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Abstract
High breakdown point estimators in regression are robust against gross

contamination in the regressors as well as the errors; the least median of
squares (LMS) estimator has the additional property of packing the majority
of the sample most tightly around the estimated regression hyperplane in
terms of absolute deviations of the residuals and thus is helpful in identifying
outliers. Asymptotics for a class of high breakdown point smoothed LMS
estimators are derived here under a variety of conditions that allow for time
series applications; joint limit processes for several smoothed estimators are
examined. The limit process for the LMS estimator is represented via a
generalized Gaussian process that de…nes the generalized derivative of the
Wiener process.
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1 Introduction
Increasingly, in econometrics attention focuses on statistical methodology
that can deal successfully with problems of data contamination, resulting
from either miscoding or from heterogeneity when the majority of observa-
tions are generated by a process that appears to di¤er from the one gener-
ating some of the observations; various …nancial data series give examples
of observations vastly removed from the majority of data. The concept of a
breakdown point of an estimator provides a framework within which it is pos-
sible to examine robustness against gross contamination in part of the data;
for example, Sakata and White (1998) studied some high breakdown point
estimation procedures in application to S&P returns data. Here we examine
a classical high breakdown point estimator, the least median of squares, and
a class of related estimators and develop asymptotic results that extend to
models involving time series data.

The standard de…nition (see Rousseeuw and Leroy, 1987) of a …nite sam-
ple breakdown point in a regression estimator is as follows. Consider a regres-
sion estimator T (Z); where Z represents a sample of n observations, Z 0(m; n)
coincides with Z for all but m of the observations that have been replaced
with arbitrary unbounded values and de…ne

bias(m; T;Z) = sup kT (Z 0(m;n)) ¡T (Z)k ;
where supremum is taken over all possible Z 0(m; n): If the bias = 1; it is
said that the estimator ”breaks down”. The breakdown point is then de…ned
as the minimum amount of contamination to cause the breakdown of an
estimator: "(T; Z) = minfm

n
; bias(m; T; Z) = 1g:

Clearly the OLS estimator has a …nite sample breakdown point 1
n ; the

LAD estimator by construction is resilient to high contamination in regression
errors but not in the regressors and in the event of such contamination breaks
down at 1

n
: A number of regression estimators are resistant to contamination

of the regressors as well as errors. An example of such an estimator is the
least median of squares (LMS) estimator introduced by Rousseeuw (1984)
which has a …nite sample breakdown point close to 1

2
; speci…cally, Theorem

2, p.118 of Rousseeuw and Leroy (1987) demonstrates that generally the
breakdown point of LMS is ([n=2]¡k+2)

n
where k is the number of regressors.

The breakdown point of the LMS estimator cannot be improved on by any
estimator that depends on the sample in a desired fashion, i.e. is regression
and/or a¢ne equivariant.
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There are however many estimators with the same breakdown point and
a number of studies in the statistical literature compare their relative merits.
Among the various estimators the LMS estimator while robust to gross con-
tamination is characterized by lack of local robustness that is related to its
sensitivity to ”inliers” due to the unboundedness of the in‡uence function at
small values (see Davies, 1993). Finite sample comparisons, e.g. by Ferretti
et al.,1999 show that as expected LMS does relatively well when there is sub-
stantial gross contamination (demonstrating its global robustness) but not as
well against local contamination (lack of local robustness). Since many …nan-
cial data series are very accurately recorded, but exhibit occasional extreme
volatility LMS may provide valuable information.

The LMS estimator additionally possesses the ”shorth” property, that is
it provides a regression hyperplane around which 50% of the observations
is most tightly packed in terms of absolute deviation of the residuals (see
Rousseeuw and Leroy(1987) for this property). This property makes the
LMS estimator a convenient tool for identifying outliers and potential non-
homogeneity (see, e.g. Rousseeuw and van Zomeren (1990) and Atkinson
(1994) for examples of use of the LMS to identify outliers).

These properties indicate that the LMS estimator could be a useful tool in
applications to data that are likely to lead to a breakdown of other estimators.
Closeness of results for standard estimators and the LMS could be used as
evidence that contamination/outliers do not present a signi…cant problem
for the standard methodology (see Campbell and Galbraith (1993) for a rare
example of use of the LMS estimator in econometrics).

It is known that the LMS estimator has a few drawbacks in terms of its
asymptotics. It has a slower convergence rate than usual: n¡

1
3 rather than

n¡
1
2 in the standard (i.i.d.) case. The description of the asymptotic process

of LMS incorporates a random element, a minimizer of a process related
to the Wiener process (see Rousseeuw and Leroy(1987), Kim and Pollard
(1990)). The current results on the asymptotics of the LMS estimator do not
cover cases that allow for models typically used with stochastic time series
data, e.g. dynamic models; this paper is the …rst to provide such results.

The di¢culty in deriving the limit process for the LMS estimator is that
the absolute value function does not possess a continuous derivative and one
cannot rely on straightforward Taylor expansions. Kim and Pollard, 1990
derive the asymptotics for the LMS estimator for the i.i.d. case utilizing em-
pirical distributions approach. A way of circumventing non-di¤erentiability
via use of generalized functions was developed by P.C.B. Phillips (1991, 1995)
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for the LAD estimator. The approach here is similar in spirit.
Unlike the case of the LAD estimator where generalized functions were

used by Phillips to obtain intermediate results, but did not enter into the
characterization of the asymptotic process, here the limit process of LMS
itself is represented via a generalized Gaussian process in the sense of the
de…nition of Gel’fand and Vilenkin (1964). A generalized Gaussian process
is given by a generalized random function g which de…nes a continuous linear
functional g(Ã) on the space K of smooth functions with …nite support, such
that for any linearly independent set of functions Ã1; :::; Ãl 2 K the random
vector (g(Ã1); :::; g(Ã l))

0 has a multivariate normal distribution. Gel’fand and
Vilenkin show that a generalized Gaussian process is uniquely determined
by its mean functional and (bilinear) covariance functional. The gain from
using the generalized functions approach is that g itself may not be a random
function in the ordinary sense (e.g. is a derivative of the sign function) but
provides an ordinary random variable when coupled with a function Ã 2 K;
which can be said to smooth g.

In this paper we introducing a class of estimators that are smoothed
versions of the LMS estimator and derive their asymptotic properties. The
smoothed estimators have the same …nite sample breakdown point as the
LMS estimator, but can achieve faster convergence rates (though still below
the standard rate) and thus are of independent interest. Smoothing may
also improve sensitivity to inliers. The smoothed LMS estimators do not,
however, possess the ”shorth” property.

We derive the joint (Gaussian) asymptotic distribution for any number of
smoothed estimators; this result could prove to be useful in itself since unlike
joint distributions of standard estimators here we can obtain asymptotic
independence and thus can improve the e¢ciency of estimation by using,
say, an average of the asymptotically independent estimators.

We characterize the limit process for the LMS estimator expressing it
via a generalized Gaussian random process, speci…cally one that represents a
generalized derivative of a Wiener process described by Gel’fand and Vilenkin
(1964). Thus for the LMS estimator we have an asymptotic characterization
that di¤ers from the form derived by Kim and Pollard (1990) for the i.i.d.
case; they describe the limit process as a minimizer of a functional related to
a Wiener process, thus a random element enters into the asymptotic process.
Here instead of indexing the limit process by a minimizer of a random process
we index it by the smoothing functions from the space K:

We consider a fairly wide class of models that allow for trending regres-
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sors, lagged dependent variable; we do not require existence of moments for
regressors and errors, although certain regularity conditions are imposed.
Many of the conditions are su¢cient rather than necessary, but in order to
streamline exposition we limit the discussion of possible extensions.

