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Abstract 
Contests are ubiquitous.  The critical link between labor hiring and promotion practices, elections, 
research and development, grading of students, government procurement contracts, many 
sporting events, and the like is that the economic structure relates rewards to relative 
performance.  This fact has lead to an explosion of social science research over the past several 
decades clarifying the problem of incentives when competitors are rewarded according to relative 
performance.  Yet, many first order questions remain open.  One such exploration concerns the 
relationship between optimal contest design and the common uncertainty component.  This paper 
begins by showing that the assumed shape of the common uncertainty component is critical in 
this regard:  if the form of uncertainty that characterizes the tournament process is skewed, then 
equilibrium effort levels depend crucially on the number of competitors.  As a first test of our 
theory we utilize a lab experiment, where important features of the theory can be exogenously 
imposed.  We proceed to execute a field experiment, where we rely on biological models 
complemented by economic models to inform us of the relevant theoretical predictions.  In both 
cases we find that the theory has a fair amount of explanatory power.  More generally, from a 
methodological perspective our study showcases the benefits of combining data from both lab 
and field experiments to test economic theory. 
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1. Introduction 

 Contests have a long and storied past.  From the first Olympiad in 776 B.C., to 

Medieval England, where tournaments were an essential part of military life, to modern 

labor markets, contests have served an important social and economic function.  While 

some form of contest arrangement has by now permeated nearly every walk of life, 

scholars have only recently begun to explore rigorously the theoretical and empirical 

underpinnings of various tournament formats.  Over the past several decades, for 

instance, important theoretical work has clarified the problem of incentives when 

competitors are rewarded according to relative performance (for early work, see e.g., 

Lazear and Rosen (1981), Holmstrom (1982), Carmichael (1983), Green and Stokey 

(1983), Nalebluff and Stiglitz (1983), Malcomson (1984) and O’Keefe et al. (1984)).1   

Empirically testing the theoretical predictions of contest models has taken two 

quite distinct paths:  regression-based methods that focus on outputs and laboratory 

experiments that are able to measure inputs.  One clever illustration of the former method 

is due to Ehrenberg and Bognanno (1990), who find strong support consistent with the 

notion that golfers on the PGA tour respond to the level and structure of prizes in 

tournaments.  The seminal laboratory experiment is due to Bull et al. (1987), who find 

that effort levels converged to theoretical predictions in aggregate, but that individual 

effort level choices were quite noisily distributed around the equilibrium prediction.     

To date, the literature has identified the prize structure and monitoring system 

(stochastic element) as the key means to provide the correct incentives in contests.  In this 

                                                 
1 The literature has provided several reasons for employing contests, including reducing monitoring costs, 
dealing with indivisible rewards, and minimizing risks from common uncertainties, but contests do entail 
potential dangers.  For example, they may elicit an incorrect level of effort (moral hazard) or induce the 
wrong agents to participate (adverse selection).   
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study, we enhance the principal’s choice set by showing that the number of contestants 

allowed to compete also has important effects on individual effort levels.  It seems that 

the importance of the size of the contest has been left unexplored in the literature due to 

the standard assumption that outcomes depend on effort and a uniform stochastic 

component.  Yet, in many settings the common uncertainty component might be skewed.  

For example, any zero sum game with positive or negative externalities might yield a 

non-uniform uncertainty component.  In R&D contests, for instance, positive spillover 

effects might induce an increasing density function characterizing the uncertainty 

component.  Furthermore, in many settings negative shocks might be correlated across 

agents, such as in labor markets.   

Our theory highlights that if the form of uncertainty that affects outcomes is 

skewed, then the number of competitors allowed in the competition has a critical 

influence on equilibrium effort levels.  In particular, as the size of the tournament 

expands, a contestant’s equilibrium effort level i) decreases if the form of uncertainty has 

a decreasing density, ii) remains the same with a uniform density, and iii) increases if the 

form of uncertainty has an increasing density.  The intuition is that the marginal benefit 

from committing effort critically relies on both the shape of the density and the number 

of competitors.2   

Our first test of the theory utilizes a laboratory experiment.  By studying 

experimental markets that differ only in the shape of the common uncertainty component, 

we are permitted a unique insight into whether our theoretical predictions are played out 

                                                 
2 There are only a few studies of tournaments that we are aware of that vary group size.  Orrison et al. 
(2004) study tournaments among three or more contestants, but they assume that the uncertainty component 
is uniformly distributed. Harbring and Irlenbusch (2003) do not use an uncertainty component at all. 
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in a controlled environment.  Experimental methods in the lab thus permit us to study 

effects that would be quite difficult to identify in naturally-occurring data.  In addition, it 

provides a useful benchmark for making inference from our field data.  Similar to the 

results in Bull et al. (1987), we find that aggregate effort levels converge to theoretical 

predictions, but there is substantial noise at the individual level.  In terms of comparative 

statics, we find mixed support for our theory when we assume that contestants are risk 

neutral.  When we relax the risk neutrality assumption and allow risk aversion, however, 

our comparative static predictions are met with much greater frequency:  contestants’ 

effort levels respond predictably to changes in the number of competitors.   

Our second empirical investigation—a field experiment—continues to rely on 

randomization as an instrument to test our theory, but proceeds in a slightly different 

spirit.  Whereas in our laboratory experiment we impose all of the underlying 

assumptions of the theory and explore effort choices, under our field approach we ask 

whether these results continue to obtain in a field setting, where simplifying assumptions 

are not guaranteed to hold.  Importantly, however, to test our theory it is necessary to 

have an observable measure of individual effort and a firm grasp of the underlying 

common uncertainty component.   

Our search for an appropriate environment concluded when we obtained an 

agreement with a Dutch commercially-run recreational fishing outfit.3  Agents in this 

environment commonly compete in tournaments, and we can measure their effort levels 

in a straightforward, non-intrusive, manner.  As such, our simple experimental 

manipulations are viewed as natural by participants, and with the spatial arrangement of 

                                                 
3 We are grateful to Ad and Thea van Oirschot of “De Biestse Oevers”, Biest-Houtakker, The Netherlands, 
for allowing us to use their ponds for experimentation. 
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competitors around the lake we have priors on the shape of the common uncertainty 

component.  This is so because at the beginning of each period we place a fixed number 

of Rainbow Trout into the pond.  Such an introduction of fish results in a negatively 

skewed common uncertainty component for two reasons:  the number of fish in the pond 

is finite and Rainbow Trout is a species that biology has taught us typically school (Liao 

et al. 2003).  Overall, we find evidence consonant with our theoretical predictions—as the 

number of competitors increases, individual effort levels decline.   

 We view our results as having import in several domains.  For instance, an 

important element of contest design that has not been explored rigorously in a theoretical 

and empirical sense is the optimal size of the tournament.  Intuition in some circles is that 

larger tournaments induce greater levels of competition and therefore greater effort 

levels.  Alternatively, some argue that the probability of winning a small tournament is 

larger, providing workers with greater incentives to exert effort (see Harbring and 

Irlenbusch (2003), and Orrison et al. (2004) for useful discussions).  Our theory provides 

intuition into why such insights might not be contradictory, and provides a direction into 

interesting positive and normative implications heretofore not discussed.  In doing so, we 

not only add a tool to enhance mechanism design, but provide insights into current policy 

debates.  For example, if effort is not necessarily decreasing in the number of contestants, 

then merger and acquisitions cannot be justified by the argument that concentration is 

necessary to give firms incentives to conduct research and development.   

 Methodologically, both our lab and field experiments permit a glimpse of 

individual effort levels, which is rarely achieved in the literature on tournaments using 

naturally-occurring data, which have necessarily focused on outputs, rather than inputs 
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(see, e.g, O’Reilly et al. (1988), Ehrenberg and Bognanno (1990), Main et al. (1993), 

Orszag (1994), Becker and Huselid (1992), and Lynch and Zax (1998, 2000), Eriksson 

(1999)).  More generally, our study showcases the benefits of combining lab and field 

experimental data to test economic theory. 

 The remainder of our paper is organized as follows.  Section 2 provides our 

theoretical model and experimental design.  Section 3 discusses our empirical results.  

Section 4 concludes. 

2.   Tournament Theory 

The theoretical literature on tournaments represents a rich lot with several 

interesting implications.  Much of the literature in the area of labor economics can be 

traced to the work of Lazear and Rosen (1981), who originally clarified the problem of 

incentives when competitors are paid on a relative basis.  Their theory lends structure to 

several real-world phenomena, including salary structure in corporations and payouts in 

sporting events.  Green and Stokey (1983) pushed the argument in an important direction 

by demonstrating that the optimally-designed tournament dominates other reward 

systems when a sufficiently diffuse common shock exists.   

Malcomson (1984) later highlighted certain properties of tournaments by 

examining incentives in an asymmetric information environment.  Proceeding in a 

somewhat different dimension, Okeefe et al. (1984) take the structure as given and model 

the problem as one of intensive and extensive optimality:  eliciting the correct level of 

effort and inducing the correct people to participate.  In a labor setting, they argue that 
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with the proper use of monitoring probability and prize structure the moral hazard and 

adverse selection problems can be solved.4   

A.  Theoretical model: risk neutrality 

Following Zhou (2002), we assume there are n  risk neutral contestants exerting 

effort to produce output, 2≥n .  In the typical triangular prize format, the agent who 

produces the highest level of output wins the contest and receives a reward of 1W .  Each 

of the remaining agents receives a payoff of 2W  < 1W .  Let iµ  denote a representative 

agent i ’s effort level, and kµ  denote the effort of her kth rival, }...,2,1{, nki ∈ .  Let iε  

and kε  denote identically and independently distributed random variables which have a 

distribution function denoted by F.  The distribution function is assumed to be continuous 

and twice differentiable and the corresponding density function is f.  The realized output 

iq  of contestant i  is defined as  

iiiq εµ += .           (1) 

Under these conditions, for iq  to be the highest level it is necessary that 

    kiki εεµµ >+−  for all ik ≠ . 

