
Likelihood inference for a fractionally cointegrated
vector autoregressive model� (revision v9)

Søren Johanseny

University of Copenhagen
and CREATES

Morten Ørregaard Nielsenz

Queen�s University
and CREATES

February 22, 2011

Abstract
We consider model based inference in a fractionally cointegrated (or cofractional)

vector autoregressive model with a restricted constant term, based on the conditional
Gaussian likelihood. The model equations generate a process Xt which, under suitable
conditions on the parameters, is fractional of order d and cofractional of order d � b;
that is, there exist vectors � for which �0Xt is fractional of order d � b; and no other
fractionality order is possible. We consider the model de�ned by 0 < b � d; and
some submodels de�ned by the restrictions d = b, d = d0 for some prespeci�ed d0; or
� = 0. Our main technical contribution is the proof of consistency of the maximum
likelihood estimators on a compact subset of 0 < b � d. To this end, we consider the
probability measure generated by the true values d0 � b0 < 1=2 for which �00Xt + �

0
0 is

stationary with mean zero and where � can be estimated consistently. We consider the
conditional likelihood as a continuous stochastic process in the parameters, and prove
that it converges in distribution when errors are i.i.d. with suitable moment conditions
and initial values are bounded. If the true value b0 > 1=2 we prove that the estimator
of � is asymptotically mixed Gaussian and estimators of the remaining parameters are
asymptotically Gaussian. We also �nd the asymptotic distribution of the likelihood
ratio test for cointegration rank, which is a functional of fractional Brownian motion
of type II extended by u�(d0�b0). If b0 < 1=2 all the estimators are asymptotically
Gaussian and the rank test is asymptotically chi-squared distributed.
Keywords: Cofractional processes, cointegration rank, fractional cointegration, likeli-
hood inference, vector autoregressive model.
JEL Classi�cation: C32.
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1 Introduction and motivation
The model equations and the models and submodels1

We consider the p�dimensional time seriesXt; t = : : : ;�1; 0; 1; : : : ; T; and modelX1; : : : ; XT

conditional on the (in�nitely many) initial values X�n; n = 0; 1; : : : ; by the fractional vector
autoregressive model, VARd;b(k),

Hr : �
dXt = �

d�bLb�(�
0Xt + �0) +

kX
i=1

�i�
dLibXt + "t; t = 1; : : : ; T; (1)

where "t are i.i.d.(0;
), 
 is positive de�nite, 0 < b � d, and � and � are p� r; 0 � r � p.
The fractional di¤erence operator is �b and Lb = 1��b = 1� (1� bL+ : : : ) = bL+ : : : the
fractional lag operator. The parameter space of Hr is given by the otherwise unrestricted
parameters (d; b; �; �; �;�1; : : : ;�k;
): In the special case r = p; the matrix � = ��0 is an
unrestricted p� p matrix, and if r = 0 we have � = � = 0:
This model was suggested by Johansen (2008) as a multivariate model for fractional

processes as a generalization of the cointegrated vector autoregression (CVAR) model. It
has the attractive features of a straightforward interpretation of � as the cointegrating pa-
rameters in the long-run stable relations, and of � as the parameters describing adjustment
towards the long-run equilibria and (through the orthogonal complement) the common sto-
chastic trends. If d� b < 1=2; �0Xt + �0 is asymptotically stationary with mean zero.
The model allows for a simple criteria for fractionality and cofractionality of Xt (or

fractional cointegration; henceforth we use these terms synonymously), and at the same
time the model is relatively easy to estimate, because for �xed (d; b) the model is estimated
by reduced rank regression which reduces the numerical problem to an optimization of a
function of just two variables.
The purpose of this paper is to conduct (quasi) Gaussian maximum likelihood inference

in model (1) and show that the maximum likelihood estimator exists uniquely with large
probability and is consistent, and to �nd the asymptotic distribution of maximum likelihood
estimators and some likelihood ratio test statistics.
We are interested in testing the rank of the coe¢ cient to �d�bLbXt and in conducting