The main aim of this paper is to develop the asymptotic results for the
LMS estimator and the class of high breakdown point smoothed LMS es-
timators. Practical application of these estimators will require their com-
putation. While for the LMS estimator itself algorithms are available, the
smoothed LMS estimators will have to be computed using some techniques
that can deal successfully with cases of many local extrema. In the case of
the smoothed maximum score estimator Horowitz (1992) refers to tunneling
and generalized simulated annealing as methods of global optimization suit-
able for computation in this case (for his Monte Carlo experiments he used
search over a discrete set of values).

Section 2 of the paper describes the class of estimators that solve smoothed
conditions similar to those for LMS and derives asymptotic results for the
smoothed LMS estimators. Section 3 examines the joint limit process for
several of the smoothed estimators combined and describes the limit process
for the LMS estimator via a generalized Gaussian process. Section 4 contains
the conclusions. Appendix A provides the derivatives of the smoothed crite-
rion functions; the proofs of the asymptotic results are collected in Appendix
B; Appendix C is devoted to proving the …nite sample high breakdown point
property for the smoothed estimators.

2 The estimators that solve smoothed condi-
tions.

We start by de…ning and discussing the LMS estimator.
Consider a sample

©
(Xi; yi)

0 2 Rk+1; i = 1; ::;n
ª

from a linear model
yi =Xi¯0 + ui: (1)

The least median of squares (LMS) estimator ¯LMS is

¯LMS = arg min(median
©
(yi ¡Xi¯)

2
ª
) (2)
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The LMS estimator can also be introduced in a sequential manner. De…ne a
positive function a(¯) that solves

a(¯) =arg min
a2R

X¯̄
(yi ¡Xi¯)

2 ¡ a2
¯̄

(3)

then a(¯)2 is the median of squared residuals, f(yi ¡Xi¯)2g. Its minimizer
is the LMS estimator

¯LMS =argmin
¯2Rk

a(¯); (4)

Consider (1) and the sequential conditions (3,4) that the LMS estima-
tor solves. The following Assumption ensures that there is a value for the
parameter vector that corresponds to the median of squared errors in the
population, which in a symmetric distribution is the square of the 75th (or
25th) percentile.

Assumption 1. The distribution of the error vector u = (u1; :::un)0;
ui = yi ¡Xi¯0 for every n is such that for any i the conditional distribution
of its component ui is symmetric with median 0 and the same 75th percentile
a0 > 0:

It follows that the median of the distribution of squared errors is a20: If
a0 = 0 there is a mass of more than 50% at the median, in such a case
higher rates of convergence would obtain; this would be excluded by strict
monotonicity of the distribution function and it is not investigated here.
Assumption 1 holds if the errors are identically and independently distributed
with a symmetric continuous density; many other error distributions could
satisfy the assumption.

Consider the problem in (3,4). Our approach is to replace the non-
di¤erentiable absolute value function in (3) by a smooth function. Smoothing
is introduced via a function with …nite support that shrinks to zero as sample
size n increases, at a rate that is determined by a bandwidth parameter bn.
The assumption of …nite support simpli…es derivations, but the results can
similarly be derived for e.g. smoothing with a Gaussian density function.
We can assume without loss of generality that the support of the smoothing
function is contained in [-1,1].

Assumption 2. (a) The smoothing function Ã is a symmetric non-
negative continuously di¤erentiable function with …nite support;

(a’) The support of Ã is in [¡1;1]:
(b) The bandwidth parameter bn ! 0;
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or alternatively
(b’) The bandwidth parameter bn = n¡®; 0 < ® < 1

2
:

Consider a function Ã which satis…es Assumption 2 and introduce the
smooth function

©n(¯; a) =
XZ ¯̄

(yi ¡Xi¯ ¡ v)2 ¡ a2
¯̄
Ã(
v

bn
)dv: (5)

Here and throughout the paper all integrals are assumed to be from ¡1
to 1; they always converge due to the …nite support for the functions. It
is easy to verify that ©n(¯; a) is a stochastic function twice continuously
di¤erentiable with respect to ¯; a: We replace (3) by

a(¯) =argmin
a2R

©n(¯;a):

The derivative @©n
@a
(¯; a) of ©n(¯;a) with respect to a can be written as

Fn(¯;a) =
nX

i=1

Z
sgn((yi ¡Xi¯ ¡ v)2 ¡ a2)Ã( v

bn
)dv: (6)

Then a(¯) =arg min
a2R

©n(¯; a) satis…es the …rst order condition

Fn(¯; a) = 0: (7)

For any (¯; a) that satisfy this equation and such that @Fn
@a
(¯; a) 6= 0 by the

Implicit Function Theorem a function a(¯) is de…ned in some neighbourhood
of the (¯; a); the function a(¯) is continuously di¤erentiable and its derivative
is given by

@a(¯)

@¯
= ¡

@Fn
@¯

@Fn
@a

:

Then the …rst order condition for minimization of a(¯) is

@Fn
@¯
(¯; a) = 0: (8)

Assume that a solution to (7,8) exists; denote it (~̄
0
; ~a)0: This is the

smoothed version of the LMS estimator (¯0LMS; aLMS) that solves (3,4). For
this estimator we shall consider the limit process: Of course, the solution
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depends on the function Ã; to simplify notation we suppress this dependence
and will discuss it later in section 3.

Suppose that Assumption 1 is satis…ed: We can write Taylor expansions
of (7,8) at ¯ = ¯0 and a = a0. For example for (7) one could have

Fn(¯0; a0) +
@Fn
@¯

(¯¤; a¤)(~̄ ¡ ¯0) +
@Fn
@a
(¯¤; a¤)(~a¡ a0) = 0 (9)

where ¯¤ = ® ~̄ + (1¡ ®)¯0; for some 0 · ® · 1 and a¤ is similarly between
a0 and ~a:

For (8) similarly

@Fn
@¯

(¯0; a0) +
@2Fn
@¯@¯0

(¯¤; a¤)(~̄ ¡ ¯0) +
@2Fn
@¯@a

(¯¤; a¤)(~a ¡ a0) = 0 (10)

where ¯¤ and a¤ are de…ned similarly to ¯¤; a¤ for (9) but may take di¤erent
values; we keep the same notation for these ”intermediate points”; this does
not a¤ect any of our results.

De…ne C1; C2 such that C1 > 0 and a0 > C2 > 0: Consider a sequence of
k £ k matrices Vn and domains Un de…ned by

Un =
n
(¯0; a)0 2 Rk+1

¯̄
¯b

1
2
n kVn(¯ ¡ ¯0)k < C1; ja¡ a0j < C2

o
:

We make the following general assumption.

Assumption 3. As n ! 1 there exists a (possibly random)

sequence of k £ k positive de…nite matrices Vn such that b
¡ 1
2

n V ¡1
n = op(1)

and
(a) for C1 > 0 if ¯ satis…es b

1
2
n kVn(¯ ¡ ¯0)k < C1 and (¯;a(¯)) solve

(7), then ja(¯)¡ a0j = op(1);
for some constants d1(Ã); d2(Ã) > 0

(b) if ja¡ a0j < C2 then b
¡ 1
2

n V ¡1
n

@Fn
@¯
(¯0; a)) N (0; (d1(Ã))

2 Ik);

(c) sup
Un

³
b¡1n V

¡1
n

@2Fn
@¯@¯ 0 (¯; a)V

¡1
n + d2(Ã)Ik

´
= op(1); d2(Ã) < 0;

(d) sup
Un

³
b
¡ 1
2

n V ¡1
n

@2Fn
@¯@a

(¯; a)
´
= op(1);

(e) Pr
µ
sup
Un

@Fn
@a
(¯; a) < °

¶
! 1 for some ° < 0:

10



Assumption 3(a) ensures that with probability going to 1 the solution
to (7) is in the domain Un; the conditions 3(b-d) applied to (9) provide the
limit distribution for the ¯ that solves (7,8). Condition 3(e) ensures that the
solution to (8) actually solves the …rst-order condition for minimization of
a(¯); note that

@2a

@¯@¯0
=

@Fn
@¯

@2Fn
@a@¯0¡

@Fn
@a

¢2 ¡
@2Fn
@¯@¯ 0

@Fn
@a

and is positive de…nite in Un with probability going to 1 by the conditions
in Assumption 3. Appendix A provides the form of the derivatives of the
function Fn(¯; a).

