−q)t(1−λ)

)
≤ 0 for all such α. Note that

limα→t[1−(1−λ)(1−q)] r(α) = 0 and that r′(α) = t(q+λ−qλ)−α
t−α

− ln
(

t−α
(1−q)(1−λ)t

)
. Note further that
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limα→t[1−(1−λ)(1−q)] r
′(α) = 0, and that r′′(α) = t(q+λ−qλ)−α

(t−α)2
< 0 for all α > t[1−(1−λ)(1−q)].

It then follows that r′(α) < 0 for all α > t[1 − (1 − λ)(1 − q)], which, together with

limα→t[1−(1−λ)(1−q)] r(α) = 0, implies that r(α) < 0 for all α > t[1 − (1 − λ)(1 − q)]. Hence,

R(α) > 1/2 for all α > t[1− (1− λ)(1− q)], and so Proposition 5 follows.

B.2 Analysis for Section 5

We first show the optimal offer of a monitor with wage w is given by (7). The payoff the

monitor gets from making offer (1 − q)t1 is (1 − q)t1 + (1 − q)w: all agents accept this

offer, the monitor sends message m = 0 and the principal detects that the message is false

with probability q. The payoff that the monitor gets from making an offer (1 − q)t2 is

p((1 − q)t2 + (1 − q)w) + (1 − p)w: if the agent’s punishment cost is t2, the agent accepts

the offer, the monitor sends message m = 0 and the principal detects that the message is

false with probability q; if the agent’s punishment cost is t1, the agent rejects the offer and

the monitor sends message m = 1. The payoff that the monitor gets from making an offer

T > (1 − q)t2 is w, since all agents reject such an offer. Comparing these three payoffs, it

follows that the monitors optimal offer is given by (7). Note that the payoff that an agent

with type (α, ti) gets from accepting an offer T ≤ (1 − q)ti after taking action e = 1 is

α− qti − T , while the payoff she gets from rejecting the offer is α− ti.

Consider next an agent with type (α, ti) who took action e = 1 and who is selected to make

an offer at the side-contracting stage. An offer T by the agent is accepted by the monitor if

and only if T ≥ qw. Therefore, if she makes an offer T , the agent’s payoff when she is selected

to make offers is α+F (T/q)(−qti−T )+(1−F (T/q))(−ti) = α− ti+F (T/q)((1− q)ti−T ).

The expected payoff of an agent with type (α, t1) from taking action e = 1 is therefore

α− t1+(1−λ)F (T/q)((1−q)t1−T ), since the payoff that such agent gets when the monitor

makes offers is α− ti. On the other hand, the expected payoff of an agent with type (α, t2)

from taking action e = 1 is α− t2 + (1− λ)F (T/q)((1− q)t2 − T ) + F (ŵ−)(1− q)(t2 − t1).
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Consider next the problem of a principal who wants to provide incentives to agents with

type (α, t2) (with α > t2[1− (1− q)(1−λ)]) to take action e = 0 (so agents with type (α′, t2)

with α′ ≤ α would also take action e = 0). The principal’s problem is

inf
F∈F

∫
wdF (w) s.t. (B.1)

∀T ≥ 0, (1− λ)F (T/q)((1− q)t2 − T ) + F (ŵ−)(1− q)(t2 − t1) ≤ t2 − α. (B.2)

Proof of Proposition 6. The constraint (B.2) implies that, for all T ≥ qŵ,

F (T/q) ≤ t2 − α− F (ŵ−)(1− q)(t2 − t1)

((1− q)t2 − T )
(B.3)