 Assuming symmetry, all rivals’ effort is the same, denoted by µ .  Given the 

effort level of her rivals, contestant i ’s probability of producing the best output is 

)(1

ii

nF εµµ +−−  for a given iε .  Integrating over all possible realizations of iε , 

contestant i ’s expected probability of winning the contest is 

                                                 
4 In a related literature spawned by Schumpeter (1950), who argued that some concentration in an industry 
is necessary to provide firms with sufficient incentives to invest in R&D, an abundance of studies have 
examined the role of contest design on equilibrium effort levels.  In an early and influential work, Loury 
(1979) studied the relationship between market structure and R&D spending.  Assuming random variables 
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iiii

n
dfF εεεµµ )()(1 +−−

+∞

∞−∫ .  Let )( iC µ denote contestant i ’s cost of effort level iµ : 

we assume 0'>C  and 0'' >C .  Thus her expected payoff is 

         iiii

n
dfFW εεεµµ )()(1

1 +−−
+∞

∞−∫ + })()(1{ 1

2 iiii

n
dfFW εεεµµ +−− −

+∞

∞−∫ )( iC µ− .  

Contestant i  chooses 
iµ  to maximize the expected payoff.  Assuming an interior 

solution, the first order condition for contestant i ’s profit maximization is 

iiii

n

ii dfFfnWW εεεµµεµµ )()()()1()( 2

21 +−+−−− −
+∞

∞−∫ 0)(' =− iC µ .   

In a symmetric equilibrium, µµ =i
 and the above equation reduces to 

  ii

n

i dFfnWW εεε )()()1()( 22

21

−
+∞

∞−∫ −− 0)(' =− µC .               (2) 

Using integration by parts, we find that 

   εdFfn
n 22)1( −

+∞

∞−∫ − εdfFf
n ')( 1

∫
+∞

∞−

−−+∞= .         (3) 

In (3), )(+∞f does not depend on n.  As a result, we have 

   dndFfnd
n /)1( 22 ε−

+∞

∞−∫ − εdfFF
n ')ln( 1

∫
+∞

∞−

−−= .         (4) 

From (2) and (4), when W∆  is fixed, the sign of dnd /µ is the same as the sign of 

'f .  Thus, a first proposition follows: 

Proposition 1:  The form of uncertainty characterizing the tournament affects the 

relationship between the number of contestants and equilibrium effort levels. 

 

The intuition behind this result is as follows.  When an agent chooses her effort 

level, she naturally compares the marginal benefits and costs of effort.  When the number 

of contestants increases, the probability of one or more other contestants receiving a very 

                                                                                                                                                 
are exponentially distributed, Loury (1979) showed that R&D spending decreases with the number of 
competing firms.   
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good draw is increasing, and this holds independent of whether the density function is 

increasing, decreasing, or uniform.  The increase in this probability has two competing 

effects influencing the marginal benefit function.  The first effect is that “pure luck” (a 

good realization of a contestant’s random variable) is less likely to determine the winner.  

The larger the number of contestants, the more likely it is that at least some agents end up 

with high realizations (for a given distribution), and hence the more important effort is in 

determining the winner.  The second effect is that each individual contestant’s probability 

of having the best luck decreases.  With convex effort costs, for a given prize the net 

marginal benefit of effort falls. 

Three natural examples are intuitively plausible.  First, suppose the density 

function is increasing.  The contestant knows that she has a high probability of receiving 

a good draw, but she also knows that the probability of one or more other contestants 

receiving a good draw is increasing in group size.  Hence, the larger the group, the closer 

the contestants are in terms of likely outcomes—good draws.  As a result, the first effect 

dominates the second when the number of contestants increases, and effort plays an 

important role in selecting the winner. 

 Second, suppose the density function is decreasing.  The contestant knows that 

her probability of receiving a good draw is small, whereas the probability of at least one 

other contestant receiving a good draw increases in group size.  Hence, the larger the 

number of contestants, the smaller the likelihood that putting in extra effort will pay off, 

and hence the second effect dominates the first.  Finally, as is typical in the literature, 

when the density function is assumed to have a zero slope, the first effect exactly cancels 
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the second effect and effort does not change with the number of contestants.5  Hence, in 

equilibrium, the following comparative statics naturally follow:   

Hypothesis 1:  When contestants are risk neutral, a contestant’s effort decreases 

(if 'f  < 0), remains the same (if 'f  = 0), or increases (if 'f  > 0) as the number of 

contestants increases. 

 
These predictions are empirically testable, and will form the basis of our empirical tests 

below.   

B.  Theoretical model: risk aversion 

 One potentially important assumption in the theory, and indeed the bulk of contest 

theory in general, is that agents are risk neutral.  In this sense, any empirical test 

represents a joint hypothesis test—risk neutrality and equilibrium play.  In an effort to 

extend this aspect of the literature, we consider our theoretical predictions when agents 

are risk averse.  This appears to be a natural assumption, as recent explorations of 

individual risk preferences (e.g., Holt and Laury, 2002) suggest that a majority of agents 

act in a manner consistent with a model of risk-aversion when confronted with choices of 

lottery payoffs that are typical in lab experiments. 

                                                 
5 A simple numerical example facilitates interpreting the results.  Consider the case where there are only 
two possible outcomes; one can have either a good draw (with probability p) or a bad draw (with 
probability 1-p).  Furthermore, assume that the costs of effort and the size of the prize are such that it is not 
profitable for a contestant to exert any effort if she herself receives a bad draw and at least one other 
contestant receives a good draw.  That means that effort only plays a role in selecting the winner (i) if either 
the contestant receives a good draw and at least one other contestant also receives a good draw (which 
happens with probability p(1 - (1-p)n-1)), or (ii) if the contestant receives a bad draw and none of the other 
contestants receives a good draw (the probability of which equals (1-p)n).  So the probability that effort 
matters is π(n,p) = (1-p)n + p(1 - (1-p)n-1).  If n increases, (1-p)n-1 goes to zero.  If one gets a bad draw 
(which happens with probability (1-p)), the chance of winning goes to zero if group size increases.  If one 
gets a good draw, the probability of no other contestant receiving the good draw goes to zero if group size 
increases.  Hence, for larger groups, effort is less (more) likely to determine the winner if p is relatively 
small (large) – that is, if the probability mass on the good outcome is small (large).  Indeed, noting that 
π(∞,p) = p, we have (π(2,p),π(∞,p)) equals (0.68,0.20), (0.50,0.50) and (0.68,0.80) for p=0.20, p=0.50, and 
p=0.80, respectively.  
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 Continuing with our theoretical model described above, we denote the well-

behaved utility function for an agent as U :  0'>U , 0'' <U .  An agent’s expected utility 

is therefore: 

 iiii

n

i dfFCWU εεεµµµ )(])[())(( 1

1 +−− −
+∞

∞−∫  

   + })(])[(1)){(( 1

2 iiii

n

i dfFCWU εεεµµµ +−−− −
+∞

∞−∫ .  

In a symmetric equilibrium, the condition for profit maximization becomes 

ii

n

i dFfnCWUCWUV εεε )()()1())()((( 22

21

−
+∞

∞−∫ −−−−≡    

0)(')](')1()('[
1

21 =−−+−− iCCWUnCWU
n

µ .          (6) 

From (2) and (6), whether a contestant will commit more or less effort when they 

are risk averse depends on the following inequality  

>− 21 WW
)(')1()('

))()((

21

21

CWUnCWU

CWUCWUn

−−+−

−−−
.          (7) 

Since the utility function is concave, (7) always holds.  Thus, ceteris paribus, risk averse 

agents will commit less effort than risk neutral agents.  The intuition behind this result is 

as follows.  Given that the utility function is concave, )()( 21 WUWU −  is smaller than 

21 WW − ; thus, as the reward to winning decreases, a contestant’s effort decreases. 

From (6), the relationship between a contestant’s effort and the number of 

contestants can be explored 

  
µ

µ

∂∂

∂∂
−=

/

/

V

nV

dn

d
.             (8) 

From the second order condition for a contestant’s payoff maximization, µ∂∂ /V  is 

always negative.  Thus, dnd /µ  has the same sign as nV ∂∂ / . 
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Partial differentiation of (6) yields 

εdFFfCWUCWU
n

V n )ln(')]()([ 1

21 −−−−=
∂

∂
∫

∞+

∞−

−  

  ')](')('[
1

212
CCWUCWU

n
−+−− .           (9) 

We are therefore able to derive two further hypotheses for empirical testing: 

Hypothesis 2:   A risk averse contestant will commit less effort than a risk neutral 

contestant. 

 

Hypothesis 3:  If 'f  < 0 or 'f  = 0, then a risk-averse contestant’s effort 

decreases as the number of contestants increases. 
 

For the increasing density case, 0'>f , a risk-averse agent’s equilibrium effort level is 

ambiguous over changes in the number of rivals.  As noted above, for 0'>f , an agent’s 

effort level increases with the number of contestants when they are risk neutral.  With the 

impact of risk aversion, the relationship is ambiguous because risk aversion serves to 

decrease the utility payoff from winning.  In much the same manner, for 0'=f , a risk 

neutral contestant’s equilibrium effort level does not change as the number of contestants 

changes, but introducing risk aversion causes this relationship to become negative. 

3.   Experimental Evidence 

 To examine the hypotheses posed above, we proceed in two distinct, but 

complementary, directions.  We begin by imposing the major assumptions of our theory 

in a laboratory experiment, allowing us a crisp look into the effects of alternative 

common certainty components on individual effort levels.  We proceed to an 

environment—a field experiment—where we can only be certain that a few of the critical 

assumptions are met:  those that provide enough structure to provide theoretical 
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predictions.  The proceeding discussion will be organized as an explanation of each 

experimental method followed by the empirical evidence drawn from that approach. 

