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Abstract

A distance measure in the appropriate space of stochastic processes can be used to mea-
sure the quality of approximation when one process is taken as a model of another, either
deliberately or by mis-speci�cation. We examine the problem of approximating an ARMA
process by a model from the AR(p) class, emphasizing a distance measure based on the
Hilbert metric. This measure can be used to calculate distances between particular pro-
cesses, and the minimum distance to a class of processes such as the AR(p) class. We
show that this measure provides a good a priori indication of the impact of substitution
of an approximate process for the true process. We also provide comparison with the
Kullback-Leibler-Je�reys information metric, and applications to choice of order in se-
lecting an approximating AR model on a �nite sample, testing of dynamic speci�cation,
forecast performance of approximate models, and evaluation of information criteria for
selection of approximating models.
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I. Introduction

There are many circumstances in which one stochastic process is taken as a model of

another, either inadvertently through mis-speci�cation, or deliberately as an approxima-

tion. In the present paper we are concerned with cases in which an autoregressive{moving

average (ARMA) or moving-average process is, explicitly or implicitly, approximated by

a pure autoregressive process. It is well known (see for example [1]) that an ARMA pro-

cess with all latent roots of the moving-average polynomial inside the unit circle can be

approximated arbitrarily well by an autoregressive process of order `; as ` ! 1: The

technique has been used for the estimation of moving-average or ARMA models by, among

others, [2], [3], [4], [5], [6], [7] and [8]. References [9] and [10] address the estimation of

the spectral density through autoregression; [11] uses autoregression to approximate an

ARMA error process in the residuals of a regression model, and [12] addresses the impact

of that approximation on the asymptotic distribution of the ADF statistic.

In problems such as these, the quality of the approximation a�ects some statistic of

interest, and an ideal measure of the quality of the approximation would be monotonically

related to the deviations caused by replacing the true process by the approximate one.

As an example of the use of such a measure, consider a forecast based on a mis-speci�ed

model. If the accuracy of the forecast is monotonically related to some measure of the

divergence between the true and mis-speci�ed models, one can make an immediate use of

the divergence measure in designing Monte Carlo experiments to evaluate forecast perfor-

mance for di�erent models and types of mis-speci�cation; the measure allows us to identify

cases where the approximation will do relatively well or badly, and to be sure of examining

both.

The present study presents an approach to problems of this type. We treat autoregres-
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sive approximation and mis-speci�cation in a common framework, implying replacement

of the true model with one from another class, and use distance in the space of station-

ary stochastic processes as a measure of the severity of mis-speci�cation, or quality of

approximation. A measure of the distance from a process to a class of processes is de�ned,

and may be minimized to �nd the closest member of that class.1 We are able to indicate

the order of AR process necessary to approximate particular MA(1) or MA(2) processes

well, and are also able to give some general results on the value of the distance between

processes as an indicator of the adequacy of an approximation in particular circumstances.

For MA(1) processes the magnitude of the root is often mentioned as the factor determin-

ing the degree to which autoregressive approximation will be successful; here we are able

to give a more general result.

It is important to distinguish these results about the appropriate order of approxi-

mating process from the use of sample-dependent criteria such as the Akaike or Schwarz

information criteria to choose the order. While the two approaches may to some extent be

complementary, the present study o�ers a priori information about the ability of an AR(`)

process, for given `; to approximate a particular ARMA. In empirical applications, this

information may be combined with information about the process being approximated,

and a loss function, to generate a speci�c choice of order. Distance measures may also be

used to evaluate information criteria in particular contexts, as in the example of section

IV.D.

We o�er several other econometric applications in section IV. The distance measure

is de�ned and described in section II, while section III discusses its use in examining AR

approximations.

1There are various possible measures of distance or divergence, including the well-known

Kullback-Leibler and Hilbert distances; we concentrate here on the latter.
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II. De�nitions and properties of the distance measures

This section concentrates on the distance measures, particularly the Hilbert distance,

which will be used for the problem of autoregressive approximation. For general reviews

of information theory and distance measures, see [13] and [14].

We consider a discrete-time stochastic process fXtg: The space of zero-mean, �nite-

variance stochastic processes can be represented as a real Hilbert space H with the scalar

product (X;Y ) de�ned by E(XY ); the Hilbert norm kXk is given by [E(X2)]1=2: The

values of the stochastic process fXtg; t 2 Z (where the index set Z is the set of integers),

span a subspace Hx � H of the Hilbert space, which is itself a separable Hilbert space

and thus has a countable basis. The lag operator L is de�ned such that LXt = Xt�1; [15]

and [16], for example, describe the relevant de�nitions and properties of the stationary

stochastic processes and the Hilbert spaces used here. For the purpose of examining mis-

speci�cation, we restrict ourselves to the space Hx:

II. A. The Hilbert distance

The Hilbert distance is the primary measure that we will use.