inference on the parameters of model (1). We analyze the conditional likelihood function
for (X1; : : : ; XT ) given initial values X�n; n = 0; 1; : : : ; under the assumption that "t is
i.i.d.Np(0;
): For the asymptotic analysis we assume only that "t is i.i.d.(0;
) with suitable
moment conditions and that X�n is bounded.
Submodels
We also consider the model Hr(d = b) given by the parameter restriction d = b. Finally,

we consider the model without deterministic terms, i.e. with � = 0. The univariate version
of the resulting model (1) was analyzed by Johansen and Nielsen (2010), henceforth JN
(2010), and we refer to that paper for some technical results.
Granger historie
The inspiration for model (1) comes from Granger (1986), who noted the special role of

1SJ: Denne sub sub section inddeling skal fjernes, men tjener lige nu til at se hvad strukturen i indledningen
er
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the fractional lag operator Lb = 1��b and suggested the model

A�(L)�dXt = �
d�bLb��

0Xt�1 + d(L)"t; (2)

see also Davidson (2002). A simple way of deriving the main term of this model is to assume
that we have linear combinations�d
0Xt and�d�b�0Xt which are I(0): Simple algebra shows
that �dXt = �

d�bLb��
0Xt + ut; (� = 
?) where ut is I(0); see Johansen (2008 p. 652) for

details. The added lag structure using the usual lag operator in (2) is di¢ cult to analyze,
due to the characteristic function being a transcendental function and no condition has been
given for the solution to be fractional of order d. Model Hr; however, can be expressed as
�(L)Xt = 	(Lb)�

d�bXt = �
d�bLb��

0 + "t; where the polynomial 	(y) is given by

	(y) = (1� y)Ip � ��0y �
kX
i=1

�i(1� y)yi = ���0 + (1� y)

kX
i=0

	i(1� y)i (3)

and the coe¢ cients satisfy
Pk

i=0	i = Ip+��
0 and 	k = (�1)k+1�k: That is, �d�bXt satis�es

a VAR in the lag operator Lb rather than the standard lag operator L = L1.
This structure means that the solution of (1) and the criteria for fractionality of order d

and cofractionality d � b can be found by analysing the polynomial 	; just as for a CVAR
model:
Contribution
The main technical contribution in this paper is the proof of existence and consistency of

the MLE, which allows standard likelihood theory to be applied. This involves an analysis
of the in�uence of initial values as well as proving tightness and uniform convergence (on
compact subsets) of product moments of processes that can be close to critical processes of
the form ��1=2"t.
In our asymptotic distribution results we distinguish between �weak cointegration�(when

the true value b0 < 1=2) and �strong cointegration� (b0 > 1=2), using the terminology of
Hualde and Robinson (2010a). Speci�cally, we prove that for i.i.d. errors with su¢ cient mo-
ments �nite, the estimated cointegrating vectors are asymptotically mixed Gaussian (LAMN)
when b0 > 1=2 and asymptotically Gaussian when b0 < 1=2, so that in either case standard
(chi-squared) asymptotic inference can be conducted on the cointegrating relations. Thus, for
Gaussian errors we get asymptotically optimal inference, but the results hold more generally.
History and relation to other work
Although such results are well known from the standard (non-fractional) cointegration

model, e.g. Johansen (1988, 1991), Phillips and Hansen (1990), Phillips (1991), and Saikko-
nen (1991) among others, they are novel for fractional models. Only recently, asymptotically
optimal inference procedures have been developed for fractional processes, e.g. Jeganathan
(1999), Robinson and Hualde (2003), Lasak (2008, 2010), Avarucci and Velasco (2009), and
Hualde and Robinson (2010a). Speci�cally, in a vector autoregressive context, but in a
model with d = 1 and a di¤erent lag structure from ours, Lasak (20010) analyzes a test
for no cointegration and in Lasak (2008) she analyzes maximum likelihood estimation and
inference; in both cases assuming �strong cointegration�. In the same model as Lasak, but
assuming �weak cointegration�, Avarucci and Velasco (2009) extend the univariate test of
Lobato and Velasco (2007) to analyze a Wald test for cointegration rank, see also Marmol
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and Velasco (2004). However, the present paper seems to be the �rst to develop LAMN re-
sults for the MLE in a fractional cointegration model in a vector error correction framework
and with two fractional parameter (d and b).
DF tests
The analysis of the fractionally cointegrated VAR model (1) generalizes the unit root test