Theorem 1 Under Assumptions 1, 2 (a,b) and 3 as n ! 1 the solution
(~̄
0
; ~a)0 to (7,8) exists in probability in Un and is such that

b
1
2
nVn(~̄ ¡ ¯0)) N(0;

d21(Ã)

d2(Ã)
Ik):

Proof. See Appendix B.

Theorem 1 can accommodate a variety of models with various types of
distributional assumptions on the regressors and errors. The following theo-
rem derives the asymptotic distribution of the smoothed LMS estimator for
a set of speci…c assumptions on the regressor and error processes that are the
same as in Pollard’s Theorem 2 (1991) for the LAD estimator; they cover
many cases of interest in models involving time series data.

Theorem 2 Suppose that Assumption 2(a,a’,b’) holds and additionally
(a) the variables fui = yi ¡ ¯0Xig are identically and independently distrib-
uted; the distribution of u has a symmetric bounded p.d.f. f (u) that strictly
monotonically declines from its median at zero and is continuously di¤eren-
tiable in a neighbourhood of the 75th percentile a0;
(b) for fFig an increasing sequence of ¾¡…elds and a sequence Vn of posi-
tive de…nite matrices (which could be random) V ¡1n X 0

i is Fi¡1 measurable for
every i;
(c) maxi·n kV ¡1

n X 0
ik = op(1);

(d)
P

i·n V
¡1
n X0

i XiV ¡1
n !p Ik where Ik is a k £ k identity matrix;

11



(e) ui is independent of Fi¡1 for every i:
Then the conditions of Theorem 1 are satis…ed for

(d1(Ã))
2 = f(a0)

Z
Ã(w)2dw; d2(Ã) = 2(f

0(a0)

Z
Ã(w)dw)2:

Proof. See Appendix B.

Thus we get that under the conditions of Theorem 2

b
1
2
nVn(^̄ ¡ ¯0)) N

µ
0;

f (a0)
R
Ã(w)2dw

2(f 0(a0)
R
Ã(w)dw)2

Ik

¶
:

Similarly to the case of LAD in pollard (1991, Theorem 2) here also the
independence conditions could be replaced by e.g. requiring stationarity and
ergodicity of f(Xi; ui)g ; a martingale di¤erence condition on ui would su¢ce.

Models satisfying the theorem include the standard i.i.d. regression case
and stationary AR(1) model as demonstrated by Pollard (1991); also, trend-
ing regressors are allowed; other cases of interest such as AR(p) dynamics in
y can be similarly treated. Thus the theorem can apply to various models
involving time series data.

Note that the slower the rate bn ! 0 the closer one gets to standard rate
asymptotics for the smoothed estimator; in Appendix C it is demonstrated
that the smoothed estimator has the high breakdown point property in the
…nite sample.

The next section examines the issue of combining several smoothing func-
tions and makes use of generalized Gaussian processes (in the sense of Gel’-
fand and Vilenkin, 1964) to characterize the distribution of the LMS estima-
tor.

3 Asymptotics for smoothed estimators com-
bined and for the LMS estimator.

In most standard cases, such as when estimators solve di¤erentiable condi-
tions, or even as in the case of LAD where there is some non-di¤erentiability,
but the …rst derivatives are still ordinary functions (e.g., the sign function),
the asymptotic distribution of a smoothed estimator does not depend on the
smoothing function; here, however, as Theorems 1 and 2 show the smoothed
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LMS estimator has an asymptotic distribution that does depend on the func-
tion Ã: It therefore makes sense to consider the asymptotic joint distribution
of smoothed LMS estimators corresponding to di¤erent smoothing functions.
The following Theorem 3 establishes the joint distribution under the assump-
tions of Theorem 2; a similar result could be established under the Assump-
tions of Theorem 1 and an additional assumption that would ensure (simi-
larly to Assumption 3(b,c) which provide the variance) that the asymptotic
covariances for di¤erent smoothing functions exist.

We now subscript the smoothed estimator of Section 2 by the smooth-
ing function for which it was obtained, it is now denoted ~̄Ã. We de…ne a
transformation ~́(Ã) of ~̄Ã ; which proves to be a convenient representation,
by

~́(Ã) = Vnb
1=2
n (~̄Ã ¡ ¯0)

Z
Ã(w)dw (11)

In the following theorem we derive the asymptotic distribution of the (lk)£1
vector (~́(Ã1); ::; (~́(Ã l))0 for a linearly independent set of functions fÃ1; ::; Ãlg :

Theorem 3 Under the conditions of Theorem 2 for each of the set of linearly
independent functions fÃ1; :::;Ã lg the joint distribution

(~́(Ã1); ::; (~́(Ã l))
0 ) N(0;§)

where the lk £ lk covariance matrix § can be represented as

§ =
f (a0)

2(f 0(a0))2
ª  Ik ;

where the l £ l matrix ª has elements

fªgi;j =
Z
Ãi(w)Ãj (w)dw:

Proof. See Appendix B.

Corollary De…ne D = diag
¡R
Ã1(w)dwIk ; :::;

R
Ãl(w)dwIk

¢
: Then

µ
b1=2n

h
Vn(~̄Ã1 ¡ ¯0)

i0
; :::; b1=2n

h
Vn(~̄Ãl ¡ ¯0)

i0¶0
) N (0; D¡1§D¡1):

Proof. Follows immediately from Theorem 3 and (11).

13



Thus we have the joint Gaussian distribution of the estimators smoothed
with a variety of smoothing schemes. Note that this is not a standard case of
smoothing in that by appropriately selecting smoothing functions e.g. such
that

R
Ãi(w)Ãj (w)dw = 0 we can obtain estimators of ¯0 that are asymptoti-

cally independent (the limit process is joint Gaussian with zero covariances);
combining several smoothed estimators that are asymptotically independent,
e.g. taking their mean, will reduce the asymptotic variance of the smoothed
estimator.

Next, consider the LMS estimator. Under the conditions of Theorem 2
the following theorem establishes the convergence rate for the LMS estimator;
for example, in the case Vn = O(n

1
2 ) we get the well known convergence rate

of n¡
1
3 .

Theorem 4 Under the conditions of Theorem 2 with n
1
6V ¡1n = op(1) the

LMS estimator ¯LMS is such that

n¡
1
6Vn(¯LMS ¡ ¯0) = Op(1):

Proof. See Appendix B.

It follows that ¯LMS consistently estimates ¯0 with the same convergence
rate as ~̄Ã for bn = n¡

1
3 : Thus for ¯LMS with any Ã we can associate the

smoothed version ~̄Ã of the LMS estimator: (¯LMS ;Ã) = ~̄Ã; the limit process

of ~̄Ã represents the smoothed limit process for the LMS estimator if bn = n¡
1
3

(or any bn = O(n¡
1
3 )).

Next we use the apparatus of generalized random processes of Gel’fand
and Vilenkin (1964). Consider the linear space K1 of continuously di¤er-
entiable functions with …nite support; the topology is given by convergence
de…ned for a sequence of functions restricted to a common …nite support by
uniform convergence of the functions as well as their derivatives.