A.  Lab Experiment 

We use a combination of the literature and our theory to guide the choice of 

experimental parameters for our lab experiment.  For example, to ensure comparability 

with the extant literature, wherever possible we follow Bull et al. (1987) in crafting our 

experimental protocol.  Accordingly, we use the quadratic cost function given by 

2

10000

3
)( µµ =C , where µ denotes the chosen effort level.  In addition, our theory 

pinpoints that the reward to the winner should be $4.50, and the reward to other 

contestants is $2.40.  The rewards are chosen so that subjects are provided significant 

incentives to exert effort and the second order condition for a contestant’s payoff 

maximization is satisfied regardless of whether there are two or eight contestants.  Also, 

and in the spirit of the literature, in each treatment subjects are confronted with a 

sequence of twenty rounds in which they are to choose an effort level in each round over 

the interval [0,100].   

For our lab experiment we recruited subjects from the undergraduate student body 

at the University of Maryland.  We use a between-subject design wherein each subject 

plays 20 rounds within one out of the six tournament treatments.  Table 1 presents these 

six treatments, summarized as a 3X2 full factorial experimental design.  Table 1 also 

provides sample sizes for each treatment, and presents the Nash equilibrium effort levels 

assuming that all participants in a group are either risk neutral or have the same level of 

risk aversion.  Rows represent whether the treatment was carried out with 2 or 8 

competitors in the contest, and columns denote the shape of the common uncertainty 
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component:  decreasing ( 'f  < 0), uniform ( 'f  = 0), or increasing ( 'f  > 0).  In the table, 

and in the discussion below, we denote the two-person decreasing density tournament 

treatment as D2; other treatments use similar acronyms.   

As illustrated in the experimental instructions contained in Appendix I, subjects 

were informed of the number of competitors, of the structure of payoffs and costs, as well 

as of the fact that the tournament is to be played directly after all subjects have made their 

choices for that round.  Thus, subjects played rounds one by one.  Subjects were thus 

aware of the fact that they and their playing competitors could earn either $4.50 or $2.40 

in each round.  Finally, subjects were informed that monies earned will be summed and 

paid in private at the end of the experiment.   

Upon completion of the tournament experiment, instructions and a decision sheet 

were handed out for a second experiment.  This second experiment was designed to 

estimate subjects’ risk preferences.  In this part of the session, the low-payoff treatment 

of Holt and Laury (2002) was used—see Appendix II for the experimental instructions.6  

The treatment is based on ten choices between paired lotteries.  The paired choices are 

included in Appendix II.  The payoff possibilities for Option A, $2.00 or $1.60, are much 

less variable than those for Option B, $3.85 or $0.10, which was considered the risky 

option.  The odds of winning the higher payoff for each of the options increased with 

each decision, and the paired choices are designed to determine degrees of risk aversion.  

                                                 
6 We elected to use the low-payoff treatment of the Holt and Laury experiment to measure risk preference 
as the domain of earnings for this treatment [$0.10 to $3.85] approximates the equilibrium domain of per 
period earnings for our contest markets.  We also collected data for a higher-payoff treatment of the Holt 
and Laury experiment where the domain of earnings more closely approximates the equilibrium domain of 
earnings at the session level in our contest markets.  In what follows, we report only the empirical results 
for risk preference based upon individual response to the low-payoff Holt and Laury design.  However, all 
tests and qualitative results are robust to the use of response to the higher-payoff experiment.  



 14 

Holt and Laury (p. 1649) provide a table that will be used to categorize subjects’ CRRA 

and CARA risk preference levels based on their ten decision choices. 

 After the instructions were read and all questions were answered, subjects were 

asked to complete their decision sheets by choosing either A or B for each of the ten 

decisions.  Subjects were instructed that one of the decisions would be randomly selected 

ex post and used to determine their payoffs.  Part of a deck of cards was used to 

determine payoffs, cards 2-10 and the Ace to represent “1”.  After each subject completed 

his or her decision sheet, a monitor would approach the desk and randomly draw a card 

twice, once to select which of the ten decisions to use, and a second time to determine 

what the payoff was for the option chosen, A or B, for the particular decision selected.  

After the first card was selected, it was placed back in the pile, the deck was reshuffled, 

and the second card was drawn.  For example, if the first draw was an Ace, then the first 

decision choice would be used, and the subject’s decision, A or B, would be circled.  

Suppose the subject selected A in the first row.  The second draw would then be made.  If 

the Ace was drawn, the subject would win $2.00.  If a card numbered 2-10 was drawn, 

the subject would win $1.60.  The subjects were therefore aware that each decision had 

an equal chance of being selected. 

 After all the subjects’ payoffs were determined, they combined their payoffs from 

both experiments to compute their final earnings.  The final payoffs were then verified 

against records maintained by a monitor, and subjects were paid privately in cash for 

their earnings.  Each of the sessions took approximately 75 minutes.   

Prior to moving to a discussion of the experimental results, a few noteworthy 

aspects of our experimental design merit further consideration.  First, data were gathered 
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in 17 sessions.  Second, no student competed in more than one treatment.  Third, no 

participation fee was used, but subjects earned on average roughly $50.  Fourth, each of 

the treatments was carried out via linked computers; we used the Z-tree program 

(Fischbacher 1999).   

Experimental Results of the Lab Experiments 

 Table 2 presents a summary of the experimental results.  In this summary, we 

have averaged individual play over all 20 periods, effectively providing one observation 

per person in an effort to be as conservative as possible in our beginning statistical 

testing.  Yet, our results are robust to using observations from rounds 11-20 only, or from 

rounds 15-20 only.  In panel A of Table 2, the raw data show that, in aggregate, effort in 

the 2-player contest is consistently higher than effort levels in the 8-player contest, 

regardless of the shape of the random density component.  This is not consonant with our 

risk-neutral theoretical model, which predicts that the shape of the density function 

critically moderates the relationship between effort and tournament size.   

 The observed across-the-board decrease in effort when group size is increased is 

consistent with our subjects being risk averse.  The theory presented in Section 2 suggests 

that in case of negatively skewed or uniformly distributed shocks subjects in larger 

groups should exert less effort, whereas the impact of group size is ambiguous in case of 

a positively skewed shock distribution.  Panels B and C of Table 2 address these 

predictions by categorizing the level of CRRA (and CARA) risk preference for the agent 

based upon estimates provided on p. 1649 of Holt and Laury (2002):  risk-neutral agents 

are those who select 4 or fewer “safe” choices, risk averse agents are those who select 

more than 4 “safe” choices.  This parsing permits a test of both hypotheses 2 and 3.   
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The first conclusion we can derive from this parsing is that the observed 

deviations from our theory in the aggregate data might be due to the fact that more than 

half (100 out of 162) of our participants reveal themselves to be risk averse rather than 

risk neutral.  Upon splitting these types into a separate category, we find that the 

predictive power of our theory improves substantially.  For instance, consonant with our 

theory, effort levels of risk-neutral and risk-averse subjects differ considerably.  We 

therefore state a first result: 

Result 1. Risk averse players commit less effort than risk neutral contestants in all 

treatments.   

 

Evidence for this result comes from a series of Mann-Whitney rank-sum tests of 

treatment differences.  The rank-sum test is a standard nonparametric test that has a null 

hypothesis of no treatment effect, or that the two samples are derived from identical 

populations.  To construct the test statistics, we first calculated the individual mean effort 

levels across the twenty rounds and then ranked subjects via these means.  The test 

statistic is normally distributed, and in our case this approach provides several p-values.  

We summarize the empirical results in panel D of Table 2.  Comparing within 

tournament size and particular shapes of the stochastic component, we find that five of 

the six p-values are below 0.02, and for the U8 treatment we can reject the null of no 

difference at the p = 0.07 level.  Taken together, this represents strong support for 

Hypothesis 2.   

Whereas Result 1 relates to the correlation of risk preferences and effort levels, 

we can also explore the impact of group size for given risk preferences, providing 

insights into Hypothesis 3.  Comparing the observed effort levels for risk-neutral subjects 

for groups of 2 to effort levels of players in groups of 8 in panel B of Table 2, we find 
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that their effort levels are largely insensitive to group size.  Risk-averse subjects, 

however, consistently choose lower effort levels when confronted with more contestants; 

see panel C of Table 2.  This yields our next result: 

Result 2:  Whereas effort levels of risk neutral subjects do not change with 

changes in group size, our theory is supported in the case of risk averse contestants as 

their effort levels decrease for 'f  < 0 and 'f  = 0 as the number of contestants increases. 

 
We again turn to a series of Mann-Whitney rank-sum tests of treatment 

differences to provide empirical support for this result—see the relevant p-values 

regarding the impact of group size in panel E of Table 2.  Summary results for risk 

neutral players show that effort levels actually increase for 'f  < 0, but decrease for f’ > 0 

and 'f  = 0.  For f’ > 0, the change is marginal, but the change is nearly significant for 

'f  = 0 at conventional levels.  Overall, these results suggest that effort levels among risk 

neutral players are largely unresponsive to changes in group size, at odds with Hypothesis 

1.  Alternatively, our theory has a fair amount of explanatory power for risk averse 

agents.  For example, for both 'f  < 0 and 'f  = 0, we find that individual effort levels 

decrease significantly with increases in the number of competitors.  For the 'f  < 0 case 

at the p < .01 level, for 'f  = 0 at the p < .06 level.  Furthermore, even though theory is 

silent on the impact of group size in case of f’ > 0, we find that effort levels decrease if 

the distribution of shocks is positively skewed for this case as well. 