and related inference on fractional orders in the univariate fractional autoregressive model in
the same way that the cointegrated VAR in Johansen (1988, 1991) generalizes the standard
Dickey-Fuller test to the multivariate case. Hence, this paper at the same time generalizes
the fractional unit root or fractional Dickey-Fuller tests and in particular that of JN (2010)
to the multivariate case, and it generalizes the cointegrated VAR to models for fractional
time series. This has far reaching implications for empirical research, where the cointegrated
VAR is probably the most widely applied model for estimating and analyzing cointegrated
time series.
Structure of paper
The remainder of the paper is laid out as follows. In the next section we describe the

solution of the cofractional vector autoregressive model and its properties. In Section 3 we
derive the likelihood function and estimators and discuss asymptotic properties of both, and
in Section 5 we �nd the asymptotic properties of the likelihood ratio test for cointegration
rank. Section 6 concludes and technical material is presented in appendices.
A word on notation. For a symmetric matrix A we write A > 0 to mean that it is positive

de�nite. The Euclidean norm of a matrix, vector, or scalar A is denoted jAj = (trfA0Ag)1=2
and the determinant of a square matrix is denoted det(A). Throughout, c denotes a generic
positive constant which may take di¤erent values in di¤erent places.

2 Solution of the cofractional vector autoregressive model
We discuss the fractional di¤erence operators �d and �d

+ and calculation of �
dXt. We

show how equation (1) can be solved for Xt as a function of initial values, parameters, and
errors "i; i = 1; : : : ; t; and give properties of the solution in Theorems 2 and 3. We then give
assumptions for the asymptotic analysis and discuss brie�y initial values and identi�cation
of parameters.

2.1 The fractional di¤erence operator

The fractional coe¢ cients, �n(a); are de�ned by the expansion

(1� z)�a =
1X
n=0

�n(a)z
n =

1X
n=0

(�1)n
�
�a
n

�
zn =

1X
n=0

a(a+ 1) � � � (a+ n� 1)
n!

zn

and satisfy the evaluation j�n(a)j � cna�1; n � 1, see Lemma A.4. The fractional di¤erence
operator applied to a process Zt; t = : : : ;�1; 0; 1; : : : ; T; is de�ned by

��aZt =
1X
n=0

�n(a)Zt�n;

provided the right hand side exists. Note that ��a1��a2 = ��a1�a2 and the useful relation
��a1�t(a2) = �t(a1+a2):We collect a few simple results in a lemma, where Dm�aZt denotes
the m�th derivative with respect to a.
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Lemma 1 Let Zt =
P1

n=0 �n"t�n; where �n is m � p and "t are p�dimensional i.i.d.(0;
)
and

P1
n=0 j�nj <1:

(i) If the initial values Z�n, n � 0 are bounded, then Dm�aZt exists for a � 0 and is
continuous in a for a > 0:

We next consider fractional di¤erences of Zt without �xing initial values.

(ii) If a � 0 then Dm�aZt is a stationary process with absolutely summable coe¢ cients
which is almost surely continuous in a � � > 0.

(iii) If a > �1=2; then Dm�aZt is a stationary process with square summable coe¢ cients.

Proof. The existence is a simple consequence of the evaluation jDm�n(�a)j � c(1 +
log n)mn�a�1 for n � 1, see Lemma A.4, which implies that Dm�n(�a) is absolutely sum-
mable and continuous in a for a > 0 and square summable for a > �1=2. For case (ii) the
continuity follows because jDm�aZt � Dm�~aZtj � cja � ~aj

P1
n=0(1 + log n)

m+1n��1�1jZt�nj
for min(a; ~a) � �1 > 0. This random variable has a �nite mean and is hence �nite except on
a null set which depends on �1 but not a and ~a: It follows that jDm�aZt � Dm�~aZtj

a:s! 0;
for a! ~a:
For a < 1=2; an example of these results is the stationary linear process