Recall the de…nition of ~́(Ã) in (11); we start by representing the limit
process for ~́(Ã) via a generalized random process. We introduce a gener-
alized random process ´G by de…ning for Ã 2 K1 the value of the random
functional ´G(Ã)

´G(Ã) = ¡ 1p
2f 0(a0)

b
¡ 1
2

n

X·
Ã(
ui ¡ a0
bn

)¡ Ã(ui + a0
bn

)

¸
V ¡1Xi: (12)
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The following theorem shows that the limit process for ~́(Ã) coincides with
that of ´G(Ã): We show that the limit process for the random functional
´G de…ned by (12) represents a generalized Gaussian process and produce
its mean and covariance functionals which by the results of Gel’fand and
Vilenkin (1964) closely link it to the generalized derivative of the Wiener
process.

Theorem 5 Under conditions of Theorem 2 as n ! 1; b ! 0 the limit
process for ~́(Ã) coincides with that of ´G(Ã): The process ´G converges to a
generalized Gaussian k-variate process ´ lim » GN (0;WIk) with the expecta-
tion functional equal to 0 and covariance functional W de…ned by its action
on a pair (Ã1;Ã2) of linearly independent functions from K1 by

W (Ã1; Ã2) =
f(a0)

2(f 0(a0))2

Z
Ã1(w)Ã2(w)dw: (13)

Proof. See Appendix B.
In Gel’fand, Vilenkin (1964, pp. 257-260) the generalized Gaussian process

that represents the derivative of the Wiener process is described via its co-
variance functionalB(Ã1; Ã2) =

R
Ã1(w)Ã2(w)dw; thus from (13) we see that

´lim is proportionate to the generalized derivative of the Wiener process.
From the relation (11) it follows that ´ lim(Ã) represents the limit process

of Vnb
1=2
n (~̄Ã ¡ ¯0)

R
Ã(w)dw: For bn = n¡

1
3 it follows from Theorem 4 that

Vnb
1=2
n (~̄Ã ¡ ¯0) represents Vnb

1=2
n (¯LMS ¡ ¯0) smoothed via the function Ã;

the corresponding limit process for Vnb
1=2
n (~̄Ã¡¯0) provides the limit process

for the LMS estimator smoothed via Ã: Thus the limit process for the LMS
estimator here is indexed by functions Ã and the limit process for the LMS
estimator is related to the generalized derivative of the Wiener process.

4 Conclusions

The conclusions of this paper relate to two issues. One set of conclusions
can be stated for the high breakdown point estimators examined here; the
second for the methodology utilized here to deal with non-di¤erentiability.
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For the high breakdown point estimator that solves smoothed LMS con-
ditions for a particular function Ã we provide the asymptotic Gaussian dis-
tribution under conditions applicable in time series contexts. The rate of
convergence of this estimator depends on the speed with which the support
of the function shrinks to zero; the slower the rate of this bandwidth para-
meter, the faster the convergence to the limit process.

Next, combining several smoothed estimators for, e.g. some set of basis
functions in the space K1 may lead to a more e¢cient estimation procedure
with Gaussian asymptotics.

Thirdly, the smoothing of the LMS estimator by the methods here (that
require that asymptotically the appropriate rate be maintained) provides
a description of the limit process of the LMS estimator via a generalized
Gaussian process related to the derivative of the Wiener process.

The approach here can be extended for use in other situations where the
asymptotic processes are di¢cult as a result of non-di¤erentiability of the
functions de…ning the estimators. Note that the same method can be used
under distributional assumptions that di¤er from the ones employed here.
Other estimators such as the least quantiles of squares estimators (other
than the median) or Manski’s maximum score estimator (see e.g. Horowitz,
1992 for an analysis of a smoothed version of that estimator) can similarly
be treated.

The issues of computation and …nite sample performance of the smoothed
estimators and their combinations will need to be explored. Computational
di¢culties are similar to those for the smoothed maximum score estimator
and require similarly a global optimization method such as e.g. generalized
simulated annealing as suggested by Horowitz.

Appendix A. Derivatives of the function Fn(¯; a):

Without loss of generality we shall assume that a is bounded away from
zero by some positive µ. Assume that bn < µ and partition the set of integers
f1; 2; :::ng into three non-intersecting sets Tn(¡) [ Tn(+) [ T cn; where

Tn(¡) = fi : jyi ¡Xi¯ ¡ aj · bng ; (A1)

Tn(+) = fi : jyi ¡Xi¯ + aj · bng ;
T cn = f1; 2; :::ng n [Tn(¡) [ Tn(+)]:

Denote by Tn the union Tn(¡) [ Tn(+):
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Then due to the fact that Tn(+) and Tn(¡) do not intersect and by
changing the variable in integration one can represent the terms in the right-
hand side of (6) for Fn(¯; a) as (recall that support of Ã is in [-1,1])
R
sgn((yi ¡Xi¯ ¡ v)2 ¡ a2)Ã( v

bn
)dv = bn

R
sgn((yi¡Xi¯

bn
¡ w)2 ¡ a2

b2n
)Ã(w)dw =8

<
:

bnsgn((yi ¡Xi¯)
2 ¡ a2)

R
Ã(w)dw if i 2 T cn;

¡bn
R
sgn(yi¡Xi¯+a

bn
¡ w)Ã(w)dw if i 2 Tn(+);

bn
R
sgn( yi¡Xi¯¡a

bn
¡ w)Ã(w)dw if i 2 Tn(¡):

(A2)
Write Fn(¯; a) = F (T cn)+F (Tn); where F (T cn) contains all the terms with

i 2 T cn and F (Tn) all the terms with i 2 Tn: The function Fn(¯; a) is di¤er-
entiable. Indeed, in F (T cn) the terms are constants equal to §bn

R
Ã(w)dw

since for those j(yi ¡Xi¯)
2 ¡ a2j > b2n and the sign of (yi ¡Xi¯ ¡ v)2 ¡ a2

does not change; thus their derivative is zero. By di¤erentiating the terms
in F (Tn) in (A2) the result can be written as

@Fn
@¯ = ¡2Ph

Ã(yi¡Xi¯¡abn
)¡ Ã( yi¡Xi¯+abn

)
i
X 0
i;

@Fn
@a
= ¡2Ph

Ã(yi¡Xi¯¡a
bn

) +Ã(yi¡Xi¯+a
bn

)
i
:

(A3)

Note that summation here can be assumed to be from i = 1 to i = n since
for i =2 Tn the values of the function in the sum are zero; note also that if
@Fn
@a

6= 0; it is negative.
Next we introduce the following notation:

Ai = Ã(
ui ¡ a
bn

)¡ Ã(ui + a
bn

); A0i = Ã(
ui ¡ a0
bn

)¡ Ã(ui + a0
bn

);

Bi = Ã0(
ui ¡Xi´ ¡ a

bn
)¡ Ã 0(ui ¡Xi´ + a

bn
); (A4)

Ci = Ã0(
ui ¡Xi´ ¡ a

bn
) + Ã0(

ui ¡Xi´+ a

bn
);

where ´ = ¯ ¡ ¯0: By taking the appropriate derivatives we obtain

@F

@¯
(¯0; a0) = ¡2

X
A0iX

0
i;

@2F

@¯@¯0
(¯¤; a¤) = 2

1

bn

X
BiXiX

0
i; (A5)

@2F

@¯@a
(¯¤; a¤) = 2

1

bn

X
CiX

0
i:
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Appendix B. Proofs of the theorems.