Another aspect of our theory contains point estimates.  Although the experimental 

approach might not be the best tool to provide immutable point estimates (see, e.g., Levitt 

and List, 2007), it is instructive to consider how close our model comes to predicting 

actual play; cf. Tables 1 and 2.  Interestingly, consonant with Bull et al. (1987), the point 

estimates for most treatment cells are close to the level predicted by our theory in 
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aggregate, but not at the individual level.  This is largely due to accurate aggregate 

predictions, but there is high variability across individuals.  This variability leads to most 

of our theoretical predictions being within one standard deviation of the observed point 

estimates obtained.  This is remarkable especially because the theory is based on the 

assumption that risk preferences are homogenous within groups.  To give an example, the 

predicted level for risk averse agents for a given density and a group size is derived by 

solving the model assuming that each risk averse agent is matched with either 1 or 7 risk 

averse agents.  In practice, groups are heterogeneous in terms of risk preferences, as 

group formation is random. 

Although the analysis of the raw data provides evidence to support certain aspects 

of our theory, there has been little effort to examine the (temporal dimension of) individual 

data.  To rectify this shortcoming, we estimate a model whereby we regress the individual 

effort choice on a series of treatment dummy variables, while allowing for unobservable 

subject- and time-effects:  

Eit = X’itβ + εit,     i= 1,…, N,  t = 1,…,T. (10) 

Eit is the effort choice for subject i in period t; Xit includes a full set of treatment dummies 

and period dummies, all of which are exogenous.  In our regression estimations, the 

standard errors are clustered at the subject level.  This allows the errors to be correlated 

over the periods for a subject and permits different variances and covariances across 

subjects.  Since our theory provides no guidance on the structure of learning as captured 

by our time effects, we allow for maximum flexibility by using time dummies; as such, 

estimated trial effects can be linear, quadratic, cubic, or any other shape the data dictate.   
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 The regression results of this OLS model are presented in Table 3.7  Column (i) of 

Table 3 contains the regression results using all observations, whereas columns (ii) and 

(iii) present those of the risk-neutral and risk-averse subjects respectively.  Regressions 

are run without an intercept, so that a full set of treatment dummies can be included.  To 

show the impact of group size for each of the three cases, we included dummy variables 

capturing the three cases (negatively, uniformly, and positively skewed shock 

distributions) as well as these dummies interacted with group size dummies (for n=8).  

Column (i) of Table 3 indicates that effort levels are smaller if groups are larger 

(significant at p < 0.05) for decreasing and uniform distributions, but not for increasing 

density functions.  Even though theory predicts for the latter that effort should be 

significantly higher in larger groups, it is reassuring to find that when controlling for the 

temporal pattern in a regression analysis effort no longer falls (cf. the average effort 

levels presented in panel A of Table 2).  Columns (ii) and (iii) yield essentially the same 

conclusions as presented in Result 2. 

B.   Field Experiment 

 As a next test of the model’s predictions, we take our theory to the field where 

many of the theoretical assumptions cannot be assured to be met.  Recently, a rich 

assortment of tournament studies in field settings have arisen, shedding important 

insights on relevant economic models.  These studies revolve around estimating empirical 

models using naturally-occurring data, and exclusively deal with variables concerning 

outputs rather than inputs.  For example, in sport settings, Ehrenberg and Bognanno 

(1990) and Orszag (1994) report golf scores as a proxy for effort.  Becker and Huselid 

(1992) report speed and outcomes in auto racing, while Lynch and Zax (1998) report 

                                                 
7 Our results are unaffected when running Tobit models with censoring at effort levels 0 and 100. 
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outcomes of a horse race to measure effort in a tournament.  Evidence from tournaments 

within firms uses a similar approach:  O’Reilly et al. (1988) use measures of sales, profits 

and number of employees to explain CEO wages; Main et al. (1993) extends this line of 

work in a similar spirit.  Eriksson (1999) takes a different approach, but one that similarly 

measures outputs, as he assumes effort is equal to average profits divided by sales. 

Rather than focusing on naturally-occurring data, we move this literature in a new 

direction by making use of a field experiment, wherein we can measure inputs.  In doing 

so, it is important to craft an experimental design that exogenously varies our major 

treatment variable—number of competitors—in an environment that permits an 

understanding of the other important features of the situation.  This approach provides us 

with an opportunity to observe behavior of agents who have endogenously selected into 

the market, while simultaneously making use of controls afforded by an experiment.  To 

this end, we strived to exploit a naturally-occurring environment whereby the random 

stochastic component takes a shape that is well understood by the participants. 

Finding such an environment is not trivial, but our search concluded when the 

operator of a recreational fishing outfit in The Netherlands agreed to provide i) access to 

fishermen and ii) space on the ponds to carry out our experiment.  The outfit owns three 

rectangular fishing ponds, each of which is roughly 8500 square feet.  The normal 

procedure is that customers pay an entry fee of 12.50–15 Euros and fish for a period of 4 

to 5 hours, depending on the season.  The entry fees for these ponds vary as a function of 

the type and number of stocked fish – rainbow trout or salmon trout.  Further, customers 

do not have ‘property rights’ regarding the fish that are thrown in on their behalf; rather, 

at each pond there is no constraint on catch.   
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This setting has several features that are ideal for our purposes.  First, it provides 

us with a participant pool that naturally competes in tournaments, and indeed some of our 

subjects have participated in national Dutch fishing competitions.  Second, the number of 

fish in the pond is limited, and decreases within each tournament round as more and more 

fish are caught, which implies a decreasing density function of luck.  Third, biological 

models have taught us that trout fish school, suggesting that good luck for one fisherman 

means bad luck for fishermen far removed on the pond—thus reinforcing the idea that 

our field experiment captures the case of a decreasing density function.   

Yet, given that such models are developed under normal conditions—the trout 

being observed in their natural environment—it is important to consider whether this data 

pattern is observed for fish that are newly introduce to a foreign setting.  As a robustness 

test, we explored whether the spatial correlation of caught fish is consonant with a 

schooling model.  Our empirical results, which are available upon request, are strongly 

consistent with the schooling hypothesis.   

Fourth, the fishing technology is geared towards exploiting the behavior of prey 

by continuously casting and reeling.  Bait is thus dragged through the water, seducing the 

trout to chase and take.  Although theoretically reeling in too quickly means that the trout 

is outrun, as we show below the number of fish caught per time period is an increasing 

function of the number of casts in that period.  This suggests that we have a measure of 

effort—the number of casts per period—that is a useful measure to test our theory.  

Clearly, the same casting frequency may imply very different effort levels for different 

subjects.  Thus, to account for skill and fishermen heterogeneity our design must be 

careful to provide within–subject treatment variability. 
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With these advantages, of course, come disadvantages.  For example, whereas 

standard tournament theory is static, our field setting is dynamic in the same spirit as the 

empirical studies using naturally-occurring data cited above.  In addition, there is natural 

heterogeneity in the population, whereas our model imposes symmetry.  Finally, the 

information conditions necessary for the theory are not necessarily met in our field 

experiment—such as common knowledge of costs.  Although these differences are not 

exhaustive, they highlight that field experiments present a tradeoff:  they give up some of 

the controls of a laboratory experiment (such as induced valuations, or robots guaranteed 

to play equilibrium strategies against human subjects) in exchange for increased realism.  

In this manner, our field experiment matches the real-world settings which tournament 

theory attempts to explain:  our fishermen are not told explicitly the distributions of 

other’s valuations and they have previous experience in this environment.  In this 

manner, the exploration provides a useful middle ground between the tight controls of the 

laboratory and the vagaries of completely uncontrolled field data. 

 The execution of the tournament experiment was straightforward and followed 

four steps.  First, sports fishermen were recruited via a registration list during the week 

previous to the planned session.  Second, upon arrival, we explained the experimental 

instructions in a quiet area removed from the other customers.  As shown in the 

experimental instructions in Appendix III, we explained that we rented a specific pond 

and that each subject will participate in 4 tournaments with an alternating number of 

competitors—either 1 or 7 per tournament.  Every tournament lasts exactly one hour, and 

the winner of a tournament is the person who catches the most fish during the hour.  The 

anglers were told that the winning prize is 10 euro’s, independent of group size.  In case 
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of a draw, the winner is determined by whoever caught the first fish.  In case of a tie, we 

flip a coin to determine the winner.8   

Third, shortly before the first tournament we stocked the pond with 58 rainbow 

trout, and at the beginning of each round we replenished the stock that was taken out.  

During the stocking process, we allocated initial fishing spots, which were determined via 

a random process—drawing a numbered spot tag from a closed bag.  Before each new 

tournament began, all participants drew a new numbered spot tag and were re-allocated 

on the pond.  Fishing only occurs on the long sides of the pond, and we always use 8 of 

the 10 fishing spots on each side.  A whistle blow marks the beginning and end of each 

tournament.   

The fourth and final step involves participant remuneration.  As noted above, the 

agent received 10 Euro’s for each tournament victory, and hence the maximum prize 

money per subject is 40 Euro’s.  In addition, each subject received 5 Euro’s participation 

fee.  As a final bit of compensation, we collected all fish and redistributed them lump-

sum to session participants.9  The pecuniary outlay for the experiment, consisting of the 

costs of fish and the payments to the fishermen, was roughly 2,100 Euro’s. 