��a"t = (1� L)�a"t =
1X
n=0

�n(a)"t�n:

For a � 1=2 the in�nite sum does not exist, but we can de�ne a nonstationary process by
the operator ��a

+ ; de�ned on doubly in�nite sequences, as

��a
+ "t =

t�1X
n=0

�n(a)"t�n; t = 1; : : : ; T:

Thus, for a � 1=2 we do not use ��a directly but apply instead ��a
+ which is de�ned for all

processes, see for instance Marinucci and Robinson (2000), who use the notation ��a"t1ft�1g
and call this a �type II�process.
The main result in Theorem 2 is the representation of the solution of the equations (1)

in terms of a stationary process, and we introduce these processes in

De�nition 1 We de�ne the class Z as the set of multivariate stochastic processes Zt for
which

Zt = �"t +�
b0

1X
n=0

��n"t�n;

where "t is i.i.d.(0;
) and the coe¢ cient matrices satisfy
P1

n=0 j�
�
nj <1:

This is a fractional version of the usual Beveridge-Nelson decomposition, where
P1

n=0 �n"t�n =
(
P1

n=0 �n)"t +�
P1

n=0 �
�
n"t�n:

For the asymptotic analysis we apply the result, that when a > 1=2 and Ej"tjq <1 for
some q > 1=(a� 1=2), then for Zt 2 Z we have

T�a+1=2��a
+ Z+[Tu] =) �Wa�1(u) = ��(a)�1

Z u

0

(u� s)a�1dW (s) on Dp[0; 1]; a > 1=2 (4)
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where �(a) is the gamma function and W denotes p�dimensional Brownian motion (BM)
generated by "t. For Zt = "t; see e.g. Taqqu (1975), and for Zt 2 Z the proof is given in
JN(2010, Lemma D.2). The process Wa�1 is the corresponding fractional Brownian motion
(fBM) of type II, and =) is used for convergence in distribution as a process on Dp[0; 1] or
Cp[0; 1], see Billingsley (1968) or Kallenberg (2001).
We also have under the same conditions on "t; see Jakubowski, Mémin, and Pages (1989)

for the case Zt = "t,

T�a
TX
t=1

��a
+ LaZ

+
t "

0
t
d! �

Z 1

0

Wa�1dW
0; a > 1=2 (5)

where d! denotes convergence in distribution on Rp�p: This result is proved in JN (2010, p.
65) for the univariate model and the same proof can be applied.

2.2 Solution of fractional autoregressive equations

We consider equation (1) written as �(L)Xt = �
d�bLb��

0�t(1)+ "t, where we have replaced
the constant one, 1ft�1g; by �t(1) = 1ft�0g; but note that �d�bLb�t(1)jd=b=0 = 1ft�1g.
If d < 1=2 we show in Theorem 2 that the solution of the equation is stationary around

its mean, but for d � 1=2 the solution is nonstationary and we need a solution that takes into
account initial values X�n; n = 0; 1; : : : ; and random shocks "1; : : : ; "t. A general solution
can be found using the two operators, see Johansen (2008),

�+(L)Xt = 1ft�1g

t�1X
i=0

�iXt�i and ��(L)Xt =
1X
i=t

�iXt�i:

Here the operator �+(L) is de�ned for any sequence because it is a �nite sum. Because
�(0) = Ip; �+(L) is invertible on sequences that are zero for t � 0; and the coe¢ cients of
the inverse are found by expanding �(z)�1 around zero. The expression ��(L)Xt is de�ned
if we assume initial values of Xt �xed and bounded. We then �nd

"t = �(L)Xt +�
d�bLb��

0�t(1) = �+(L)Xt +��(L)Xt +�
d�bLb��

0�t(1);

we �nd by applying �+(L)�1 on both sides that for t = 1; 2; : : : :

Xt = �+(L)
�1"t��+(L)�1��(L)Xt+�+(L)

�1�d�bLb��
0�t(1) = �+(L)

�1"t+�t+ �t; (6)