Moreover, by the same arguments as in the proof of Proposition 1, it is optimal for the

principal to set (B.3) with equality for all T ≥ qŵ. Applying the change of variable w = T/q,

the optimal distribution must be such that F (w) = t2−α−F (ŵ−)(1−q)(t2−t1)
((1−q)t2−qw)

for all w ≥ ŵ. Note

that, for all w ≥ ŵ, F (w) is strictly decreasing in F (ŵ−). This implies that
∫
(ŵ,∞)

wdF (w)

is strictly increasing in F (ŵ−).12

Let F ∗ ∈ F be such that F ∗(w) = 0 for all w < ŵ and F ∗(w) = t2−α
((1−q)t2−qw)

for all

w ≥ ŵ; i.e., F ∗ is the cdf F (w) = t2−α−F (ŵ−)(1−q)(t2−t1)
((1−q)t2−qw)

with F (ŵ−) = 0. The expected

wage payments under F ∗ are F ∗(ŵ) × ŵ +
∫
(ŵ,∞)

wdF ∗(w) (where F ∗(ŵ) is the atom that

F ∗ has at ŵ). Note that any other candidate solution to (B.1) must be such that F (w) ≤

F (ŵ−) for all w ∈ [0, ŵ) and F (w) = t2−α−F (ŵ−)(1−q)(t2−t1)
((1−q)t2−qw)

for all w ≥ ŵ. Therefore, the

expected wage payments under any other candidate solution F must be at least as large

as F (ŵ−)× 0 +
∫
(ŵ,∞)

wdF (w). The difference in expected wage payments under these two

distributions is F ∗(ŵ) × ŵ + [
∫
(ŵ,∞)

wdF ∗(w) −
∫
(ŵ,∞)

wdF (w)]. By the arguments in the

previous paragraph the term in square brackets is strictly negative for all values of t1, while

the first the term goes to zero as t1 ↓ pt2 (since limt1↓pt2 ŵ = 0). Hence, there exists t > pt2

12Note that F might have an atom at ŵ. The integral
∫
(ŵ,∞)

wdF (w) denotes the integral in (ŵ,∞),

without the (possible) atom at ŵ.
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such that F ∗ is the optimal distribution for all t1 < t. Finally, note that the largest wage in

the support of F ∗ is wα(t2).

B.3 Proof of Proposition 7

Consider an agent who takes action e = 0, and suppose the monitor is selected to make

the offer at the side-contracting stage. Since the monitor can commit to send an untruthful

message if the agent rejects the offer, the agent’s payoff from rejecting the offer is −(1− q)t:

in this case, the principal will punish the agent unless he detects that the monitor’s message

was false (which occurs with probability q). On the other hand, the payoff from accepting

the monitor’s offer T is −T , since in this case the monitor sends a truthful message. Hence,

the agent accepts any offer T ≤ (1− q)t. A monitor always finds it strictly optimal to make

an offer T = (1− q)t: by making such an offer she obtain a payoff (1− q)t+ w. Therefore,

the agent’s payoff from taking action e = 0 when the monitor makes the offer is −(1− q)t.

Consider next the case in which the agent who takes action e = 0 and is selected to make

an offer at the side-contracting stage. Given our assumption that the monitor can only

commit to send an untruthful message when she makes the offer, in this case the monitor

will send a truthful message even if the agent makes an offer T = 0, so the agent gets a payoff

of zero. The agent’s expected payoff from taking action e = 0 is then given by −λ(1− q)t.

On the other hand, by the same arguments in Section 4, the agent’s expected payoff from

taking action e = 1 is α− t+(1−λ)F (T/q)((1− q)t−T ). Hence, an agent with type α will

take action e = 0 if and only if, for all T ≥ 0, α−t+(1−λ)F (T/q)((1−q)t−T ) ≤ −λ(1−q)t.

Proof of Proposition 7. By the same arguments as in the proof of Proposition 1, if F is

solves (9) it must be that the constraint (8) holds with equality for all offers T ≥ 0 such that

F (T/q) < 1. Therefore, the solution to (9) satisfies

(1− λ)F (T/q)((1− q)t− T ) = t−α− λ(1− q)t ⇒ F (T/q) =
t− α− λ(1− q)t

(1− λ)((1− q)t− T )
. (B.4)
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Applying the change of variable w = T/q in (B.4), it follows that F satisfies (10).