Since the space of second-order stationary stochastic processes is a Hilbert space, the

distance between two processesX and Y is given by the norm of the di�erence, dH(X; Y ) =

kX � Y k = [E(X � Y )2]1=2: In [17], this distance is used to examine mis-speci�cation

in �rst-order processes. In a Hilbert space, we can easily de�ne the distance from a

process to a class of processes (or the distance between classes), obtained by minimizing

the distance over all processes in the class: for example, for the distance to the AR(`)

class, dH(X;AR(`)) = infY 2AR(`) dH(X; Y ):

The distance can also be expressed using the innovations representation of the pro-

cesses in terms of the stationary uncorrelated process: i.e., the orthogonal basis fetg
1
�1.
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If Xt =
P1

i=0 �iet�i and Yt =
P1

i=0 �i"t�i with "t = �et; then

dH(X;Y ) = kX � Y k =

"
1X
i=0

(�i � ��i)
2

#1=2
�e; (2:1)

where ketk = �e; the standard error of the fetg:Without loss of generality we will consider

�e = 1 below unless otherwise speci�ed.

We will consider processes that can be represented as Xt = f (L)et; where et is a

white noise process and f (L) is a rational polynomial, so that f(L) = Q(L)=P (L) where

Q and P are polynomials; we will express this as P (L) = I � �1L � � � � � �pL
p; and

Q(L) = I +�1L + � � � + �qL
q: An ARMA(p,q) process is described by P (L)Xt = Q(L)et;

and is stationary if and only if the latent ( i.e. inverse) roots of the polynomial Q(L) are

within the unit circle. If the process is invertible, then the inverse process fX�t g de�ned

by Q(L)X�t = P (L)et is stationary. It is normally assumed that P (L) and Q(L) have

no common factors. If P (L) � I then fXtg is an MA process; if Q(L) � I; it is an AR

process.

A stationary, zero-mean ARMA(p,q) process fXtg can be approximated arbitrarily

well by an MA(k) process for some k: for an arbitrary bound � on the approximation error,

�x k such that
P1

i=k+1 �
2
i < �; and set the parameters �i of the approximating MA(k)

process fYtg such that �i = �i for i = 1; : : : ; k: It follows that kX � Y k < �1=2: If fXtg is

an invertible process, then for su�ciently large k, fYtg will also be invertible.

Moreover, if fXtg is invertible then it is also possible to express Xt as a convergent

weighted sum of past values Xt�i; so that we can also �nd an AR(`) process which approx-

imates fXtg arbitrarily well. Consider an invertible kth-order moving-average lag polyno-

mial represented by Qk(L); corresponding to fYtg above. It has an in�nite AR representa-

tion with autoregressive polynomial Pk(L) � [Qk(L)]
�1: If Qk(L) = I + �1L+ � � �+ �kL

k;

then Pk(L) = (I + �1L + � � � + �kL
k)�1 = I � �1L + (�21 � �2 ) L2 + � � � =

P1
i=0 
iL

i:
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Denoting by �i the latent ( i.e. inverse) roots of Qk(L); note that 
i � O(��i); where

�� = max1�i�k j�ij; and j : j represents the modulus of the root. Thus
P1

`+1 

2
i � O(��2`+2);

and for suitable order ` of the approximating process, this can be made less than any cho-

sen �: Denoting by fZtg the AR(`) process with coe�cients �i = 
i; i = 1; : : : ; `; we have

kX�Zk = kX�Y +Y �Zk � kX�Y k+kY �Zk =
�P1

k+1 �
2
i

�1=2
+
�P1

`+1 

2
i

�1=2
: Hence

an AR(`) process can be found which is arbitrarily close to fXtg in the Hilbert metric.

Also, convergence in the Hilbert metric implies convergence of the Fourier coe�cients of

the representation in the orthogonal basis of the processes.

As an example, consider an invertible MA(q) process Xt = et +
Pq

j=1 �jet�j with

var(et) = 1; which is approximated by the AR(p) process Zt =
Pp

j=1 �jZt�j + "t with

var("t) = �2; that minimizes the Hilbert distance. As p!1; the Hilbert distance between

fXtg and fZtg approaches zero, � ! 1; and the �rst q coe�cients f�jg approach the values

�1 = �1; �2 = ��1�1+�2; �i = ��1�i�1��2�i�2�� � ���i�1�1+�i for i � q; and �j =Pq
i=1��i�j�i for j � q + 1: These relations are used for parameter estimation in [7] and

[8].

The Hilbert distance between second-order stationary processes in H corresponds to

convergence in probability in that class. In fact, since it is de�ned through the mean

square, convergence in this metric implies convergence in probability. On the other hand,

convergence in probability to a process in H implies that the processes converge in mean

square. Of course, if the processes inH converge in probability to a non-stationary process,

they do not converge in this metric. The correspondence to convergence in probability

makes the Hilbert metric a valuable measure of \closeness" in the space H; which can be

used to evaluate the quality of various approximations. Unlike measures in �nite parameter

spaces, this measure can be used to compare processes of di�erent types and orders.
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II. B. The Kullback-Leibler and Kullback-Leibler-Je�reys divergence measures

These two divergence measures are based on information functionals; see for example

[18] or the review in [14]. For the Shannon entropy functional the Kullback-Leibler (K-L)

divergence from a distribution with a density function �1(y) to a distribution with density