Before discussing our empirical results, a few outstanding issues merit brief 

elaboration.  First, we ran 3 sessions with 16 participants each session; subjects were 

                                                 
8 We were careful to follow the rules applied by the Dutch Trout Fishing Championships except for the tie 
breaker.  In the official Championships the total weight of the fish caught determines the winner in case of 
a tie.  This is not feasible in our experiment since each participant is in four tournaments.  Breaking ties on 
the basis of total weight of fish caught in the particular tournament round would imply using four coolers 
per fishermen to store the fish separately.  Each sports fisherman usually just carries one, and hence for 
practical purposes we used the time elapsed before catching the first fish as a tie breaker. 
9 One might have chosen to not allow participants to take home any fish.  We wished to avoid waste (in 
total 487 fish were caught), and could not give them to a charity due to perishability.  We therefore decided 
to redistribute them equally among all participants in a session. The marginal incentive to catch another fish 
(apart from the increased likelihood of winning the tournament) is thus 1/16th of its value.  Since this 
marginal incentive is small and independent of treatment we opted for this approach.  
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allowed to compete in only one session each.  Second, given that a within-subject design 

was necessary, we alternated the group sizes of the tournaments within each session.  In 

sessions 1 and 3 the tournaments were played in group sizes of 2, 8, 2 and 8 in rounds 1-4 

respectively, and in session 2 group sizes were 8, 2, 8 and 2.  Thus, in session 1 we had 

eight tournaments of n=2 in rounds 1 and 3 and two tournaments of n=8 in rounds 2 and 

4.  Session 3 yielded identical samples sizes.  For session 2, we have two tournaments of 

n=8 in rounds 1 and 3, and eight tournaments of n=2 in rounds 2 and 4.  Each subject was 

always aware of the number of competitors in her tournament, as well as of the identity 

of his/her competitor(s).  Finally, in light of our theoretical model and the stochastic 

component, under our design we have one comparative static prediction to test:  

contestant’s effort decreases as the number of contestants increases.  This prediction 

should hold for both risk neutral and risk averse competitors, hence we do not gather data 

on individual risk posture. 

Experimental Results 

Before formally testing our theoretical prediction, we need to show that there is a 

positive relationship between effort intensity and the number of fish caught.  Our 

approach is to build a panel data regression model around an ordered probit regression 

model: 

Yit
* = Xit′β + εit,       (11) 

where Yit
* is the number of fish caught by individual i in period t, Xit is a vector of 

person-specific exogenous variables, with the main variable being effort intensity.  Effort 

intensity is the number of casts per minute corrected for the time elapsed between fish 
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caught and the moment at which the fisherman restarts fishing.10  Also included in Xit is 

location on the pond, and the random error component εit either includes subject fixed 

effects, or we cluster standard errors at the subject level.  Finally, β is the estimated 

response coefficient vector.  Although we do not directly observe the true Yit
*, we do 

observe an approximation of Yit
*: 

Yit =  0 if Yit
* ≤ 0;  = 1 if 0 < Yit

* ≤ φ1;  = 2 if φ1 < Yit
* ≤ φ2; …;  = 9 if φ8 < Yit

* ≤ φ9. (12) 

The φi are unknown parameters that are estimated jointly with β.  As such, we obtain 

threshold levels of the marginal value of effort by measuring how exogenous variable 

vector Xit affects fish caught.11 

Empirical results are presented in Table 4.  In both specifications, it is clear that the 

number of fish caught is increasing in effort intensity.  For example, the empirical model 

in column (i), which accounts for the data dependencies by clustering standard errors, 

suggests that the positive relationship holds at the p < .05 level.  Likewise, the empirical 

model in column (ii), which accounts for the data dependencies by including subject 

specific fixed effects, also suggests the positive relationship holds at conventional levels.  

As a robustness test, in Appendix IV we include estimates from two count data models, 

which both show that the number of fish caught is increasing in effort intensity.   

                                                 
10 That means that the denominator is 60 minutes minus the time needed to land all fish caught, to get them 
off the hook, and to put new bait on the hook. 
11 A few aspects of our estimation procedure merit further consideration.  First, since the φi's are free 
parameters, there is no significance to the unit distance between the set of observed values of Y, thus 
avoiding symmetric treatment of one-unit changes in the dependent variable.  Second, estimates of the 
marginal effects in the ordered probability model are quite involved because there is no meaningful 
conditional mean function.  We therefore compute the effects of changes in the covariates on the j 

probabilities: ∂Prob[cell j]/∂Xi = [f(φj-1
 - Xi′β) – f(φj - Xi′β)]*β;  where f(•) is the standard normal density, 

and other variables are defined above.  By definition, these effects must sum to zero since the probabilities 
sum to one.  These estimates are available upon request. 
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Having provided support for the conjecture that effort and the number of fish 

caught are positively correlated, we now turn to our main interest of measuring the 

impact of group size on fishing effort.  Upon doing so, we are able to state our final 

result: 

Result 3:  Consonant with our theory, there is some evidence that subjects 

decrease their effort intensity when the number of competitors increases.   

 
 As a first glimpse into the received data patterns, we provide Table 5.  Panels A 

and B in this table include means and standard deviations of the effort levels across 

treatment categorized by period, without adjusting for the data dependencies – for 

sessions 1+3 and session 2, respectively.  Panels C and D of Table 5 provide the number 

of agents who change their effort levels in response to an increase or decrease in the 

number of competitors in accordance with our theory.  Two data patterns are generally 

observed.  First, there is an important starting point effect:  effort levels tend to decline 

after period 1, and significantly so.  Second, accounting for this trend, there is a tendency 

for effort levels to be higher in the 2-person tournaments, consonant with our theory, 

albeit more clearly so in session 2 than in sessions 1+3.  Panel B shows that in session 2 

effort increases significantly if group size is decreased for the second time (i.e., between 

rounds 3 and 4).  Panel C shows that 56.25% of the participants in sessions 1 and 3 

increase their effort when group size is decreased for the first time (i.e., from round 2 to 

round 3), but only 50% decreases effort when group size is decreased again (from round 

3 to round 4).  The results are again stronger for session 2 – see panel D.  When group 

size is increased for the first time (from round 2 to round 3), 68.75% of the participants 

decrease their effort level, whereas no less than 81.25% of the subjects increase their 

effort levels when group size is decreased for the second time (between rounds 3 and 4). 
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As a more formal test, we follow equation (10) and estimate a panel data model at 

the individual level.  Given the shortness of the panel, we use first differences and 

analyze changes in effort as follows: 

dEit / Eit  =  β1*Decreasegroupsizeit + φt + εit    (13) 

where Eit is the effort choice for subject i in period t, dEit is the difference in effort of 

subject i between period t and period t – 1, Decreasegroupsizeit is a dummy variable with 

value 1 if group size decreases from 8 in period t-1 to 2 in period t, and 0 otherwise.  

Furthermore, φt is a set of three time dummies, indicating a 1 when moving from one 

period to another.  Finally, εit are standard errors clustered at the subject level.  In this 

model, the dummy Decreasegroupsizeit captures decreases in periods 2-3 in Sessions 1 

and 3 and in periods 1-2 and 3-4 in Session 2, leaving the period dummies free to capture 

responses in case group size increases (in periods 1-2 and 3-4 in Sessions 1 and 3, and in 

period 2-3 in Session 2).   

The results of this analysis are presented in column (i) of Table 6.  We find 

evidence consonant with our theory:  effort intensity increases when group size decreases 

– but the result is not strongly significant.  We also find that effort intensity decreases by 

23% between rounds 1 and 2 (as evidenced by the coefficient on Period 1-2), but is 

essentially constant thereafter.  This is consistent with our earlier assertion of novelty 

wearing off, resulting in a substantial drop in effort when moving from tournament 1 to 

tournament 2 but in a much smaller drop in effort (or even no drop in effort) when group 

size is changed for the second and third time. 

 We explore the consequences of removing the novelty effect by omitting the first 

change (from period 1 to 2; see column (ii) in Table 6) or even the first two changes 
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(from period 1 to 2, but also from period 2 to 3; see column (iii) in the table) from our 

data set.  In column (ii) we find that decreases in group size increase effort intensity by 

just over 10% (p-value = 0.058), while the sign of the period transition dummies indicate 

that effort falls if group size increases.  And we find a comparable percentage change in 

column (iii) (with a p-value of 0.074).  We conclude that the field experiment provides 

moderate support for our major theoretical prediction. 

4.  Conclusions 

Designing optimal incentive schemes is perhaps one of man-kinds oldest 

activities.  From the Dead Sea Scrolls to scribes on tombs of ancient kings, rudimentary 

and clever incentive structures to motivate a particular course of action have been 

extolled.12  For their part, economists have produced a rich assortment of models that 

lend insights into the various factors that are likely to influence equilibrium market 

behavior.  In a work environment, for example, the models teach us that individual effort 

levels are critically tied to the incentive scheme in place.   

Such explorations have naturally led scholars to clarify the problem of incentives 

when competitors are rewarded according to relative performance.  Although much 

progress as been made in the past several decades, the relationship between optimal 

contest design and the common uncertainty component remains under explored.  In this 

paper, we expand the literature in this direction by providing a new theory as well as 

experimental evidence testing our theory. 

                                                 
12 One of Aesop’s fables provides an example in point:  “A father, being on the point of death, wished to be 
sure that his sons would give the same attention to his farm as he himself had given it.  He called them to 
his bedside and said, "My sons, there is a great treasure hid in one of my vineyards." The sons, after his 
death, took their spades and mattocks and carefully dug over every portion of their land.  They found no 
treasure, but the vines repaid their labor by an extraordinary and superabundant crop.”  
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The theory provides several predictions, including how risk aversion influences 

equilibrium play, and that the assumed shape of the common uncertainty component is 

critical in determining equilibrium effort levels.  In this regard, if the form of uncertainty 

that characterizes the tournament process is skewed, then equilibrium effort levels depend 

crucially on the number of competitors.  In the case of a uniformly distributed common 

uncertainty component, the number of competitors is not predicted to influence effort 

levels.   

Our line of attack to test the theory is a two-pronged variant, though the empirical 

approaches are complementary in nature.  Our first method is to use a laboratory 

experiment, which permits us to study markets that differ only in the shape of the 

common uncertainty component, allowing a unique insight into whether changes in the 

component’s shape itself can lead to predicted changes in behavior.  Lab experimental 

methods thus allow us to study such effects that would be difficult to identify in naturally 

occurring data.  Our second approach is to maintain randomization, but design an 

experiment in the field that resembles the important features of our theory and permits us 

to examine effort levels directly.   