B.4 Proof of Proposition A1

Fix F ∈ FI with support [w,w], λ ∈ [0, 1] and a mechanism (P, T ), and note that

λ

∫ w

w

ŨM(w)dF (w) + (1− λ)UA =∫ w

w

[P (w) ((1− λ)(1− q)t− λqw) + (2λ− 1)T (w) + λw] dF (w) + (1− λ)(α− t). (B.5)

By the same arguments as in the proof of Proposition 3, any incentive compatible mechanism

(P, T ) must be such that P (w) is decreasing, UM(w,w) =
∫ w

w
qP (ŵ)dŵ + w + c for some

constant c ≥ 0, and T (w) = P (w)qw+
∫ w

w
qP (ŵ)dŵ+ c (where w is the highest wage in the

support of F ). Replacing this into (B.5), the weighted sum of payoffs is

∫ w

w

[P (w)(1− λ) ((1− q)t− qw) + λw] dF (w) + (1− λ)(α− t)

+(2λ− 1)

(∫ w

w

∫ w

w

qP (ŵ)dŵdF (w) + c

)
.

=

∫ w

w

[P (w)(1− λ) ((1− q)t− qw) + λw] dF (w) + (1− λ)(α− t)

+(2λ− 1)

(∫ w

w

qP (w)F (w)dw + c

)
, (B.6)

where the second equality follows after changing the order of integration in
∫ w

w

∫ w

w
qP (ŵ)dŵdF (w).

Lemma B1. For all λ ∈ [0, 1/2), the mechanism (P, T ) that maximizes (B.6) is such that

P (w) = 1{w≤w∗} for some w∗ and T (w) = P (w)qw +
∫ w

w
qP (ŵ)dŵ.

Proof. We first show that, when looking at mechanisms that maximizes (B.6), we can restrict

attention to mechanisms with the property that P (w) only takes values 0 or 1. To see

this, suppose there exists a interval V such that P (w) ∈ (0, 1) for all w ∈ V , and let

H =
∫
V
(1−λ)[((1− q)t− qw)+λw]dF (w)+(2λ−1)

∫
V
qF (w)dw. If H ≥ 0, then increasing
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P (w) over this interval (subject to the constraint that P is decreasing) will make (B.6)

larger. If H < 0, then decreasing P (w) over this interval (subject to the constraint that P is

decreasing) will also make (B.6) larger. Such improvements are exhausted when P (w) only

takes values 0 and 1. Since P must be decreasing, if P only takes values on 0 and 1 there

must exist a wage w∗ such that P (w) = 1{w≤w∗}. Finally, note that when λ ∈ [0, 1/2), (B.6)

is maximized by setting c = 0. Hence, T (w) = P (w)qw +
∫ w

w
qP (ŵ)dŵ.

Lemma B2. For all λ ∈ [0, 1/2), the solution to problem (A.4) is given by (A.5).

Proof. By Lemma B1, for all λ ∈ [0, 1/2) the monitor and the agent use a mechanism (P, T )

such that P (w) = 1{w≤w∗}. Using this, (B.6) can be written as

(1− λ)[F (w∗)(1− q)t−
∫ w∗

0

qwdF (w) + α− t] + λ

∫
wdF (w) + (2λ− 1)

∫ w∗

0

qF (w)dw.

Since (P, T ) maximizes the weighted sum of payoffs, for all ŵ ̸= w∗ it must be that

(1− λ)[F (w∗)(1− q)t−
∫ w∗

0

qwdF (w)] + (2λ− 1)

∫ w∗

0

qF (w)dw

≥ (1− λ)[F (ŵ)(1− q)t−
∫ ŵ

0

qwdF (w)] + (2λ− 1)

∫ ŵ

0

qF (w)dw. (B.7)

Otherwise, if (B.7) did not hold for some ŵ ̸= w∗, the weighted sum of payoffs would be

strictly larger under mechanism (P̂ , T̂ ) with P̂ (w) = 1{w≤ŵ}.

The agent’s payoff from this mechanism is equal to α−t+
∫ w∗

0
[P (w)(1−q)t−T (w)]dF (w).