�2(y) is given by

I(�1 : �2) =

Z
[log(�1=�2)� 1]�1dy:

This measure of divergence is not symmetric; it is sometimes called directional. The

Kullback-Leibler-Je�reys(K-L-J) divergence measure is non-directional (symmetric) and is

de�ned as

dKLJ (�1; �2) =
1

2
[I(�1 : �2) + I(�2 : �1)] :

Note that although symmetric, D is not a distance since it does not satisfy the tri-

angle inequality. For Gaussian processes Xt = f1(L)et and Yt = f2(L)et; these divergence

measures can be calculated as

I(X : Y ) = (2�)�1
Z

2�

0

�
f1(e

iw)f1(e
�iw)f�1

2
(eiw)f�1

2
(e�iw)� 1

�
dw;

and we can compute I(Y : X) similarly; then

dKLJ(X;Y ) =
1

2
[I(X : Y ) + I(Y : X)] : (2:2)

The Hilbert distance can be represented through f1; f2 as kX � Y k2 =

(2�)�1
Z

2�

0

�
f1(e

iw)f1(e
�iw) + f2(e

iw)f2(e
�iw)� f1(e

iw)f2(e
�iw)� f2(e

iw)f1(e
�iw)

�
dw:

We can also represent dKLJ(X;Y ) via the Hilbert norm. If we de�ne a process fZtg via

Z = f1(L)=f2(L)e =
P

i
!iet�i; and de�ne Z = f2(L)=f1(L)e =

P
i
!iet�i; then

dKLJ (X;Y ) =
1

2

h
kZk2 +



Z

2i� 1; (2:3)
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where kZk2 =
P

!2

i
and



Z

2 =
P

!2

i
: The formula (2.3) can be used to compute the

Kullback-Leibler-Je�reys divergence from one process to another and can be minimized

over a particular class to �nd the minimum divergence from a given process to a class of

processes. While our primary focus in this paper is on the use of the Hilbert distance,

we will incorporate K-L-J distance measures into several examples below for purposes of

comparison.

Before addressing some applications of these concepts, we note that it may be useful

to restrict somewhat the class of mis-speci�ed models considered in the applications. We

may assume that some characteristics will be shared between the true and mis-speci�ed

models; in particular, if we know that some moments exist, we may wish to consider a

mis-speci�ed process with the same moments. Indeed, if we were to use moments in the

estimation they would come from the same time series data regardless of which model

was speci�ed. Since stationary stochastic processes possess at least two moments, here

we consider as the approximation the closest process in the approximating class, subject

to the restriction that the �rst two moments are the same as those of the process being

approximated. We apply this restriction below in using both Hilbert and K-L-J distances.

The K-L-J distance then becomes

dKLJ (X;Y ) =
1

2

hX
!2

i
(v2=v1) +

X
!2

i
(v1=v2)

i
� 1;

where v1; v2 are the variances of the processes Xt and Yt de�ned above. In the case of

the Hilbert distance, we normalize one of the sets of squared projection coe�cients by the

ratio of variances.

III. Evaluation of approximations using distance measures

When we use techniques that approximate one process by a process from another class,

we can identify some member or members of the approximating class that are closest to the
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original process, by the Hilbert (or other) distance. We will refer to the distance between

the original process and an approximating process in a given class as the approximation

distance, and will be interested in calculating the minimum approximation distance achiev-

able.2 As discussed in Section II.C, the approximate process is restricted to have the same

mean and variance as the original process.

In order to evaluate this minimum (Hilbert) approximation distance, express the orig-

inal process and a candidate approximating process in terms of the projections onto past

innovations. The function describing the distance between them, (2.1), is the sum of

squared di�erences between the coe�cients of these innovations representations. Truncat-

ing this expression at a large value, the distance may be calculated, and with subsequent

iterations the function can be minimized numerically over the parameters of the approx-

imating process. In the calculations below we use a Powell algorithm (see [20]: 299) to

minimize the distance function.

Tables 1 and 2 give these examples of the approximation distances from speci�c in-

vertible MA(1) and MA(2) processes to the closest members of the AR(p) class, p =

1; 2; 4; 8; 12; the approximating process is constrained to have the same variance as the

original process. Table 2b gives the parameter values and roots of the processes appearing

in Table 2a. These distances cannot be guaranteed to be global minima, but appear to

be very close to them, at least for distances on the order of 10�8 or greater. The tables

also report the distances from the original processes to the uncorrelated, or white noise,

process having the same variance. For MA(1) processes, the distances are una�ected by

2[19] discusses a related concept, the approximation bias arising from the use of a �nite-

order AR(p) in place of the AR(1) representation of a process. Parzen introduces a

particular penalty function with which to estimate the approximating order, yielding the

criterion of autoregressive transfer function for order selection.
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the sign of the parameter. While for MA(1) processes the distance is a monotonic function

of the modulus of the root, note that this is not the case with respect to the largest root

of MA(2) processes.