Proof of Theorem 1.
Consider …rst Assumption 3(b); it implies that b

¡ 1
2

n V ¡1
n

@F
@¯
(¯0; a0) is bounded

in probability. For " > 0 then …nd c such that

Pr

µ°°°°b
¡ 1
2

n V ¡1n

@F

@¯
(¯0; a0)

°°°° > cd2(Ã)
¶

· "

as n! 1: Construct the Un of Assumption 3 for some C1 > c: Consider the
pairs (¯;a(¯)) 2 Un that solve (7); we show that as n ! 1 the probability
that some (~̄; a(~̄)) solves (8) is at least 1¡ 2":

Examine

@F

@¯
(¯; a(¯)) =

@F

@¯
(¯0; a0)+

@2F

@¯@¯0
(¯¤; a¤)(¯¡¯0)+

@2F

@¯@a
(¯¤; a¤)(a(¯)¡a0)

in Un: If we multiply both sides by b
¡ 1
2

n V ¡1
n we can write

b
¡ 1
2

n V ¡1n

@F

@¯
(¯;a(¯)) = »n + d2(Ã)Vnb

1
2
n (¯ ¡ ¯0)

where »n is such that Pr (sup k»nk > d2(Ã)c) · 2" for large enough n by using

the limits in Assumption 3(a-d). The continuous function b
¡ 1
2

n V ¡1
n

@F
@¯
(¯; a(¯))

maps the closed convex set Bn =
n
¯ : b

1
2
nVn k¯ ¡ ¯0k · c

o
½ Rk into a

closed domain in Rk with the boundary @Bn mapped into the boundary

»n + d2(Ã)c¸; where ¸ = c¡1b
1
2
nVn(¯ ¡ ¯0) so that ¸0¸ = 1: By construction

with probability 1 ¡ 2" zero is in the interior of the image, thus for some
~̄; a(~̄) we get @F

@¯
(~̄; a(~̄)) = 0 and a(~̄) = ~a:

Next we consider the expansion in (10); by the limits provided in As-
sumption 3 (a-d) the rest of the statement of Theorem 1 follows.¥

Proof of Theorem 2.

The proof consists of verifying that Assumptions 1 and 3 are satis…ed
with the appropriate constants; then the result will follow from Theorem 1.
Assumption 1 clearly holds in view of condition (a).
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We establish the asymptotic limits of Assumption 3 with

(d1(Ã))
2 = 2f (a0)

Z
Ã(w)2dw;

d2(Ã) = 2

µ
f 0(a0)

Z
Ã(w)dw

¶2

by proving the following sequence of statements.

(i) F (¯0; a0) =

½
Op(b3nn) if b3n! 1;
Op(bnn

1
2) if b3n = O(1);

(ii) ¡b
¡12
n

P
AiV

¡1
n Xip

2f(a)
R
Ã(w)2dw

) N (0; I) uniformly over ®1 < a < ®2 <1;
(iii) sup

Un

¡
b¡1n n

¡1 @F
@a
(¯; a) + 2f (a)

¢
= op(1);

(iv) For (¯; a (¯)) that solves (7), a(¯)¡ a0 =
½
Op(b2n) for bnn1=3 ! 1
Op

¡
n¡1=2

¢
for bnn1=3 = O(1):

(v) sup
Un

£
b¡1n V

¡1
n

P
BiXiX

0
iV

¡1
n +

¡
2f 0(a)

R
Ã(w)dw

¢
Ik

¤
= op(1);

(vi) sup
Un

b¡1n V
¡1
n

P
CiXi = op(1):

To simplify notation we omit the subscript n in bn:
(i) Consider the terms in F (¯0; a0) in (A2).
For terms with i =2 T in F (T c) we get
E(F (T c)) = b

R
Ã(w)dw§E(sgn(u2i ¡ a20)) = 0; since a20 is the median of

u2i and var(F (T c)) = b2
¡R
Ã(w)dw

¢2
§E(If(u2i ¡ a20) > b2) where If¢g is an

indicator function: Since

E(If(u2i ¡ a20) · b2g) =
Z a0+b

a0¡b
f (u)du +

Z ¡a0+b

¡a0¡b
f (u)du

can be bounded from below by 4bf (a0+b) and from above by 4bf (a0¡b); the
right-hand side of the expression for the variance can be bounded from below
by b2

¡R
Ã(w)dw

¢2
n(1¡4bf (a0¡b)) and from above by b2

¡R
Ã(w)dw

¢2
n(1¡

4bf (a0 + b)): By Chebyshev’s inequality F (T c) = Op(bn
1
2 ):

Next, for each term in F (T ) we can write (utilizing the symmetry of Ã)
R
sgn(ui¡a

b
¡ w)Ã(w)dw ¡

R
sgn( ui+a

b
¡ w)Ã(w)dw =

2[ª(ui¡a
b
)¡ª(¡ui+a

b
)]; where ª(w) =

½ R w
0
Ã(v)dv if jwj < 1;

0 otherwise.
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Note that the support of the function ª is in [¡1;1]: Since for i =2 T the
value of ª is zero we can assume that summation of such terms in F (T ) goes
from 1 to n, and

E(2b(ª( ui¡a
b
)¡ª(ui+a

b
)) =

2b
R
ª( u¡a

b
)f (u)du ¡ 2b

R
ª(u+a

b
)f(u)du

= 2b2
R
ª(w)[f (bw + a)¡ f (bw ¡ a)]dw

= 2b3
R
ª(w)[f 0(a¤)¡ f 0(¡a¤)]wd

= 4b3f 0(a)
R
Ã(w)dw + o(b3);

with ja¤ ¡ a0j < 2b thus the di¤erence E(F (T )) ¡ 4b3nf 0(a)
R
ª(w)wdw =

o(nb3) and if nb3 ! 0 this di¤erence goes to zero faster, if nb3 is bounded
the di¤erence goes to zero, …nally, if nb3 diverges to in…nity, the di¤erence is
either bounded or diverges at a slower rate.

Next

E(2b(ª( u¡a
b
)¡ª( u+a

b
)))2 = 4b2E(ª(u¡a

b
)2 ¡ 2ª(u¡a

b
)ª(u+a

b
) + ª(u+a

b
)2) =

4b3[
R
ª(w)2f(bw + a)dw +

R
ª(w)2f(bw ¡ a)dw]

! 8b3
R
ª(w)2dwf(a):

The second equality follows from noting that ª( u¡a
b
)ª( u+a

b
) = 0 in the do-

main since ª( u¡a
b
) and ª(u+a

b
) cannot be non-zero simultaneously due to the

restriction on support of ª (recall that b ! 0) and the last from change of
variable to ¡w and symmetry of the p.d.f. f (u); combining the above results
we get the variance for each term as

4b3
µZ

ª(w)2f (bw + a)dw +

Z
ª(w)2f (bw ¡ a)dw

¶
¡

µ
2b2

Z
ª(w)[f (bw + a)¡ f(bw ¡ a)]dw

¶2

:

By independence of ui covariance between terms is zero. Thus taking into

account E(F (T )) we get that varF (T ) =
½
O(nb3) if nb3 = O(1);
O(n2b6) if nb3 ! 1 .