The �rst term is the stochastic component generated by "1; : : : ; "t; the second a deterministic
component generated by initial values, and the last comes from the deterministic term in
the equation. An example of this is the well known result that Xt = vXt�1 + � + "t has
the solution Xt =

Pt�1
i=0 v

i"t�i + vtX0 +
Pt�1

i=0 v
i� for any v; whereas for jvj < 1 we have a

stationary solution Xt =
P1

i=0 v
i"t�i:

The idea of conditioning on initial values is needed in the analysis of autoregressive
models for nonstationary processes, and we modify the de�nition of a fractional process to
take account of these.
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De�nition 2 Let "t be i.i.d.(0;
) in p dimensions and consider m�p matrices �n for whichP1
n=0 j�nj2 <1; and de�ne C(z) =

P1
n=0 �nz

n; jzj < 1. If
P1

n=0 j�nj <1 2then the process
Zt = C(L)"t =

P1
n=0 �n"t�n is fractional of order 0 if C(1) 6= 0: A process Zt is fractional

of order d > 0 (denoted Zt 2 F(d)) if �dZt is fractional of order zero, and cofractional with
cofractionality vector � if �0Zt is fractional of order d� b � 0 for some b > 0.
The same de�nitions hold for the process Z+t de�ned by

Z+t = C+(L)"t + �t = 1ft�1g

t�1X
n=0

�n"t�n + �t; (7)

where �t is a deterministic term.

2.3 Properties of the solution of fractional autoregressive equations

The solution (6) of equation (1) is valid without any assumptions on the parameters. We
next give results which guarantee that the process is fractional of order d and cofractional
from d to d � b: These are given in terms of an explicit condition on the roots of the
polynomial det(	(y)) and the set Cb; which is the image of the unit disk under the mapping
y = 1� (1� z)b:
The following result is Granger�s Representation Theorem for the cofractional VARmodel

(1), see Johansen (2008, Theorem 8 and 2009, Theorem 3). It is related to previous represen-
tation theorems of Engle and Granger (1987) and Johansen (1988, 1991) for the cointegrated
VAR. Below we use the notation �? for a p� (p� r) matrix of full rank for which �0�? = 0;
and note the orthogonal decomposition

Ip = �0(�
0
0�0)

�1�00 + �0?(�
0
0?�0?)

�1�00? = �0��
0
0 + �0?��

0
0?: (8)

Theorem 2 Let �(z) = (1�z)d�b	(1�(1�z)b) be given by (3) for any 0 < b � d. Assume
that det(	(y)) = 0 implies that either y = 1 or y =2 Cb and that � and � have rank r < p:
Then

(1� z)d�(z)�1 = C + (1� z)bH(1� (1� z)b); (9)

where H(y) is regular in a neighborhood of Cb if and only if det(�0?��?) 6= 0 where � =
Ip �

Pk
i=1 �i: In this case C1 = H(1) 6= 0 because �0H(1)� = �Ir; and

C = �?(�
0
?��?)

�1�0?. (10)

We de�ne F (z) = H(1� (1� z)b) =
P1

n=0 �nz
n; jzj < 1; with

P1
n=0 �

2
n <1.

For d � 1=2 we represent the solution of (1) as

Xt = C��d
+ "t +�

�(d�b)
+ Y +

t + �t + �t; t = 1; : : : ; T; (11)

where �t = ��+(L)�1��(L)Xt; �t = �+(L)
�1��0�d�bLb�t(1); and Yt =

P1
n=0 �n"t�n and

Y +
t =

Pt�1
n=0 �n"t�n are fractional of order zero.

For d < 1=2 we represent the solution of (1) as

Xt = C��d"t +�
�(d�b)Yt + �t; t = 1; : : : ; T: (12)

In both cases there is no 
 for which 
0Xt 2 F(c) for c < d� b:

2SJ: Jeg har erstattet "C(z) can be extended to a continuous function on the boundary jzj = 1 " medP1
n=0 j�nj <1 som mange nok vil �nde lidt mindre mystisk
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Proof. The proof is given in Johansen (2008, Theorem 8 and 2009, Theorem 3). The
condition (10) is necessary and su¢ cient for the representation (9) because if det(�0?��?) = 0
then we get terms of the form (1�z)�(d�ib); i � 2, corresponding to models for I(i) variables;
i � 2 in the CVAR context, see Johansen (2008, Theorem 9).
Thus, for 0 < r < p; Xt is fractional of order d, and because �

0C = 0, Xt is cofractional
since �0Xt = �

�(d�b)
+ �0Y +

t + �0�t + �0�t (d � 1=2) is fractional of order d� b; and no linear
combination gives other orders of fractionality, whereas for d < 1=2; �0Xt = �

�(d�b)�0Yt+�
0�t

is fractional of order d� b and in fact stationary if d� b < 1=2.
If r = 0, we have � = � = 0; �? = �? = Ip, and C = ��1 is assumed to have full rank,

and thus Xt is fractional of order d and not cofractional.
Finally, if r = p then ��0 has full rank and C = 0 so that Xt = �

�(d�b)
+ Y +

t + �t + �t is
fractional of order d� b.
The stochastic properties of Xt are given in Theorem 2 in terms of the process Ut =

C0"t +�
b0Yt 2 Z, see (1) it is seen from Theorem 3 that also Yt 2 Z:

Theorem 3 Under the assumptions of Theorem 2 and assuming that the roots of det	(y) =
0 are either y = 1 or jyj > 1; and hence outside Cb_1; we have

Yt =
1X
n=0

�n"t�n = C1"t +�
b

1X
n=0

� �n"t�n; (13)

1X
n=0

j�nj < 1;
1X
n=0

j� �nj <1; and
1X

h=�1

jE(YtY 0
t�h)j <1:

Note that for ��t = �
b[
P1

n=0 �
�
n��

0Lb�t�n(1)� C1��
0�t(1)] = O(t�b) we have

�t = C1��
0�t(1) + ��t and �

0�t = ��0�t(1) +O(t�b): (14)

Proof. Proof of (13): The extra assumption, y 62 Cb_1; implies that for any b > 0; H(y) =P1
k=0 hky

k is regular for jyj < 1 + � for some � > 0; so that hk decrease exponentially andP1
k=0 jhkj < 1: From the expansion 1 � (1 � z)b =

P1
n=1 bnz

n we �nd that if 0 < b � 1;
then bn � 0 and

P1
n=1 bn = 1. Therefore

H(1� (1� z)b) =
1X
k=0

hk(

1X
n=1

bnz
n)k =

1X
n=0

�nz
n;

satis�es
P1

n=0 j�nj =
P1

k=0 jhkj(
P1

n=0 bn)
k =

P1
k=0 jhkj <1:

For b > 1 we need another argument. Because H(y) =
P1

n=0 �ny
n is regular in a

neighborhood of Cb and
P1

n=0 �
2
n <1 we can de�ne the transfer function

�(ei�) = H(1� (1� ei�)b):

We then apply the proof in JN (2010, Lemma 1), which shows that because j@�(ei�)=@�j is
square integrable when b > 1=2; we have

P1
n=0(�nn)

2 < 1 and hence
P1

n=0 j�nj < 1. It
follows that

P1
h=�1 jE(YtY 0

t�h)j <1:
Finally we have H(y) = H(1) + (1 � y)H�(y); where H�(y) =

P1
n=0 �

�
ny

n is regular in
a neighborhood of Cb_1; which shows (13), and we can repeat the above arguments which
show that

P1
n=0 j� �nj <1.
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Proof of (14): The expression for �t is, noting that Lb�t�n(1) = 0; n � t;

�t =

t�1X
n=0

�n��Lb�t�n(1) =

1X
n=0

�n��Lb�t�n(1)

which by (13) is

�t = (C��d +��d+b
1X
n=0

�nLn)��
0�d�bLb�t(1) =

1X
n=0

�n��
0Lb�t�n(1)

= C1��
0Lb�t(1) + �

b

1X
n=0

� �n��Lb�t�n(1);

so that �0C1� = �Ir implies that �0�t = �0�t(1) +O(t�b):
Note that Xt has deterministic term generated from � which converges to the constant

C1��
0 so that �0Xt + �0 has asymptotically mean zero when d� b < 1=2.