Recall that T (w) = P (w)qw +
∫ w

w
qP (ŵ)dŵ. Since P (w) = 1{w≤w∗}, it follows that T (w) =

qw∗ for all w ≤ w∗, and T (w) = 0 for all w > w∗. Hence, the agent’s payoff from this

mechanism is α− t+ F (w∗)[(1− q)t− qw∗].

Consider next the principal’s problem, who has to choose a distribution F ∈ FI to

minimize expected wage payments subject to the constraint that the agent finds it optimal

to take action e = 0. If F is the optimal distribution, then equation (B.7) must hold with

equality for all ŵ ̸= w∗ such that F (ŵ) < 1. To see this, suppose by contradiction that there
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exists w′ with F (w′) < 1 such that (B.7) holds with strict inequality at ŵ = w′. Let F̃ ∈ FI

be such that, for all ŵ ∈ [0, w̃],

(1− λ)[F̃ (ŵ)(1− q)t−
∫ ŵ

0

qwdF̃ (w)] + (2λ− 1)

∫ ŵ

0

qF̃ (w)dw

= (1− λ)[F (w∗)(1− q)t−
∫ w∗

0

qwdF (w)] + (2λ− 1)

∫ w∗

0

qF (w)dw.

where w̃ := inf{w : F̃ (w) = 1} (our arguments below show that such a cdf F̃ exists). Note

that F̃ (s) ≥ F (s) for all s, with strict inequality for some s. This implies that expected

wages under F̃ are lower than under F . Moreover, note that mechanism (P, T ) with P (w) =

1{w≤w∗} and T (w) = qw∗ is still also an optimal mechanism under F̃ , and that the agent’s

payoff from taking action e = 1 under this mechanism when the distribution of wages is F̃ is

F̃ (w∗)((1−q)t−qw∗)+α−t = F (w∗)((1−q)t−qw∗)+α−t ≤ 0. Therefore, the agent would

still have an incentive to take action e = 0 under the distribution F̃ , which contradicts the

assumption that F solves (A.4). Hence, (B.7) must hold with equality for all ŵ such that

F (ŵ) < 1: the right-hand side (B.7) must be equal to a constant for all such ŵ.

Note that F is differentiable almost everywhere (being a monotone function). Differen-

tiating the right-hand side of (B.7) with respect to ŵ we get that, almost everywhere,

F ′(ŵ)(1− λ)[(1− q)t− qŵ] + qF (ŵ)(2λ− 1) = 0, (B.8)

where the equality follows since the right-hand side of (B.7) is constant. The solution to

(B.8) is F (w) = C ((1− q)t− qw)−
1−2λ
1−λ for some constant C. By construction, F (w) is such

that (1− λ)[F (ŵ)(1− q)t−
∫ ŵ

0
qwdF (w)] + (2λ− 1)

∫ ŵ

0
qF (w)dw is constant for all ŵ.

We now determine the value C. For any ŵ in the support of F , let (Pŵ, Tŵ) be the

mechanism with Pŵ(w) = 1{w≤ŵ} and Tŵ(w) = qŵ for all w ∈ [0, ŵ]. Since (B.7) holds with

equality for all ŵ such that F (ŵ) < 1, all such mechanisms maximize (B.5); that is, all such

mechanisms are in Γ(F, λ). Recall that Ũα
A(F, λ) is the lowest utility that the agent gets under

49



a mechanism in Γ(F, λ). The agent’s utility under mechanism (Pŵ, Tŵ) is u(ŵ) := F (ŵ)((1−

q)t−qŵ)+α−t. Note that u′(ŵ) = F ′(ŵ)((1−q)t−qŵ)−qF (ŵ) = qF (ŵ)[1−2λ
1−λ

−1] ≤ 0, where

the second equality follows since F satisfies (B.8). Therefore, the lowest utility that the agent

gets under a mechanism in Γ(F, λ) is u(w) := ((1− q)t− qw)+α− t, where w is the highest

wage in the support of F . Since u(w) ≤ 0, it must be that w ≥ α/q−t. To minimize expected

wages, it is optimal to set w = α/q − t. This implies that F (α/q − t) = C(t− α)−
1−2λ
1−λ = 1,

so C = (t− α)
1−2λ
1−λ . Hence, F (w) is given by (A.5).