The statement (i) follows from combining the rates.
(ii) First consider

E(Ã( ui¡a
b
)) =

R
Ã( u¡a

b
)f (u)du = b

R
Ã(w)f (bw+ a)dw =

b
R
Ã(¡w)f(¡bw ¡ a)dw = b

R
Ã(w)f(bw ¡ a)dw

20



for any a by symmetry of the functions Ã and f ; by change of variable we
see that it equals E(Ã(ui+a

b
)); E(Ai) = 0 follows immediately and thus also

E(
P
AiXi) = 0: Similarly,

E(A2i ) = E

µ
Ã(
ui ¡ a
b

)

¶2

+E

µ
Ã(
ui + a

b
)

¶2

= 2b

Z
Ã(w)2f (bw + a)dw

since in A2 the product term Ã( ui¡a
b
)Ã(ui+a

b
) = 0 as a result of the constraints

on the support of Ã and b < a:

Consider next » in = b
¡1
2

n
Ai¸

0V ¡1n X 0
ip

2
R
Ã(w)2f(bw+a)dw

and

³ in = » inIfmax
°°V ¡1

n X 0
i

°° < Mng

where Mn = o(1) and ¸0¸ = 1: Note that sup j»in ¡ ³ inj !p 0 by condition
(c), thus to derive the limit distribution it is su¢cient to consider ³ in: We
verify that ³ in satis…es all the conditions of the martingale di¤erence Central
Limit Theorem of McLeish (see, e.g. Bierens (1994), Theorem 6.1.6). Indeed
E(³ in jFi¡1 ) = 0;

supE(max j³ inj2) · supE(b¡1n M
2
nmaxA

2
i ) < 1;

moreover it goes to 0 since E(A2i ) is bounded by 2bmaxÃ2 and M2
n ! 0.

Next, similarly

max j³ inj <Mn
max jÃjq

2
R
Ã(w)2f (bw + a)dw

! 0:

Finally we need to show that §³2in !p 1: By condition (c)

Pr
¡¯̄
§³2in ¡ §»2in

¯̄
> "

¢
= Pr(max

°°V ¡1
n X0

i

°° >Mn)

goes to zero thus if we show §»2in !p 1 the required convergence will follow.
Consider

P
°in; where

°in = »
2
in¡¸0V ¡1

n X0
iXiV

¡1
n ¸ =

µ
b¡1n A

2
i

2
R
Ã(w)2f (bw + a)dw

¡ 1
¶
¸0V ¡1

n X0
iXiV

¡1
n ¸;

½in = ° inIfmax kV ¡1n X 0
ik < Mng: We have that E(½in jFi¡1 ) = 0 thus the

½in are uncorrelated for each n: It is easy to see that E(§½in)
2 = E(§½2in) =
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O(M2
n); thus by Chebychev’s inequality

P
½in !p 0 and consequently

P
°in !p

0: Since
¸0V ¡1

n X 0
iXiV

¡1
n ¸ !p 1

by condition (d), we get §»2in !p 1 and thus all the conditions of the mar-
tingale Central Limit Theorem are satis…ed for

P
³ in:

The
P
» in has the same limit distribution;

2

Z
Ã(w)2f (bw + a)dw ! 2f (a)

Z
Ã(w)2dw

and by the Cramer-Wold device we get (ii).
(iii) For Ã( ui¡Xi´§a

bn
) conditional expectation exists for any lth power of

this function and can be written by change of variable as

E(Ã l(ui¡Xi´§a
bn

) jFi¡1 ) =

bn
R
Ãl(w ¡ Xi´

bn
)f(bnw ¨ a)dw (B1)

and is bounded from below by

bnf (bn + a)

Z
Ãl(w)dw

and similarly from above by

bnf (¡bn + a)
Z
Ã l(w)dw

with probability going to 1.
For terms in @F

@a
(¯; a) = ¡2P h

Ã( yi¡Xi¯¡a
bn

) + Ã( yi¡Xi¯+a
bn

)
i

de…ne

³ in =

·
Ã(
ui ¡Xi´ ¡ a

bn
) + Ã(

ui ¡Xi´ + a

bn
)

¸
:

We have

2bnf (bn + a)

Z
Ã(w)dw < E(³ in) < 2bnf (¡bn + a)

Z
Ã(w)dw

and since bn ! 0 and f is continuous we get that

sup

¯̄
¯̄E(³ in)¡ 2bnf (a)

Z
Ã(w)dw

¯̄
¯̄ ! 0:

22



Next, using (B1) we evaluate similarly

E(³2in jFi¡1 ) = bn

Z
Ã2(w ¡ Xi´

bn
) (f(bnw+ a) + f (bnw ¡ a)) dw; (B2)

E(³ in³jn jFj¡1 ) = b2n

Z
Ã(w ¡ Xi´

bn
) (f (bnw + a) + f(bnw ¡ a)) dw £

Z
Ã(w ¡ Xj´

bn
) (f (bnw + a) + f (bnw ¡ a)) dw (B3)

for i < j: It is easy to see that var( 1n
P
³ in) ! 0 since bn ! 0: By Cheby-

shev’s inequality thus
¯̄
¯̄ 1
n

X
³ in ¡ 2bnf (a)

Z
Ã(w)dw

¯̄
¯̄ !p 0

and (iii) follows.
(iv) Consider¯ : bn kVn(¯ ¡ ¯0)k < C1 and the expansion for F (¯; a(¯)) =

0 in (9). The order of the …rst term in that expansion is given by (i); from
(A5) and the result in (ii) we get that the second term is Op(1), …nally the
coe¢cient on (a(¯)¡ a0) is examined in (iii) from where it follows that it is
¼ Op(bnn). By substituting these rates into (9) the result follows.

(v) The expression in braces in statement (v) is a k£k symmetric matrix;
it depends on (¯; a) in Un via Bi de…ned in (A4). We …nd conditional expec-
tation for Bi: First calculate conditional expectation E(Ã0( ui¡Xi´§a

b
) jFi¡1 );

it is
Z
Ã 0(
ui § a ¡Xi´

b
)f(u)du = ¡b2

Z
Ã(w ¡ Xi´

b
)f 0(bw ¨ a)dw;

thus

E(Bi jFi¡1 ) = ¡b2
Z
Ã(w ¡ Xi´

bn
) [f 0(bw¡ a)¡ f 0(bw + a)] dw: (B4)

Similarly conditional variance and covariances for Bi; Bj can be obtained.
De…ne » in(lm) =

³
b¡1Bi + b

R
Ã(w ¡ Xi´

bn
) [f 0(bw ¡ a)¡ f 0(bw + a)] dw

´

¸0V ¡1
n X0

iXiV ¡1
n ¸;

23



with the vector ¸ with ones for the lth and mth components and zeros oth-
erwise. Also de…ne

³ in(lm) = » in(lm)Ifmax
°°V ¡1

n X 0
i

°° < Mng; with Mn = o(1);

we shall show that
P
³ in(lm) has the same probability limit as the sum of

the lm and ml elements of the symmetric matrix in braces in (v) and also
that this sum is op(1) uniformly over all ¯. Note that from (B4) it follows
that E³ in(lm) = 0:

First by continuity and skew-symmetry of the function f 0 we see that
Z
Ã(w ¡ Xi´

bn
) [f 0(bw ¡ a)¡ f 0(bw + a)]dw ¡ 2f 0(a)

Z
Ã(w)dw

has a uniform op(1) bound; thus

§³ in(lm) = §
£¡
b¡1Bi + b2f 0(a)

R
Ã(w)dw + op(b)

¢
¸0V ¡1n X 0

iXiV ¡1n ¸
¤

IfmaxkV ¡1
n X 0

ik <Mng:

Recalling condition (d) the expression in braces can be written as

§
¡¡
b¡1Bi + op(b)

¢
¸0V ¡1

n X 0
iXiV

¡1
n ¸

¢
+ b2f 0(a)

Z
Ã(w)dw(¸0¸ + op(1))

thus one can see that the di¤erence between §³ in(lm) and the sum of the lm
and ml elements of the symmetric matrix in braces in (v) is op(1):

Next similarly to the proof in (iii) we can verify that var(
P
³ in(lm))! 0:

By Chebyshev’s inequality
P
³ in(lm)!p 0 and (v) obtains.