Overall, the lab data provide mixed support for our theory when we assume that 

contestants are risk neutral.  When we relax the risk neutrality assumption and allow risk 

aversion, however, our comparative static predictions are met with much greater 

frequency.  Furthermore, our model accurately predicts how risk aversion influences 

equilibrium play.  The field data complement these insights by providing evidence 

consonant with the theory within a special case of the theory—when the common 
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uncertainty component is negatively skewed.  In this case, we find some evidence that 

adding competitors decreases individual effort levels. 

We view our results as having import in several circles.  For instance, it provides 

a theoretical basis for the disparate views concerning the optimal number of players in a 

contest, and clarifies when larger tournaments should induce greater levels of effort.  

Such insights might aid the contest designer interested in optimal wage schemes, 

government procurement contracts for R&D contests, company promotional policies, and 

optimal mechanism design more generally.   

Methodologically, this study showcases that by controlling the type of 

uncertainties characterizing the contest process, a crisp view of the impact of the number 

of contestants on a contestant’s effort can be achieved.  Likewise, by controlling for the 

number of competitors, one can estimate the effects of changing the nature of the 

uncertainty component.  Combining these insights with data patterns from a field 

experiment permits one to make much stronger inference than one could with either in 

isolation.  This is so because our field experiment can check the robustness of laboratory 

results in a natural setting, where the mathematical assumptions of the theory cannot 

necessarily be guaranteed to hold.  This approach provides a useful middle ground 

between the controlled environment of the laboratory and the unruly nature of 

uncontrolled field data. 
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Table 1 – Design of the lab experiment 

  Density 

  Decreasing f’<0 Uniform f’=0 Increasing f’>0 
2-player contest  D2; n = 30 U2; n = 32 I2; n = 28 
     Prediction Risk Neutral  53.08 43.75 53.08 
     Prediction Risk Averse  28.92 23.84 28.92 
     
8-player contest  D8; n = 24 U8; n = 24 I8; n = 24 
     Prediction Risk Neutral  26.94 43.75 73.47 
     Prediction Risk Averse  14.68 23.84 40.03 
Notes:  Entries represent treatment acronym, sample sizes and theoretical predictions assuming all subjects in 
a tournament are either risk-neutral, or risk-averse.  Treatment U8 denotes a uniform density 8-player contest.  
Twenty-four subjects participated in this treatment.  Risk neutral (risk averse) subjects are predicted to 
choose effort level 43.75 (23.84) when groups are homogenous in terms of risk preferences.  Each subject in 
every treatment participated in 20 rounds.   
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Table 2 – Lab results 

Density  

Decreasing 

'f  < 0 

Avg. Effort 
(std. dev.) 

Uniform 

'f  = 0 

Avg. Effort 
(std. dev.) 

Increasing 

'f  > 0 

Avg. Effort 
(std. dev.) 

A. All players      

     2-player contest 42.13(12.49) 
n = 30 

37.88(17.13) 
n = 32 

41.54(16.76) 
n = 28 

     8-player contest 33.38(18.01) 
n = 24 

27.05(15.76) 
n = 24 

35.22(21.02) 
n = 24 

     Comparison (p-values, MW) 0.020 0.011 0.0517 
 
B. Risk Neutral players (RN) 

   

     2-player contest 48.31(8.67) 
n = 15 

48.30(16.99) 
n = 11 

53.74(9.96) 
n = 12 

     8-player contest  50.20(15.53) 
n = 9 

37.21(10.99) 
n = 5 

50.71(24.05) 
n = 10 

 
C. Risk Averse players (RA) 

   

     2-player contest 35.96(12.91) 
n = 15 

32.42(14.81) 
n = 21 

32.38(14.98) 
n = 16 

     8-player contest 23.29(10.21) 
n = 15 

24.38(15.95) 
n = 19 

24.15(8.07) 
n = 14 

 
Comparisons (p-values, MW) 

   

D. Risk attitudes    
     RN 2-player vs RA 2-player 0.012 0.019 0.000 
     RN 8-player vs RA 8-player 0.001 0.070 0.004 
E. Group size    
     RN 2-player vs RN 8-player 0.612 0.089 0.644 
     RA 2-player vs RA 8-player 0.003 0.0598 0.0417 

Notes:  Standard deviations are in parenthesis after average effort, and n denotes the number of observations. 
Comparisons are done by a Mann-Whitney test for independent samples. For example, the difference between risk 
neutral players and risk averse players in a 2-player contest is statistically significantly different with a p-value of 
0.012. 
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Table 3 – OLS estimation results of effort levels in the lab 

Variable All subjects 
Risk neutral 

subjects 
Risk averse 

subjects 

    
Decreasing 47.858*** 49.165*** 44.701*** 
 (2.822) (3.973) (3.773) 
    
Decreasing*(n=8) -8.752** 1.893 -12.670*** 
 (4.270) (5.434) (4.151) 
    
Uniform 43.601*** 49.159*** 41.157*** 
 (3.400) (5.285) (3.922) 
    
Uniform*(n=8) -10.824** -11.090 -8.037* 
 (4.366) (6.691) (4.812) 
    
Increasing 47.260*** 54.600*** 41.122*** 
 (3.567) (4.159) (4.398) 
    
Increasing*(n=8) -6.319 -3.032 -8.231** 
 (5.263) (7.860) (4.226) 
    
Time fixed 
effects Yes Yes Yes 
    

N 3240 1240 2000 
R

2 0.628 0.765 0.555 
Notes:  Dependent variable is subject’s effort choice. Decreasing is a dummy variable 
which has a value of 1 if the distribution of the random shock is decreasing. The dummy 
variables Uniform and Increasing have a similar meaning. Furthermore, (n=8) is a 
dummy variable which has a value of 1 if the group size of the subject is 8. Standard 
errors are robust and clustered at the subject level and are reported in parenthesis below 
the coefficient estimates. ***, **, Significant at the 1%, and 5% respectively. 
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Table 4 – Ordered Probit estimation results for catch of fish in the field 

 (i) (ii) 
Variable Ordered probit, clustered se Ordered probit 

Effort intensity 0.928** 
(0.445) 

3.618*** 
(0.416) 

Quadrant fixed effects Yes Yes 
Subject fixed effects No Yes 
   

N 192 192 
LogPseudoLikelihood -366.81 -314.22 
Pseudo-R2 0.023 0.163 
Notes:  Dependent variable is subject’s catch of fish in a period. Effort intensity is the number of casts per 
minute, corrected for the time elapsed between fish caught and the moment at which a fisherman restarts 
fishing. Robust standard errors are reported in parenthesis below the coefficient estimates. In column (i), 
the standard errors are clustered at the subject level. Column (ii) has subject fixed effects. ***, **, 
Significant at the 1%, and 5% respectively. 
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Table 5 – Field results 

 Period  Change in group size (GS) 

 1 2 3 4  Wilcoxon Signed-Rank Test 

A. Session 
1+3 

2-
player 

8-
player 

2-
player 

8-
player 

 GS increases 
(first time) 

GS decreases 
(first time) 

GS increases 
(second time) 

Effort  0.723 0.646 0.641 0.672  p=0.020  p=0.963  p=0.507  
St.dev. (0.239) (0.248) (0.210) (0.277)     

    
 Period   

 1 2 3 4  Wilcoxon Signed-Rank Test 

B. Session 2 8-
player 

2-
player 

8-
player 

2-
player 

 GS decreases 
(first time) 

GS increases 
(first time) 

GS decreases 
(second time) 

Effort 0.704 0.563 0.537 0.610  p=0.001  p=0.352  p=0.023  
St.dev. (0.225) (0.170) (0.202) (0.212)     

  

 Percentage of subjects that changes effort in accordance with the theory 

C. Session 1+3 GS increases 
(first time) 

GS decreases 
(first time) 

GS increases 
(second time) 

    
 68.75% 56.25% 50% 

D. Session 2 GS decreases 
(first time) 

GS increases 
(first time) 

GS decreases 
(second time) 

    
 20% 68.75% 81.25% 

Notes: Effort intensity is the average number of casts per minute, corrected for the time elapsed between 
fish caught and the moment at which a fisherman restarts fishing. Wilcoxon Signed-Rank Test is for within 
person change of effort, where n = 32 for session 1 + 3 and n = 16 for session 2. 
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Table 6 – OLS estimation results of effort levels in the field 

Variable (i) (ii) (iii) 

Decreasegroupsize 0.043 0.105* 0.121* 
 (0.056) (0.055) (0.066) 

Period 1-2 -0.231***   
 (0.058)   
Period 2-3 -0.08 -0.120**  
 (0.051) (0.056)  
Period 3-4 0.001 -0.014 -0.020 
 (0.048) (0.045) (0.051) 
        

Number of observations 144 96 48 
R-squared 0.169 0.056 0.056 
Notes: Dependent variable is a subject’s percentage change in effort between periods. 
Decreasegroupsize is a dummy variable which has a value of 1 if group size decreases 
from 8 in period t-1 to 2 in period t. Period 1-2 is a dummy variable which has a value of 
1 when a subject moves from period 1 to period 2. The dummy variables Period 2-3 and 
Period 3-4 have similar meanings. Standard errors, robust and clustered at the subject 
level, are reported in parenthesis under the coefficient estimates. ***, **, * Significant at 
the 1%, 5%, and 10% respectively. 
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Appendix I.  Experimental Instructions for D2 Treatment  

 
 Introduction 

 
This is an experiment in decision making.  The instructions are simple; if you 

follow them carefully and make good decisions, you could earn a considerable amount of 
money, which will be paid to you in cash. 

First Part of the Experiment 
As you read these instructions you will be in a room with a number of other 

subjects.  Each subject has been randomly assigned an ID number. 

The first part of the experiment consists of 20 decision rounds.  In each decision 
round you will be grouped with another subject by a random drawing of ID numbers.  
That subject will be called your “group member.”  Your group member will remain the 
same throughout the entire experiment.  The identity of your group member will not be 
revealed to you and your identity will not be revealed to him or her.  