These examples suggest at least two conclusions. First, through most of the MA(1)

or MA(2) parameter spaces, the approximation distance can be made quite small with

moderate orders of approximating process. For MA(1) processes, order 8 is su�cient in

all cases to make the approximation distance less than 1% of the distance of the original

process to the uncorrelated process (that is, the approximation has picked up 99% of

the original process, by our distance measure). For the MA(2) processes used in these

examples, order 12 is su�cient in most cases to meet the same condition, but is not

su�cient in cases 1,2,3,4 and 7, where there is one or more root with modulus greater

than 0.85 in absolute value. Nonetheless in most cases it is clearly possible to make the

approximation distances very small with orders of AR process that are well within the

range estimable with typical samples of data.

Second, these results give an a priori indication of the appropriate order of approxi-

mating AR process. For moving average processes with the largest root near zero, there is

little gain in increasing the order, p; beyond fairly small values. For processes with a root

near the boundary of the invertibility region, there are still substantial gains in increasing

p beyond 12, and the order of AR process necessary to make the approximation distance

negligible may be large. This requirement imposes a lower bound on the sample size neces-

sary to provide a good approximation with an autoregressive process.3 Note, however, that

these results do not embody the e�ect of increased model order on e�ciency of parameter

3As well, small reductions in approximation distance become more important with increas-

ing sample size, since overall distance from the estimated representation to the true process

is itself declining in expectation.
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estimation; results bearing on this question are presented in Section IV.A.

[Tables 1, 2a, 2b about here]

The magnitude of approximation distance that is tolerable will depend upon the ap-

plication. Nonetheless it is worth emphasizing that this information about the order of

the approximating process is not sample dependent. It is well known that widely-used

sample-based criteria for order selection, such as the Akaike Information Criterion, may

systematically suggest over- or under- parameterization; see [21] and the examples in sec-

tion IV.D below. A criterion such as the distance in the space of population models, by

contrast, provides a guide to order selection prior to estimation.

IV. Econometric applications

There are two types of problem which we can distinguish as being of interest in the

context of mis-speci�ed or approximate models. In the �rst type, the statistic is directly

related to the mis-speci�cation, and an example is given in section IV.B, where we examine

a test for the null of uncorrelated residuals in a model where MA errors are modelled

by autoregression. In the second type, a statistic may estimate or test some property

not directly related to the mis-speci�cation; the mis-speci�cation is nonetheless relevant

because the distribution of the statistic will di�er from the distribution that it would have

with a correctly speci�ed model. Examples are given in section IV.C, where we consider

the forecast error arising when MA processes are forecast using AR models, and in IV.D,

where we examine the performance of information criteria in selecting the order of model

which is the best approximation to an unknown process of more general form.

In each of these cases, we expect that the more severe the mis-speci�cation, or the

poorer the approximation, the more substantial will be the e�ect on the statistic of interest.

Ideally, we would like to have a measure of the extent of mis-speci�cation which has
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predictive power in a wide variety of circumstances. In the examples just mentioned, this

would allow us to predict which of various MA processes will show the higher mean squared

forecast error when forecasting is done via an AR, or which MA process in the errors of

a regression model will lead to the largest average test statistic in an autocorrelation test

when modelled as AR. In these examples, we show that the Hilbert distance performs well

as a such a measure, and in particular, that it is a much better indicator than is the largest

of the moduli of MA roots. While the Hilbert distance is the primary focus of our interest,

we will also refer for comparison to the Kullback-Leibler-Je�reys distance in two of the

applications.

Before exploring these examples, in which the Hilbert distance measure is used to

predict the values of sample-based criteria and thereby evaluated, we apply this distance

measure directly to the general problem of choice of AR order, which forms an element of

the examples in IV.B, IV.C and IV.D.

IV. A. Choice of AR order

Misspeci�cation or approximation can be thought of as yielding two sources of error:

one caused by the mismatch between the mis-speci�ed process (e.g., x) and the true process

(e.g. y), and the other resulting from estimation of the mis-speci�ed model (yielding x̂

rather than x. Each of these, the approximation error and estimation error, play a role in

determining the best approximating process, as the following application illustrates.

Consider the estimation of an AR model of a pure MA process. In choosing the best

order for the AR model, there are two o�setting e�ects: �rst, as section III showed, the

best available approximation within the AR(k) class will be closer to the true process as

k increases; second, as k increases the e�ciency of parameter estimation will be reduced,

leading to a higher mean distance to the true process. We will use the Hilbert distance
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to investigate the optimal model order, k� = argmink:x̂2AR(k)E(ky� x̂k); given these two

e�ects.

For a given process y, and an approximating AR(k) model, there is a closest process

x within the AR(k) class, and an estimated model x̂: As k increases, x becomes a better

approximation by the Hilbert distance (ky � xk decreases monotonically). Parameter

estimation becomes less e�cient, however, and the mean distance of the estimated model

to the best approximating model, kx̂ � xk; increases. The overall distance between true

and estimated processes, ky � x̂k; will have a minimum at some �nite value of k:

Figures 1 to 3 present the results of simulations designed to estimate the relation

between ky� x̂k and k for several examples of MA processes. There are 10,000 replications

on sample sizes of T = f200; 1000g; and k = f1; 2; : : : ; 10g: Values on the vertical axis are

the average values of ky � x̂k for the given MA process, y; across the 10,000 samples.