2.4 Assumptions for asymptotic analysis

We next formulate some assumptions needed for the asymptotic analysis of estimators and
the likelihood function for model Hr with 0 < b � d and the two submodels Hr(d = b). We
de�ne the parameter set

N = fd; b : 0 < b � d � d1g (15)

for some d1 > 0, which can be arbitrarily large.

Assumption 1 The process Xt; t = 1; : : : ; T , is generated by model Hr in (1) for some
k � 1 and r � 0, or model Hr for k = 0 and r > 0, or model Hr(d = b) with k � 0; r � 0.

Assumption 2 The errors "t are i.i.d.(0;
0) with 
0 > 0 and Ej"tj8 <1.

Assumption 3 The initial values X�n; n � 0; are bounded.

Assumption 4 The true parameter values �0 = (�0; �0; �0; d0; b0;�01; : : : ;�0k;
0) satisfy
(d0; b0) 2 N ; d0�b0 < 1=2; �0k 6= 0; �0 and �0 are p�r of rank r; and that det(�00?�0�0?) 6=
0: Thus, if r < p; det(	(y)) = 0 has p� r unit roots, and the remaining roots of det(	(y))
are outside Cb0_1. If k = r = 0 only d0 > 0 is assumed.

Importantly, in Assumption 2, the errors are not assumed Gaussian for the asymptotic
analysis, but are only assumed to be i.i.d. with su¢ cient moments to apply a functional
central limit theorem and our tightness arguments below. Assumption 3 about initial values
is needed so that �dXt is de�ned for any d � 0, see Lemma 1. In Assumption 4 about the
true values we include the condition that d0 � b0 < 1=2; which appears to be perhaps the
most empirically relevant range of values for d0�b0, see e.g. Henry and Za¤aroni (2003) and
the references in the introduction, because in this case �00Xt is (asymptotically) stationary
so that E(�00Xt+�0) = 0. Assumption 4 also includes the condition for cofractionality when
r > 0, which ensures that Xt is fractional of order d0 and �

0
0Xt is fractional of order d0� b0.

The condition �0k 6= 0 guarantees that the lag length is well de�ned, that the parameters
are identi�ed for a given lag length, and that the asymptotic distribution of the maximum
likelihood estimator is nonsingular, see Lemma 7.
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2.5 Initial values

From (11) in Theorem 2 we �nd that for a � 0 that �aXt = �a
+Xt + �

a
�Xt has the

representation

�aXt =

�
�a�d0
+ (C0"t +�

b0
+Y

+
t ) + �

a
+�t +�

a
+�t +�

a
�Xt;

�a�d0(C0"t +�
b0Yt) + �

aC1�t(1) + �
a��t ;

d0 � 1=2
d0 < 1=2

(16)

for t = 1; : : : ; T; where �t, �t and �
�
t are given in Theorem 2 and 3.

The theory in this paper will be developed for observations X1; : : : ; XT generated by
(1) assuming that, for d0 � 1=2; all initial values are observed, that is, conditional on
X�n; n = 0; 1; : : :, and under the assumption that they are bounded, which seems a rea-
sonable condition in practice. Thus, we follow the standard approach in the literature on
inference for nonstationary autoregressive processes, where the initial values are observed
but not modeled and inference is conditional on them. However, we do not set initial values
equal to zero as is often done in the literature on fractional processes, but instead assume
only that they are observed unmodelled bounded constants, which represents a signi�cant
generalization and makes the results more applicable.
Alternatively, we could think of most phenomena described by fractional processes in

economics as having a starting point in the past, say �N0, before which the phenomenon
was not de�ned. That is, we can reasonably set X�n = 0; n > N0. The initial values are
then X�n; n = 0; : : : ; N0, which are observed unmodelled bounded constants. In any case,
in practice one would have to truncate the calculation of �dXt by setting X�n = 0; n > N0.
We prove that, under either of these assumptions, initial values do not in�uence the limits

of product moments and hence the asymptotic analysis of the likelihood function.
For d0 < 1=2 we use the representation (16) of Xt and �aXt as stationary processes

around their mean.