 Experimental Procedure 

In the experiment you will perform a simple task.  Attached to these instructions 
is a sheet called your “Decision Costs Table.”  This sheet shows 101 numbers from 0 to 
100 in the first column.  These are your Decision Numbers.  All subjects have the same 
“Decision Costs Table”. 

Associated with each Decision Number on the Decision Costs Table are Decision 
Costs.  Note that the higher the Decision Number chosen, the greater is the associated 
cost. 

Your computer screen should look like the following: 

PLAYER#: DECISION#: RANDOM#: TOTAL#: EARNINGS 

In each decision round the computer will ask each subject to choose a Decision 
Number.  Therefore, you and your group member will each separately choose one 
Decision Number.  Using the number keys at the top of the keyboard, you will enter your 
selected number and then hit the Return (Enter) key.  To verify your selection, the 
computer will then ask you the following question: 

Is your number ___? [Y/N] 

If you want to select the number shown as your Decision Number, hit the Y key.  
If not, hit the N key and the computer will ask you to select a number again.  You do not 
need to hit the Return key after entering Y or N.  After you have selected and verified the 
Decision Number, this number will be recorded on the screen in Column 2, and its 
associated cost will be recorded in Column 5. 
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After you have selected your Decision Number, the computer will ask you to 
generate a random number.  You do this by hitting the space bar (the long key at the 
bottom of the keyboard).  Hitting the bar causes the computer to select one of the 81 
numbers that fall between -40 and +40 (including 0).  The figure below illustrates the 
random number generator.  The figure reveals that THE HIGHER THE NUMBER, THE 
LOWER THE PROBABILITY THAT THIS NUMBER WILL BE CHOSEN WHEN 
YOU HIT THE SPACE BAR.  For example, the probability that the computer selects, 
say, +40, is smaller than the probability that the computer selects +17.  For another 
example, the probability that the computer selects –10 is smaller than the probability that 
the computer selects –37.  

 

 

 

 

 

 

 

 

   -40   40 

 

 

Each subject faces the same task and random number generator.  Hence, each 
subject will follow the same procedure, so that each subject generates his or her random 
number separately.  After you hit the space bar, the computer will record your random 
number on the screen in Column 3. 

 

 Calculation of Payoffs 

Your payment in each decision round will be computed as follows.  After you 
select a Decision Number and generate a random number, the computer will add these 
two numbers and record the sum on the screen in Column 4.  We will call the number in 
column 4 your “Total Number.”  After computation of the Total Number, the computer 
will compare your Total Number with your group member’s Total Number.  On the basis 
of this comparison, the computer will tell you whether you receive the “Fixed Payment” 
4.5 or the “Fixed Payment” 2.4. 

Recall that there are 2 members in your group.  If your Total Number is higher 
than your group member, then you will receive the Fixed Payment 4.5.  Otherwise, you 
will receive the Fixed Payment 2.4. If both you and your group member have the same 
Total Number, the computer will randomly decide whether you or your group member 
gets the higher Fixed Payment.  Think of this procedure as though the computer is 



 iii 

assigning “heads” to one group member, “tails” to the other, and then flipping a coin.  If 
“heads” turns up, the group member assigned “heads” receives the high Fixed Payment. 

Whether you receive the high Fixed Payment or the low Fixed Payment depends 
only on whether your Total Number is greater than the Total Number of your group 
member.  IT DOES NOT DEPEND ON HOW MUCH GREATER IT IS. 

The computer will record (on screen in Column 6) which Fixed Payment you 
receive.  If you receive the high Fixed Payment (4.5), then “M” will appear on Column 6.  
If you receive the low Fixed Payment (2.4), then “m” will appear. 

After indicating which Fixed Payment you receive, the computer will subtract 
your associated Decision Cost (Column 5) from this Fixed Payment.  This difference 
represents your earnings for the round.  The amount of your earnings will be recorded on 
the screen in Column 6, right next to the letter (“M” or “m”) showing your Fixed 
Payment.  The earning of your group member will be calculated in exactly the same way. 

 Continuing Rounds 

After Round 1 is over, you will perform the same procedures for Round 2, and so 
on for 20 rounds.  In each round you will choose a Decision Number (of course, you may 
choose the same one in different rounds), you will again generate a random number by 
pressing the space bar, your Total Number will be compared to your group member’s 
Total Number, and the computer will calculate your earnings for the round. 

Note that the Decision Cost subtracted in Column 5 is a function only of the 
Decision Number that you selected; i.e., your random number does not affect the amount 
subtracted.  Also, note that your earnings depend on the following: the Decision Number 
you select (both because it contributes to your Total Number and because it determines 
the amount to be subtracted from your Fixed Payment), the Decision Number your group 
member selects, your generated random number, and your group member’s generated 
random number. 

When round 20 is completed, the computer will ask you to press any key on the 
keyboard.  After you do this, the computer will add your earnings from each of the 20 
rounds.  After completion of these 20 rounds we will move to the second part of the 
experiment.  After this second part, we will then pay you the amount you earn from both 
parts of the experiment. 
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Appendix II: Experimental Instructions for Risk Aversion Experiment 

 
 Record your subject number from the previous part on your decision sheet. Your 
decision sheet shows ten decisions listed on the left.  Each decision is a paired choice 
between OPTION A and OPTION B.  You will make ten choices and record these in the 
final column, but only one of them will be used in the end to determine your earnings.  
Before you start making your ten choices, please let me explain how these choices will 
affect your earnings for this part of the experiment. 
 
 We will use part of a deck of cards to determine payoffs; cards 2-10 and the Ace 
will represent “1”.  After you have made all of your choices, we will randomly select a 
card twice, once to select one of the ten decisions to be used, and a second time to 
determine what your payoff is for the option you chose, A or B, for the particular 
decision selected. (After the first card is selected, it will be put back in the pile, the deck 
will be reshuffled, and the second card will be drawn.)  Even though you will make ten 
decisions, only one of these will end up affecting your earnings, but you will not know 
in advance which decision will be used.  Obviously, each decision has an equal chance 
of being used in the end. 
 
 Now, please look at Decision 1 at the top.  OPTION A pays $2.00 if the Ace is 
selected, and it pays $1.60 if the card selected is 2-10.  OPTION B yields $3.85 if the 
Ace is selected, and it pays $0.10 if the card selected is 2-10.  The other decisions are 
similar, except that as you move down the table, the chances of the higher payoff for 
each option increase.  In fact, for Decision 10 in the bottom row, the cards will not be 
needed since each option pays the highest payoff for sure, so your choice here is 
between $2.00 or $3.85. 
 
 To summarize, you will make ten choices: for each decision row you will have 
to choose between OPTION A and OPTION B.  You may choose A for some decision 
rows and B for other rows, and you may change your decisions and make them in any 
order.  When you are finished, we will come to your desk and pick a card to determine 
which of the ten decisions will be used.  Then we will put the card back in the deck, 
shuffle, and select a card again to determine your money earnings for the OPTION you 
chose for that decision.  Earnings for this choice will be added to your previous 
earnings, and you will be paid all earnings in cash when we finish. 
 
 So now please look at the empty boxes on the right side of the record sheet.  You 
will have to write a decision, A or B in each of these boxes, and then the card selection 
will determine which one is going to count.  We will look at the decision that you made 
for the choice that counts, and circle it, before selecting a card again to determine your 
earnings for this part.  Then you will write your earnings in the blank at the bottom of 
the page. 
 
 Are there any questions?  Now you may begin making your choices.  Please do 
not talk with anyone else while we are doing this; raise your hand if you have a 
question. 
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Table A1 – The ten paired lottery-choice decisions with low payoffs  

Option A Option B 
Expected payoff 
difference 

1/10 of $2.00, 9/10 of $1.60 1/10 of $3.85, 9/10 of $0.10 $1.17 
2/10 of $2.00, 8/10 of $1.60 2/10 of $3.85, 8/10 of $0.10  $0.83 
3/10 of $2.00, 7/10 of $1.60 3/10 of $3.85, 7/10 of $0.10  $0.50 
4/10 of $2.00, 6/10 of $1.60 4/10 of $3.85, 6/10 of $0.10  $0.16 
5/10 of $2.00, 5/10 of $1.60 5/10 of $3.85, 5/10 of $0.10  -$0.18 
6/10 of $2.00, 4/10 of $1.60 6/10 of $3.85, 4/10 of $0.10  -$0.51 
7/10 of $2.00, 3/10 of $1.60 7/10 of $3.85, 3/10 of $0.10  -$0.85 
8/10 of $2.00, 2/10 of $1.60 8/10 of $3.85, 2/10 of $0.10  -$1.18 
9/10 of $2.00, 1/10 of $1.60 9/10 of $3.85, 1/10 of $0.10  -$1.52 
10/10 of $2.00, 0/10 of $1.60 10/10 of $3.85, 0/10 of $0.10  -$1.85 

Note: Taken from Holt and Laury (2002). 



 vi 

Appendix III: Experimental Instructions for the Field Experiment (Session 1 + 3) 

 

IIIA: Summary of rules handed out to the participants 

 

Tournament 

• You will participate in four tournaments. You will be assigned into groups which 
change in composition over the day. Therefore, it is likely that you participate in 
tournaments with changing participants. 

• The duration of each tournament is 1 hour. 

•  The winner of a tournament is the one who catches most fish of his/her group. 

• Rainbow trout and salmon trout both count as 1 fish. 

• In case of a draw, the winner is the one who caught his/her first fish first. 

• Whenever you catch a fish, make sure to communicate this to the organizers 
behind the desk. In that way, we can make sure that we do not make mistakes in 
counting the number of fish caught. 

• For each tournament, only the winner receives a price. He/she receives €10. 

• The beginning and end of a tournament is indicated by a blow on a whistle. 