Note �rst that the optimal order increases in T, re
ecting diminished relative im-

portance of parameter estimation error, at a given k; as T increases. Optimal order also

increases, subject to the integer constraint on k; as the distance between the true process

and the closest process in the AR(k) class increases (see, again, Tables 1 and 2a). For

� = 0:90; optimal orders are 5 and 9 at T = 200 and 1000, for � = 0:50; optimal orders are

3 and 4, while for � = 0:10 there is no gain in approximating with an order greater than 1

at either sample size.

These results are purely illustrative. However, we can summarize the results of

a larger number of such experiments by estimating a response surface for the optimal

order as a function of the parameter of an MA(1) model and sample size, with � =

f0:05; 0:1; 0:3; 0:5; 0:7; 0:8; 0:9; 0:95; 0:99g and T = f25; 50; 75; 100; 200; 300; 400; 500; 1000g;

yielding 81 cases. The response surface (standard errors in brackets)

k� = -2.82 +4.67(1� �)2 -0.23 T 1=4 +2.56 �T 1=4 + u
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(0.17) (0.32) (0.06) (0.08)

was found to provide a reasonable �t (R2 = 0:98) to the points. For example, using

the processes examined in Figures 1{3, we have for each combination (�; T ) the following

estimated optimal orders: (0.1,200), k̂� = 1:07; (0.1,1000), k̂� = 1:12; (0.5,200), k̂� = 2:30;

(0.5,1000), k̂� = 4:26; (0.9,200), k̂� = 5:02; (0.9,1000), k̂� = 8:89: Each of these is quite

close to the actual optimum for the given (�; T ):

IV. B. Dynamic speci�cation

Appropriate speci�cation of dynamics is an important problem in time series regres-

sion; see Hendry [22]. for a thorough review of this literature. One of the most commonly

applied techniques is the imposition of a low-order autoregressive structure on the errors

of a regression model (which may be a static regression apart from the error dynamics).

It is well known that this implies a common-factor restriction on the coe�cients of a

corresponding autoregressive-distributed lag model with white noise errors: that is,

yt = �xt + ut; �(L)ut = "t (4:1)

is equivalent to

�(L)yt = �(L)�xt + "t; (4:2)

where f"tg is a white-noise process, implying a set of restrictions on the coe�cients of the

regression model (4.2) arising from the common lag polynomial �(L): If �(L) is of degree

k there are k such restrictions; for example, for k = 2; �(L) = 1� �1L� �2L
2 and

yt = �1yt�1 + �2yt�2 + �xt + �1xt�1 + �2xt�2 + "t; (4:3)

with �1 = �1� and �2 = �2�:

Consider now the e�ect of using an AR model of error dynamics in this way when

the true process contains a moving-average component: that is, the true error process in

13



(4.1) is instead 
(L)ut = �(L)"t: The autoregressive-distributed lag (ADL) representation

of the model now embodies sets of coe�cients on both lagged Y and lagged X; from the

approximating AR polynomial �(L); which decline geometrically but are non-zero at any

�nite lag. There is a corresponding (in�nite) set of common-factor restrictions. Truncating

the representation at any �nite lag length k might be expected to perform relatively well

as the Hilbert distance to this approximating AR(k) model is smaller. If the distance

measure is useful in indicating the order of AR polynomial necessary to model a relation

with ARMA errors via an ADL model, there must be a close correspondence between the

distance from the ARMA to a given AR, and sample-based indicators of the adequacy of

the dynamic speci�cation. The indicator that we use is a standard LM statistic for the

null of no autocorrelation from lags 1 to s: The mis-speci�cation considered is the use of

an AR(2) error process instead of the true MA(2).

Table 3 reports the results of a simulation experiment designed to check this perfor-

mance. Using the MA(1) and MA(2) models of Tables 1 and 2b, 5000 replications on

samples of size T = 200 were generated from the DGP yt = �+�xt+ut; 
(L)ut = �(L)"t;

with � = � = 1; 
(L) = I and �(L) as given in Tables 1, 2b.4 The innovations f"tg have

unit variance. The process is modelled with the ADL model corresponding to an AR(2)

model of the errors,

yt = �0 +
2X

i=1

�iyt�i +
2X

i=1


ixt�i + et: (4:4)

On each sample, the residuals are tested for autocorrelation up to order `; ` = f1; 2; 12g

via an LM test which is asymptotically �2` under the null of no autocorrelation. If the

approximation is adequate, then there should be little evidence of residual autocorrelation

in these tests. Table 3 gives the mean values of the LM statistics, and ranks both these and

4Results on samples of size 1000 are very similar and are therefore not reported.
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the corresponding Hilbert and K-L-J measures of the distance between the true process

and approximating model; since the approximating model is in every case AR(2), the ranks

by distance are in all cases based on the distance to the nearest AR(2).