(vi) Next consider
»in = b

¡1
n CiV

¡1
n Xi

and ³ in = »inIfmaxkV ¡1
n X 0

ik < Mng;with Mn = o(1): We show that §³ in =
op(1) uniformly; this will provide the result in statement (vi):

Similarly to E(Bi jFi¡1 ) in (B4) we get E(Ci jFi¡1 ) =

¡b2
Z
Ã(w ¡ Xi´

b
) [f 0(bw ¡ a) + f 0(bw + a)] dw

and corresponding expressions for expectations of squares and products of
Ci; note that

¡b2
Z
Ã(w¡ Xi´

b
) [f 0(bw ¡ a) + f 0(bw + a)] dw = o(b2)
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uniformly since f 0(a)+f 0(¡a) = 0: Consider E(§³ in)
2; similarly to previous

proofs by evaluating the terms we can show that this expression goes to zero;
the result follows from Chebyshev’s inequality.

To conclude the proof of Theorem 2 comparing (i-vi) with Assumption 3
we get (a) from (iv), (b) from (ii), (c) from (v); (d) from (vi) and (e) from
(iii). Note that the limit results in (iii), (v) and (vi) hold over all ¯; not just
over Un:¥

Proof of Theorem 3.
Consider without loss of generality two linearly independent functions,

Ãs and Ãt and ~́(Ãs); ~́(Ãt): If we consider jointly the system of equations for
the estimators corresponding to the two functions and their expansions in
view of the results in Theorem 2 it follows that the joint limit distribution
for ~́(Ãs); ~́(Ãt) is Gaussian with mean zero; to …nd its covariance matrix all
that we need to establish are the covariances between the Ai and Aj for the
di¤erent functions Ãs and Ãt: If i 6= j such covariance is zero since ui; uj are
independent. Consider E(Ai(Ãs)Ai(Ãt)): It is

E

µ
Ãs(
ui ¡ a
bn

)¡ Ãs(
ui + a

bn
)

¶µ
Ãt(
ui ¡ a
bn

)¡ Ãt(
ui + a

bn
)

¶

= bn

Z
Ãs(w)Ãt(w)f (bnw + a)dw + bn

Z
Ãs(w)Ãt(w)f(bnw¡ a)dw;

where the result is obtained by a change of variable and by noting that terms
vanish due to restrictions on the support of Ã: By symmetry of the p.d.f. as
bn ! 0

bn

Z
Ãs(w)Ãt(w)f(bnw + a)dw + bn

Z
Ãs(w)Ãt(w)f (bnw ¡ a)dw

= 2bnf (a)

Z
Ãs(w)Ãt(w)dw +O(b

2
n):

By substituting the the limits obtained in the proof of Theorem 2 the covari-
ances between the di¤erent components, ith of the vector ~́(Ãs) and jth of
~́(Ãt) are zero if i 6= j and f(a)

R
Ãs(w)Ãt(w)dw

2f 0(a)2 for i = j: The result follows.¥

Proof of Theorem 4.
Consider for some Ã of Assumption 2 the corresponding Fn(¯;a): Recall

that for any ¯ the vector (¯0; a(¯))0 solves Fn(¯; a) = 0 and (~̄
0
; a(~̄))0 addi-

tionally solves @F
@¯
= 0; ~̄ is the minimizer of a(¯): For ¯ denote by a2¯ the
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median of squared residuals, f(yi ¡Xi¯)
2g ; then ¯LMS is the minimizer of

a2¯; the minimized value of a¯ is aLMS :
Consider now a (random) convex domain

Un;LMS =
n
(¯; a) : n¡

1
6 kVn(¯ ¡ ¯LMS)k < C1; ja ¡ a0j < C2

o
:

We establish …rst that
(1) ja¯ ¡ a(¯)j = Op(n¡ 1

2 ) in Un;LMS ;

(2)
¯̄
¯aLMS ¡ a(~̄)

¯̄
¯ = Op(n¡ 1

2 ):

To prove (1) consider in Un;LMS

Fn(¯; a¯) =
@F

@a
(¯; a¤)(a¯ ¡ a(¯)) (B5)

noting that Fn(¯; a(¯)) = 0 by de…nition of a(¯).
For Fn(¯; a¯) when b3nn = O(1) similarly to the proof of (i) for Theorem

2 we establish that Fn(¯;a¯) = Op(n
1
6 ): Consider the terms in (A2). Since

a2¯ is the median of squared residuals we have §sgn
¡
(ui ¡Xi´)2 ¡ a2¯

¢
= 0

and we can write Fn(¯;a¯) =

b
X

i2Tn

Z µ
sgn(

ui ¡Xi´¡ a
b

¡ w)¡ sgn(ui ¡Xi´ + a

b
¡ w)

¶
Ã(w)dw ¡

b
X

i2Tn

sgn
¡
(ui ¡Xi´)

2 ¡ a2¯
¢ Z

Ã(w)dw:

We get that E(Fn(¯; a¯)) = O(b3nn) as in the proof of (i). However the
squared termsE

¡
bsgn

¡
(ui ¡Xi´)2 ¡ a2¯

¢ R
Ã(w)dw

¢2
dominateE(Fn(¯; a¯))2

which as a result is O(b2n): This leads to Fn(¯;a¯) = Op(bn
1
2 ); here Op(n

1
6 ):

We can also similarly to (iii) of Theorem 2 show that @F
@a
(¯; a) is bounded

from above by a negative constant in Un;LMS . By (B5) we get that (1) holds.
For any ¯ we have a(¯)¡ a(~̄) ¸ 0 since ~̄ is the minimizer of a(¯); for

any ¯ by the LMS property a¯ ¡ aLMS ¸ 0: We use proof by contradiction
to show that (2) holds.

Suppose that (the always non-negative) n
1
2

³
a(¯LMS)¡ a(~̄)

´
is unbounded

in probability, in other words, Pr(n
1
2

³
a(¯LMS)¡ a(~̄)

´
> Bn) > " for some

Bn ! 1 and some " > 0: It follows from jaLMS ¡ a(¯LMS)j = Op(n¡
1
2 ) that
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Pr(n
1
2

³
aLMS ¡ a(~̄)

´
> Bn) > " and that Pr(n

1
2

¡
aLMS ¡ a~̄

¢
> Bn) > ";

implying that there are cases when aLMS > a~̄ , which contradicts the de…ni-
tion of LMS, thus (2) holds.

Suppose that lim
n!1

Pr (Un;LMS \ Un = ;) > 0 for any C1. It follows from

the proof of Theorem 1 that outside of Un the value b
¡ 1
2

n V ¡1
n

@F
@¯ (¯;a(¯)) can

be bounded away from zero uniformly in probability; additionally we have
that @F

@a
(¯; a) is bounded from above in Un;LMS by a negative constant. Thus

for @a
@¯
= ¡

@F
@¯
@F
@a

the event

inf
Un;LMS

°°°°n
1
6V ¡1

n

@a

@¯
(¯)

°°°° > p > 0

similarly has non-zero probability as n ! 1. For some ^̄ on the boundary
of the domain we get a(¯LMS )¡ a(^̄) > pC1 with nonzero probability; since¯̄
¯a(¯LMS)¡ a(~̄)

¯̄
¯ = op(n¡

1
2 ) this implies that there are cases when a(^̄) <

a(~̄) which contradicts the fact that ~̄ minimizes a(¯): Thus Un;LMS\Un 6= ;
with probability that goes to 1; and ¯LMS is close enough in probability
asymptotically to ~̄ and to ¯0 and the result of Theorem 4 follows:¥

Proof of Theorem 5.