Lemma B3. For all λ ∈ [1/2, 1], the solution to problem (A.4) is F (w) = 1 for all w ≥ 0.

Proof. Note that (B.5) is increasing in T (w) when λ ≥ 1/2. Therefore, in this case the

mechanism (P, T ) that maximizes (B.5) must have T (w) as large as possible, subject the

agent’s IR constraint; that is, subject to α− t+
∫
[P (w)(1− q)t−T (w)]dF (w) ≥ α− t. The

maximum is then achieved by setting
∫
[P (w)(1− q)t− T (w)]dF (w) = 0.13 But this implies

that, when λ ≥ 1/2, the agent’s payoff from action e = 1 under a mechanism that maximizes

(B.5) is α − t < 0, regardless of the distribution of wages F . Therefore, when λ ∈ [1/2, 1]

the agent has an incentive to take action e = 0 even when F has all its mass at w = 0.

Proof of Proposition A1. Follows from Lemmas B2 and B3.

B.5 Proof of Proposition A2

Proof of Proposition A2. Let T ∗ ≥ 0 be the optimal offer of the agent; that is, for all T ≥ 0,

F (T ∗/q)[α− qt− T ∗] ≥ F (T/q)[α− qt− T ]. (B.9)

Note that, if F ∈ F is the solution to problem (A.6), then (B.9) must hold with equality

for all T such that F (T/q) < 1. To see this, suppose by contradiction that there exists T

with F (T/q) < 1 such that F (T ∗/q)[α− qt− T ∗] > F (T/q)[α− qt− T ]. Let F̃ ∈ F be such

13Since T (w) = P (w)qw +
∫ w

w
qP (ŵ)dŵ + c, this equality can always be achieved by adjusting c.
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that F̃ (T/q)[α− qt− T ] = F (T ∗/q)[α− qt− T ∗] for all T such that F̃ (T/q) < 1. Note that

T ∗ ∈ argmaxT F̃ (T/q)[α − qt − T ], and that F̃ (T ∗/q) = F (T ∗/q). Hence, the probability

that the agent takes action e = 1 is the same under both F̃ and F . Moreover, expected wage

payments are lower under F̃ than under F , so the principal’s payoff is larger under F̃ than

under F . This contradicts the assumption that F solves (A.6), so F must be such that (B.9)

holds with equality for all T with F (T/q) < 1. This implies that F (T/q) = F (T ∗/q)(α−qt−T ∗)
α−qt−T

for all T with F (T/q) < 1.

Note next that it is optimal for the principal to choose F such that T ∗ = 0. To see this,

suppose F is such that T ∗ > 0. Let F̂ be such that F̂ (0) = F (0), and that F̂ (T/q) = F̂ (0)(α−qt)
α−qt−T

for all T such that F̂ (T/q) < 1. Note that the probability that the agent takes action e = 1

is the same under F̂ than under F . Moreover, F̂ (T/q) > F (T/q) for all T such F̂ (T/q) < 1,

so expected wage payments are lower under F̂ than under F . Therefore, it is optimal for

the principal to choose F such that T ∗ = 0.

Using the change of variable w = T/q, the two paragraphs above imply that the solution

to (A.6) is of the form

F (w) = min

{
F (0)(α− qt)

α− qt− qw
, 1

}
,

with F (0) ∈ [0, 1]. The principal’s payoff from using this distribution of wages is

−F (0)β −
∫

wdF (w) = −F (0)β −
(
α

q
− t

)
(1− F (0) + F (0) lnF (0)).

Taking first order conditions and noting that the expression above is strictly concave in F (0),

it follows that it is optimal for the principal to choose F (0) = e
−qβ
α−qt .
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