Both distance measures provide very good a priori indicators of the degree to which

residual autocorrelation will be detected; that is, they explain the variation in mean LM

test statistics very well. The Hilbert distance is especially good; as the order of test

increases to measure autocorrelations up to 12, the match by ranks becomes virtually

perfect for the Hilbert measure, di�ering only in the ranking of cases 5 and 6 (ranked 7th

and 8th by the Hilbert measure, but 8th and 7th by K-L-J and mean LM). These cases are

extremely close, having distance to the nearest AR(2) of 0.189 and 0.188 respectively. The

�rst twelve lagged innovations capture a smaller part of the total variation for process 5

than for 6; k higher than twelve is necessary in the LM test in order to reproduce exactly

the Hilbert distance rankings.

[Tables 3, 3b about here]

The use of ADL models to capture dynamics easily through LS regression is common-

place, and is a successful strategy in cases where the error dynamics can be well modelled

by a low-order AR. However, where there are MA components with substantial roots, or

other components for which the PACF does not approach zero quickly, the Hilbert dis-

tance from the DGP of the errors to the AR approximation implicitly used in the ADL

speci�cation is a reliable measure of the adequacy of the implicit approximation.

IV. C. Forecasting

Consider next the problem of forecasting a time series process, which may have a

moving average component, using a pure autoregression. In this case, a measure of the

distance between a given process and the nearest AR(p) will be useful insofar as it gives
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an a priori indication of the degree to which mean squared error of the forecast is increased

by the use of the AR approximation in the place of a model containing MA parts. The

process to be forecast is a stationary process fytg; with a Wold representation which we

can write as

yt+1 = f (L)et+1 = f1(L)et + f0"t+1; (4:5)

where et = f"t; "t�1; : : : ; "1g0; and the f"tg are white noise. Given a sample of data,

we obtain implicitly an estimated lag polynomial f̂1(L):
5 The one-step-ahead forecast is

generated by

ŷt+1jt = f̂1(L)êt; (4:6)

where ŷt+1jt indicates a forecast made at time t of the t+1 value of Y. The one-step-ahead

forecast error is then

(ŷt+1jt � yt) = f̂1(L)êt � f1(L)et � f0"t+1: (4:7)

[Tables 4, 4b about here]

Table 4 gives the mean squared errors of one-step-ahead forecasts made from AR(1),

AR(2) and AR(4) models of the MA(2) processes listed in Table 2b, again for T = 200 and

5000 replications. Once again, the ordering given by distances of the example processes to

the relevant AR approximation matches very well the ordering of the estimated MSE's. In

the AR(4) case, the distance and MSE rankings di�er only by interchanging cases 4 and 7,

which have distance to the nearest AR(4) of 0.128 and 0.139 respectively. Mean squared

errors tend to be very close to unity, the correct value for a properly-speci�ed model, for

approximation distances of less than 0.1.

5For example, if we �t an AR model to the data, f̂ (L) represents the projection of the

estimated AR polynomial onto past innovations.
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Again, both distance measures explain the results well, providing an a priori under-

standing of the MA or ARMA parameter values that allow a good approximation to be

made with an AR of given order. The Hilbert distance seems again to have some advan-

tage. For the AR(4) case, the Hilbert ranking di�ers from that of the forecast errors only

for cases 4 and 7 (ranked 6th and 5th, respectively, rather than 5th and 6th). The K-L-J

ranking is similar to that of the Hilbert distance, but makes an additional interchange

relative to the ranking of cases by forecast error, in cases 2 and 3.

IV. D. Evaluation of information criteria

Sample-based selection of appropriate lag length (or, more generally, model order) is

often based on information criteria such as those of Akaike, Schwarz, and others; see [21]

and [23] for recent reviews. In the context of problems for which the DGP is a special

case of more general estimated models, we can investigate these criteria by simulation,

preferring those which tend to yield lag lengths close to the optimal values. Where the

model is an approximation, however, it may be unclear what the best lag length is even

in a constructed example, so that evaluation of the criteria in cases such as that of AR

models which are being used to approximate more general processes cannot proceed.

However, using a distance measure of the di�erence between DGP and AR approxima-

tion, we can proceed as in section IV.A to an answer to the question of what the optimal

approximating model order is, given a DGP and sample size. From this it is possible to

evaluate the information criteria, by examining the degree to which the typical selected lag

length di�ers from the optimum. This section provides a brief example of such an exercise,

using the AIC, BIC, Schwarz and FPE criteria.6

6For this linear regression problem the criteria can be reduced to the following expressions

in the sample size, T; number of autoregressive terms, k; and sum of squared residuals, "̂0"̂ :
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For the data generation processes and sample sizes in section IV.A, we compute the

average lag lengths selected by each of these criteria, in 2500 simulated samples. The

results are recorded in Table 5, along with the optimal approximating lag lengths from

Figures 1 to 3. Where the objective function is nearly 
at near the optimum lag length,

we report a range of optimal values (e.g., 8{10 for T = 1000 and � = 0:9): The set of lag

lengths considered ranged from 1 to 20; with even larger values included, averages for the

AIC would rise slightly.