Consider the random vector
p
2f 0(a0)~́(Ã) which by de…nition of ~́(Ã) (11)

equals
p
2f 0(a0)V b

1
2(~̄Ã ¡ ¯0)

R
Ã(w)dw: Under the conditions of Theorem 2

in its proof in Appendix B the limits of the di¤erent terms in the expansion
(10) were obtained. It can be seen that

p
2f 0(a0)~́(Ã) has the same limit

process as ¡b¡
1
2

n

P
AiV ¡1

n Xi which by the de…nition of Ai in (A4) equals

¡b¡ 1
2

X·
Ã(
ui ¡ a0
bn

)¡ Ã(ui + a0
bn

)

¸
V ¡1Xi:

Consider (12). First we note that this is a random continuous linear
functional on the space K of in…nitely di¤erentiable functions (of course, it
is also a linear continuous functional on the space K1 ¾ K). From Theorem
3 if follows that ´G is a generalized Gaussian random process in the sense
of Gel’fand, Vilenkin (1964). Thus by their Theorem 1 (pp. 250-251) this
process is determined by the bilinear covariance functional which here from
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Theorem 3 is W given by (13). This result extends to functions de…ned on
the space K1 ¾ K since the functionals that need to be considered here in
the derivations of results require only taking the …rst derivative of Ã and are
thus well de…ned for K1:¥

Appendix C. The breakdown point of the
smoothed LMS estimator.

The LMS estimator has the …nite sample breakdown point of
[n2 ]¡k+2

n ; we
show here that the same holds for the smoothed LMS estimator; essentially
smoothing does not alter the main properties of the objective function that
are responsible for the high breakdown point.

The result for LMS is conditional on there being no hyperplane V that
passes through zero in Rk and contains more than k¡1 of X

0
i 2 Rk ; where Xi

are sample points. We assume that the joint distribution of Z = f(Xi; yi)
0 2

Rk+1; i = 1; :::ng is such that it does not put any mass on any such hyper-
plane; a su¢cient condition is that the joint distribution be continuous (or
have a continuous component in the X 0

i vector). The following theorem is
an adaptation of Theorem 2 in Rousseeuw and Leroy, 1987, pp.118-120, to
the case of the smoothed estimator; here we similarly demonstrate that the
estimator remains bounded if any number less than [n

2
] ¡ k + 2 of sample

points get replaced by arbitrary values.

Theorem C. The breakdown point of the smoothed LMS estimator is
[n2 ]¡k+2

n
:

Proof.
The reader would need to consult the proof of Theorem 2 (Rousseeuw,

Leroy, 1987, pp.118-120) for the LMS estimator (LMS proof) which is closely
followed here. We concentrate our attention on part 1 of the LMS proof that
establishes that the breakdown point is no lower than

[n
2
]¡k+2
n

: Part 2 of the
proof shows that this value cannot be improved on: the breakdown point
cannot be higher; this also holds for the smoothed estimator, but this part is
of less interest and the adaptation of the corresponding proof is not provided.

Following the LMS proof denote by Z 0 the ”corrupted” sample, obtained
from the original sample Z by replacing no more than [n

2
] ¡ k + 1 sample

points with arbitrary values. Our de…nition of ½ is the same as in the LMS
proof; the property ½ > 0 similarly holds.
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Note that µ in their notation corresponds to our ~̄; for the sample Z 0 for
their µ0 we write ~̄

0
:We use the same notation ri for residuals from the original

sample, yi ¡Xi
~̄; and similarly denote by M the maximum, max jrij : The

de…nition of the set A remains the same; it similarly contains at least n¡ [n
2
]

”good” observations (from the original sample). Similarly if (Xa ; ya) 2 A

we denote the residuals ra = ya ¡Xa
~̄ and r0a = ya ¡Xa

~̄ 0: Note that as in
the original LMS proof we use the notation 0 (”prime”) here for the values
associated with the corrupted sample Z0; we avoid confusion by not referring
to transposes in this proof.

We identify three steps in the original LMS proof:
Step 1 established

jr 0a ¡ raj > ½(
°°° ~̄0 ¡ ~̄

°°° ¡ 2
°°°~̄

°°°):

Step 2 derived
med(r0i)

2 · M2:

Step 3 showed that if
°°°~̄ 0 ¡ ~̄

°°° ¸ 2(
°°° ~̄

°°°+ M
½
) then

med(r 0i)
2 >M2;

contradicting the result in step 2. It follows that
°°°~̄ 0

°°° is bounded for any

corrupted sample Z 0:
Step 1 is obtained by a geometric construction and the result holds re-

gardless of the nature of ~̄; ~̄
0
:

Denote by a0(~̄) for the sample Z 0 and the original ~̄ the solution to
equation (7). For ~̄

0
a similarly de…ned ~a0(~̄

0
) is the minimizer that solves

the system of …rst-order conditions (7,8) for Z 0; thus a0(~̄) ¸ ~a0(~̄
0
). We

modify steps 2 and 3 to obtain a similar contradiction involving
³
~a0(~̄

0
)
´2
;

instead of med(r0i)
2:

Note that equation (7) cannot be satis…ed for ¯; a = a0(¯) if for some i¯̄
r 02i ¡ (a0(¯))2

¯̄
< b and all the n¡ [ n

2
] di¤erences r2a ¡ (a0(¯))2 have the same

sign. If
¯̄
r02i ¡ (a0(¯))2

¯̄
> b for all i then a0(¯)2 = med(r 0i)

2; by step 2 of the
original LMS proof this value is bounded from above by M2:

New step 2.
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If some of the ra are such that

¯̄
¯̄r2a ¡

³
a0(~̄)

´2 ¯̄¯̄ < b, then
³
a0(~̄)

´2
< M2+

b: If none of the ra satisfy this, then by the argument above
³
a0(~̄)

´2
< M2:

Since a0(~̄) ¸ ~a0(~̄
0
) we have

³
a0(~̄

0
)
´2
< M2 + b:

New step 3.

Suppose that
°°°~̄ 0 ¡ ~̄

°°° > 2
°°° ~̄

°°°+
M (1+

q
1+ 2b

M2 )

½
): Then

jr 0a ¡ raj > ½(
°°° ~̄ 0 ¡ ~̄

°°° ¡ 2
°°° ~̄

°°°) > ½

0
@2

°°° ~̄
°°° +

M(1 +
q
1 + 2b

M2)

½
)¡ 2

°°°~̄
°°°

1
A

= M(1 +

r
1 +

2b

M2
)

where the …rst inequality follows from the result of step 1 of the original LMS
proof. We get

jr0aj ¸ jr0a ¡ raj ¡ jraj > M(1 +
r
1 +

2b

M2
)¡M = M

r
1 +

2b

M2
:

Here

¯̄
¯̄r02i ¡

³
a0(~̄

0
)
´2 ¯̄¯̄ < b has to be satis…ed for some i in order that a0(~̄

0
)

be a minimizer satisfying (7,8). From the remark preceding the new step 2

it follows that either

¯̄
¯̄r02a ¡

³
a0(~̄

0
)
´2 ¯̄¯̄ < b for some a 2 A or some of the

di¤erences r02a ¡
³
a0(~̄

0
)
´2

have di¤erent signs, in particular, at least one is

negative. If some

¯̄
¯̄r 02a ¡

³
a0(~̄

0
)
´2 ¯̄¯̄ < b then

³
a0(~̄

0
)
´2
>

¡
M2 + 2b

¢
¡ b = M2 + b:

If

¯̄
¯̄r 02a ¡

³
a0(~̄

0
)
´2 ¯̄¯̄ > b always in A at least for one residual r 02a ¡

³
a0(~̄

0
)
´2
< 0

in which case the above inequality is also satis…ed.

We thus get a contradiction and conclude that
°°° ~̄ 0

°°° is bounded by the

same constant for any corrupted sample Z 0:¥
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