• Each tournament is a separate tournament with each its own winner. It does not 
matter who has the most fish at the end of the day. 

 
Sequence of events 

• Each participant plays 4 tournaments, tournament A through D. 

• At the beginning of a new tournament you will change your fishing spot. Between 
the tournaments will be a break of 5 minutes. 

• In tournament A, you will play in groups of 2. You draw a fishing spot number 
out of a bag. The one who fishes opposite of you is the other participant of the 
tournament. The participants at spot 20 and spot 1 play a tournament, the 
participants at spot 19 and spot 2 play a tournament, and so on. The winner of 
each pair of participants is the one who catches most fish. 

• Tournament B is played in groups of 8. You draw a fishing spot number out of a 
bag. One group consists of the 8 spots on the canal side of the pond (these are 
numbers 1 through 4 and 17 through 20); the second group consists of the 8 spots 
on the meadow side of the pond (these are numbers 7 through 10 and 11 through 
14). The winner of each of the two groups is the one of the 8 participants who 
catches most fish in this tournament. 

• Between tournament B and C is a break of 15 minutes. 

• Tournament C is played in groups of 2 (just like tournament A). You draw a 
fishing spot number out of a bag. The one who fishes opposite of you is the other 
participant of the tournament. The participants at spot 20 and spot 1 play a 
tournament, the participants at spot 19 and spot 2 play a tournament, and so on. 
The winner of each pair of participants is the one who catches most fish. 

• Tournament D is played in groups of 8 (just like tournament B). You draw a 
fishing spot number out of a bag. One group consists of the 8 spots on the canal 
side of the pond (these are numbers 1 through 4 and 17 through 20); the second 
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group consists of the 8 spots on the meadow side of the pond (these are numbers 7 
through 10 and 11 through 14). The winner of each of the two groups is the one of 
the 8 participants who catches most fish in this tournament. 

 
Putting fish into the pond 

• For tournament A (which starts at 9.30 a.m.) we put 3 rainbow trout into the pond 
for each participant; 3 x 16 = 48 rainbow trout in total. In addition, we put in 10 
extra rainbow trout. In total, 58 rainbow trout are put into the pond. 

• For tournaments B, C, and D (which start at approximately 10.35 a.m., 11.50 a.m. 
and 12.55 p.m.) we put a number of rainbow trout into the pond equal to the total 
catch (both rainbow trout and salmon trout) of the previous tournament. This 
means that at the start of each tournament there is an equal number of fish in the 
pond. 

 
Payment 

• Your total earnings consist of your earnings in tournament A, B, C, and D. 

• You are not allowed to keep each fish you catch! The total amount of caught fish 
is divided equally at the end of the day. 

• For your participation you will receive €5. 
 
 

IIIB: Rules read out loud by the researcher 

 
Welcome to this study by Tilburg University. Before we start, we want to point out two 
things. Firstly, this study is independent of the organization 'de Biestse Oevers'. We are 
grateful that we are allowed to conduct this study here, but this organization has nothing 
to do with what we are doing here. All responsibility lies with Tilburg University. 
Secondly, we want to make clear that this study has nothing to do with the well-being of 
animals, environmental causes or the like. As researchers, we accept the rules and habits 
of the sports fishing as it is practiced at 'de Biestse Oevers'. We cannot tell you the exact 
aim of this study. We do want to stress that your privacy is protected; none of the results 
we report can be traced on an individual level. 
 
As you know, you don't have to pay to take part in this study. The fishing fee is paid by 
Tilburg University. Each fish you catch, you are allowed to take home. In addition, you 
can earn money. 
 
We ask you to abide strictly by the rules which we impose. 
 
The study 
In the next four hours, we ask you to fish according to the rules as we will explain them 
now. All rules that normally hold at 'de Biestse Oevers' remain in place. This means that 
it is not permitted to throw fish you have caught back into the pond, you are only allowed 
to fish with one rod, you are only allowed to use a scoop net to set fish ashore, you are 
only allowed to use the usual types of bait, etc. 
 



 viii 

Today you will participate in four tournaments. Each tournament takes 1 hour. The 
winner of a tournament is the one who catches most fish of his/her group. You are 
allowed to catch as much fish as possible. The pond is mainly stocked with rainbow trout, 
but there may also be salmon trout in the pond. Each fish you catch carries equal weight 
in determining who wins a tournament. 
 In case of a draw between two or more participants, the winner is the one who 
caught his/her fish in the least amount of time. In case this also results in a draw, we will 
toss a coin to determine the winner. 
 Whenever you catch a fish, please communicate this to the organizers behind the 
table. Wait for them to answer your call (by means of a thumb raised in the air). In this 
way, we make sure that we do not make mistakes in counting the number of fish caught. 
For each tournament there is only a prize for the winner. He/she receives €10. 
 The beginning and end of each tournament is marked by a whistle; each 
tournament lasts exactly 1 hour. At the moment the second whistle sounds, you have to 
you’re your line and hook out of the water. If at that moment a fish is attached to your 
hook, you can land this fish and count it to your score. 
 The total duration of the study is about 4.5 hours, from 9.30 a.m. until 2.00 p.m. 
Each tournament is separate from the other tournaments. There is no prize for having 
caught the most fish at the end of the day. 
 
You will play four tournaments. Two times you will participate in a tournament with 7 
other participants (in a group of 8), and two times you will participate in a tournament 
with 1 other participant (in a group of 2). During the study, the composition of a group 
changes. The spot at which you fish is determined by means of a lottery. The first 
tournament, tournament A (starting at 9.30 a.m.) is played in groups of 2. You draw a 
fishing spot number out of a bag. The one who fishes opposite of you is the other 
participant of the tournament. The participant at spot 20 and spot 1 play a tournament, the 
participant at spot 19 and spot 2 play a tournament, and so on. The winner of each pair of 
participants is the one who catches most fish. 
 Tournament B (starting at 10.35 a.m.) is played in groups of 8 participants. You 
draw a fishing spot number out of a bag. One group consists of the 8 spots on the canal 
side of the pond (these are numbers 1 through 4 and 17 through 20); the second group 
consists of the 8 spots on the meadow side of the pond (these are numbers 7 through 10 
and 11 through 14). The winner of each of the two groups is the one of the 8 participants 
who catches most fish in this tournament. 

Between tournament B and C there is a break of 15 minutes.  
Tournament C (starting at 11.50 a.m.) is again played in groups of 2 (just like 

tournament A). You draw a fishing spot number out of a bag. The one who fishes 
opposite of you is the other participant of the tournament. The participant at spot 20 and 
spot 1 play a tournament, the participant at spot 19 and spot 2 play a tournament, and so 
on. The winner of each pair of participants is the one who catches most fish. 

Tournament D is played in groups of 8 (just like tournament B). You draw a fishing 
spot number out of a bag. One group consists of the 8 spots on the canal side of the pond 
(these are numbers 1 through 4 and 17 through 20); the second group consists of the 8 
spots on the meadow side of the pond (these are numbers 7 through 10 and 11 through 
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14). The winner of each of the two groups is the one of the 8 participants who catches 
most fish in this tournament. 
 
Stocking fish 
For the first tournament, tournament A (which starts at 9.30 a.m.) we put 3 rainbow trout 
into the pond for each participant; 3 x 16 = 48 rainbow trout in total. In addition, we put 
in 10 extra rainbow trout. In total, 58 rainbow trout are put into the pond. 

For tournaments B, C, and D (which start at approximately 10.35 a.m., 11.50 a.m. 
and 12.55 p.m.) we put a number of rainbow trout into the pond equal to the total catch 
(both rainbow trout and salmon trout) of the previous tournament. This means that at the 
start of each tournament there is an equal number of fish in the pond. 
 
Payment 
You will receive 5 euro for your participation. In addition, you will receive 10 euro for 
each tournament which you have won. 

You are not allowed to keep all fish that you have caught. All fish caught will be 
divided equally among all participants at the end of a tournament. 
 
Questions 

If you have any questions regarding the rules of this study, you can ask them now, but 
also during the study. We do not answer questions regarding how best to fish. We also do 
not answer questions regarding the nature of this study. 
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Appendix IV: Alternative Model to Explore the Effect of Effort on Catch 

 
A second approach to measuring the effect of effort on catch is to utilize the fact 

that our dependent variable is a count measure of the number of fish caught.  Such a 
regressand is typically analyzed using a Poisson regression model, or in the case of 
overdispersion a negative binomial model.  The Poisson model assumes that the number 
of fish caught for individual i at time t is drawn from a Poisson distribution with 

parameter λit.  Consequently, the probability of observing a given number of fish caught 
is given by: 
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where ln(λit) = xitβ, with variables defined in the text, and δ is a single, unknown 
parameter. 
 Although estimation of equation (IV.1) is straightforward via maximum 
likelihood, it might be the case that the variance of Caught is greater than the mean of 
caught.  In such cases, a negative binomial model is an appropriate approach.  We tested 
for over dispersion, and rejected the null of no over dispersion.  We therefore present the 
results using the negative binomial approach. 
 
 

Table A4 – Negative binomial estimation results for catch of fish in the field 

Variable (i) (ii) 

Effort intensity 1.642*** 
(0.701) 

3.674** 
(0.278) 

Quadrant fixed effects Yes Yes 
Subject fixed effects No Yes 

   
N 192 192 
Log PseudoLikelihood -371.03 -321.97 
Notes:  Dependent variable is subject’s catch of fish in a period. Effort 
intensity is marginal effect of the number of casts per minute, corrected for 
the time elapsed between fish caught and the moment at which a fisherman 
restarts fishing. Standard errors are reported in parenthesis below the 
coefficient estimates. In column (i), the standard errors are clustered at the 
subject level. Column (ii) has subject fixed effects, while the standard 
errors are clustered at the session level. ***, **, Significant at the 1%, and 
5% respectively. 

 