[Table 5 about here]

The BIC and Schwarz criteria, which are very similar and closely related, produce

very good results. The AIC, as has been observed in contexts where approximation and

mis-speci�cation play no role, over-parameterizes dramatically. The FPE falls in between,

over-parameterizing consistently, but less substantially than the AIC.

V. Concluding remarks

There are many circumstances in which it is convenient to approximate an ARMA

process by a pure AR(p) process. But while the technique is widely used, often implicitly,

there are relatively few results concerning the order of autoregression necessary to provide a

good approximation. This paper addresses the question of the quality of an approximation

using measures of the distance between processes, primarily the Hilbert distance. By

minimizing this distance from a process to a class of processes, we are able to �nd the

closest process of given order in the target class. The results o�er a general contribution to

understanding of the relations between ARMA processes, of the gains available from more

elaborate modelling, and of the use of autoregressive approximations in various applied

AIC: ln("̂0"̂=T ) + 2k=T ; BIC: ln("̂0"̂=T ) + kln(T )=T ; Schwarz: ln("̂0"̂=(T � k)) + kln(T )=T ;

FPE: (T+k)
(T�k) ("̂

0"̂=(T � k)):
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problems including the traditional problem of choice of order.
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Table 1

Approximation distances:7

Distance from MA(1) process to nearest AR(p)

Root Order, p, of approximating AR process
� 0 1 2 4 8 12

.999 1.081 0.570 0.366 0.199 9.37�10�2 5.70�10�2

.99 1.071 0.563 0.360 0.195 9.04�10�2 5.43�10�2

.95 1.023 0.530 0.335 0.176 7.64�10�2 4.29�10�2

.90 0.964 0.490 0.303 0.152 6.02�10�2 3.04�10�2

.70 0.734 0.335 0.185 7.16�10�2 1.51�10�2 3.54�10�3

.50 0.514 0.196 8.75�10�2 2.05�10�2 1.27�10�3 8.09�10�5

.30 0.303 8.05�10�2 2.36�10�2 2.11�10�3 1.72�10�5 1.46�10�7

.10 0.100 9.85�10�3 9.85�10�4 9.86�10�6 9.86�10�10 1.00�10�13

.05 0.050 2.49�10�3 1.25�10�4 3.11�10�7 1.96�10�12 1.22�10�18

.01 0.010 1.00�10�4 1.00�10�6 1.00�10�10 1.00�10�18 1.00�10�26

7In Tables 1 and 2a, the column headed \0 " gives the distance to the white noise process
having the same variance. Results in Table 1 are una�ected by multiplying the moving-

average parameter by �1:
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Table 2a

Approximation distances:8

Distance from MA(2) process to nearest AR(p)

Order, p, of approximating AR process

Case 0 1 2 4 8 12

1 2.605 1.326 0.792 0.376 0.137 6.57�10�2

2 2.368 1.178 0.683 0.299 8.34�10�2 2.78�10�2

3 1.095 0.569 0.362 0.194 8.95�10�2 5.36�10�2

4 1.785 0.818 0.421 0.128 5.58�10�2 2.03�10�2

5 1.225 0.477 0.189 8.47�10�2 2.05�10�2 5.08�10�3

6 0.990 0.404 0.188 4.85�10�2 3.55�10�3 2.41�10�4

7 0.604 0.446 0.259 0.139 5.28�10�2 2.41�10�2

8 1.680 0.792 0.436 0.171 4.01�10�2 1.15�10�2

9 0.142 0.108 2.19�10�2 3.39�10�3 7.03�10�5 1.36�10�6

10 0.457 0.305 0.158 6.60�10�2 1.38�10�2 3.09�10�3

11 0.766 0.245 6.87�10�2 1.14�10�2 2.52�10�4 1.29�10�5

12 0.0283 1.96�10�2 8.89�10�4 2.47�10�5 1.50�10�8 8.08�10�12

8The case numbers refer to Table 2b, where the processes are described.
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Table 2b

Features of MA(2) processes used in Table 2a

MA parameters Real parts Imaginary parts Moduli

Case �1 �2

1 -1.96 0.98 0.980 0.980 0.140 -0.140 0.990 0.990
2 -1.80 0.90 0.900 0.900 0.300 -0.300 0.949 0.949
3 -1.01 0.0198 0.990 0.020 0.00 0.00 0.990 0.020
4 -1.40 0.70 0.700 0.700 0.458 -0.458 0.837 0.837
5 1.00 0.50 -0.500 -0.500 0.500 -0.500 0.707 0.707
6 0.90 0.20 -0.500 -0.400 0.00 0.00 0.500 0.400
7 -0.50 -0.30 0.852 -0.352 0.00 0.00 0.852 0.352
8 -1.40 0.49 0.700 0.700 0.00 0.00 0.700 0.700
9 0.10 -0.10 -0.370 0.270 0.00 0.00 0.370 0.270
10 0.40 -0.20 -0.690 0.290 0.00 0.00 0.690 0.290
11 -0.70 0.20 0.350 0.350 0.278 -0.278 0.447 0.447
12 0.020 0.02 -0.010 -0.010 0.141 -0.141 0.141 0.141
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Table 3

LM tests for residual autocorrelation:
MA errors modelled by AR approximation

T = 200

Case �1 �2 ` = 1 ` = 2 ` = 12
1 -1.96 0.98 31.64 51.36 95.95
2 -1.80 0.90 34.39 55.86 92.77
3 -1.01 0.0198 12.73 21.12 46.11
4 -1.40 0.70 28.58 39.66 53.69
5 1.00 0.50 3.882 5.555 20.03
6 0.90 0.20 8.507 12.55 22.85
7 -0.50 -0.30 7.529 13.57 31.30
8 -1.40 0.49 25.22 39.76 63.77
9 0.10 -0.10 1.055 2.138 12.31
10 0.40 -0.20 4.308 7.556 18.95
11 -0.70 0.20 1.999 3.106 13.14
12 0.020 0.02 1.026 2.093 12.21

25



Table 3b

Cases ranked by approximation distance and LM test

(rank of given case by: K-L-J distance,Hilbert distance,LM statistic)
T = 200

Case �1 �2 ` = 1 ` = 2 ` = 12
1 -1.96 0.98 (1, 1 ,2) (1, 1 ,2) (1, 1 ,1)

2 -1.80 0.90 (2, 2 ,1) (2, 2 ,1) (2, 2 ,2)

3 -1.01 0.0198 (3, 5 ,5) (3, 5 ,5) (3, 5 ,5)

4 -1.40 0.70 (5, 4 ,3) (5, 4 ,4) (5, 4 ,4)

5 1.00 0.50 (8, 7 ,9) (8, 7 ,9) (8, 7 ,8)

6 0.90 0.20 (7, 8 ,6) (7, 8 ,7) (7, 8 ,7)

7 -0.50 -0.30 (6, 6 ,7) (6, 6 ,6) (6, 6 ,6)

8 -1.40 0.49 (4, 3 ,4) (4, 3 ,3) (4, 3 ,3)

9 0.10 -0.10 (11,11,11) (11,11,11) (11,11,11)

10 0.40 -0.20 (9, 9 ,8) (9, 9 ,8) (9, 9 ,9)

11 -0.70 0.20 (10,10,10) (10,10,10) (10,10,10)

12 0.020 0.02 (12,12,12) (12,12,12) (12,12,12)
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Table 4

MSE's of one-step-ahead forecasts:
MA processes modelled by AR approximation

T = 200

Case �1 �2 AR(1) AR(2) AR(4)
1 -1.96 0.98 3.278 2.460 1.821
2 -1.80 0.90 2.792 2.058 1.476
3 -1.01 0.0198 1.514 1.340 1.219
4 -1.40 0.70 1.839 1.357 1.098
5 1.00 0.50 1.268 1.077 1.065
6 0.90 0.20 1.236 1.088 1.039
7 -0.50 -0.30 1.261 1.141 1.081
8 -1.40 0.49 1.872 1.457 1.177
9 0.10 -0.10 1.022 1.017 1.032
10 0.40 -0.20 1.125 1.055 1.041
11 -0.70 0.20 1.081 1.023 1.032
12 0.020 0.02 1.010 1.017 1.032
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Table 4b

Cases ranked by approximation distance and one-step MSE

(rank of given case by: K-L-J distance,Hilbert distance,MSE)
T = 200

Case �1 �2 AR(1) AR(2) AR(4)

1 -1.96 0.98 (1, 1 ,1) (1, 1 ,1) (1, 1 ,1)

2 -1.80 0.90 (2, 2 ,2) (2, 2 ,2) (3, 2 ,2)

3 -1.01 0.0198 (3, 5 ,5) (3, 5 ,5) (2, 3 ,3)

4 -1.40 0.70 (5, 3 ,4) (5, 4 ,4) (6, 6 ,5)

5 1.00 0.50 (8, 6 ,6) (8, 7 ,8) (7, 7 ,7)

6 0.90 0.20 (7, 8 ,8) (7, 8 ,7) (9, 9 ,9)

7 -0.50 -0.30 (6, 7 ,7) (6, 6 ,6) (5, 5 ,6)

8 -1.40 0.49 (4, 4 ,3) (4, 3 ,3) (4, 4 ,4)

9 0.10 -0.10 (11,11,11) (11,11,11) (11,11,11)

10 0.40 -0.20 (9, 9 ,9) (9, 9 ,9) (8, 8 ,8)

11 -0.70 0.20 (10,10,10) (10,10,10) (10,10,10)

12 0.020 0.02 (12,12,12) (12,12,12) (12,12,12)

28



Table 5

Estimated optimal AR order vs.
Mean selected order, various criteria

Case Optimal Average selected order

� T order AIC BIC Schwarz FPE
0.1 200 1 12.1 1.14 1.06 3.47
0.1 1000 1 10.1 1.05 1.02 2.89
0.5 200 2{3 12.7 2.20 1.94 4.91
0.5 1000 3{4 11.4 2.96 2.80 5.49
0.9 200 4{5 16.2 5.98 5.09 11.1
0.9 1000 8{10 17.8 9.91 9.16 15.8
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