2.6 Identi�cation of parameters

Identi�cation was discussed in JN (2010, Section 2.3). Let � = (d; b; ��0; �;�1; : : : ;�k;
)
denote all the parameters and let the corresponding probability measure be P� and the
corresponding characteristic function be ��, see (3). the parameter � is identi�ed if P� = P��
implies that � = ��; or equivalently if ��(z) = ���(z) for all z. It was shown in JN (2010) that
the parameters are identi�ed if k = �k; �k 6= 0; and ��k 6= 0. See Lemma 7 for a proof that
this also implies that the asymptotic variance is positive. JN (2010, Section 2.3) has a fuller
discussion in the univariate case and an example of the indeterminacy between d; b; and k.
Note that if k = r = 0 the only parameters are d and 
 which are identi�ed.

3 Likelihood function and maximum likelihood estimators
In this section we �rst present the likelihood and pro�le likelihood functions and the maxi-
mum likelihood estimator (MLE). We give the limit of the pro�le likelihood and the result
on consistency of the MLE.

3.1 Calculation of MLE, pro�le likelihood function and its limit

In (3) we eliminate 	k = Ip + ��0 �
Pk�1

i=0 	i and de�ne the regressors

Xit = (�
d+ib ��d+kb)Xt; i = �1; : : : ; k � 1; Xkt = �

d+kbXt; (17)
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and

"t(�) = Xkt � ��0X�1t � ��0�d�bLb�t(1) +
k�1X
i=0

	iXit: (18)

The Gaussian likelihood function conditional on initial values X�n; n � 0; is

�2T�1 logLT (�) = log det(
) + trf
�1T�1
TX
t=1

"t(�)"t(�)
0g; (19)

where � = (d; b; �; �; �;	�;
) (	� = (	0; : : : ;	k�1)) are freely varying parameters.
For given values of  = (d; b) we calculate the processes Xkt; fXitgk�1i=�1; and �

d�bLb�t(1)
for d > b > 0; when initial values are bounded, see Lemma 1. We calculate the MLEs
(�̂( ); �̂( ); �̂( ); 	̂�( ); 
̂( )) for given  = (d; b); and the partially maximized likelihood
or likelihood pro�le,

`T;r( ) = �2T�1 logLT ( ; �̂( ); �̂( ); �̂( ); 	̂�( ); 
̂( )); (20)

as continuous functions of  by reduced rank regression of Xkt on (X 0
�1t;�

d�bLb�t(1))
0

corrected for fXitgk�1i=0 ; see Anderson (1951) and Johansen (1996). Finally the MLE and
maximized likelihood can be calculated by optimizing `T;r( ) as a function of  = (d; b) by
a numerical procedure.
Note that for r = p the likelihood pro�le `T;p( ) is found by regression ofXkt on fXitgk�1i=�1

and �d�bLb�t(1); i.e.

`T;p( ) = log det(SSRT ( )) = log det(T
�1

TX
t=1

RtR
0
t); (21)

where Rt = (XktjfXitgk�1i=�1;�
d�bLb�t(1)) denotes the regression residual.

We next want to de�ne the probability limit, `p( ); of the pro�le likelihood function,
`T;p( ). We note that Theorem 2 gives the properties of Xt at the true parameter point in
terms of the stationary process Ut = C0 +�

b0Yt: Corresponding to Xit we de�ne

�00Ujt = (�d+jb ��d+kb)��d0+b0�00Yt; j = �1; : : : ; k � 1 (22)

�00?Uit = (�d+ib ��d+kb)��d0�00?Ut; for i so that d+ ib� d0 > �1=2
�00Ukt = �d+kb��d0+b0�00Yt; and �

0
0?Ukt = �

d+kb��d0�00?Ut;

It is seen that the stochastic behavior of �00Xit is determined by �
0
0Uit; which is stationary

because d+ jb�d0+ b0 � �d0+ b0 > �1=2; whereas �00?Uit is only stationary if d+ ib�d0 >
�1=2. For a given  = (d; b); we therefore de�ne the class of stationary processes

F( ) = f�00Ujt; �00?Uit : i; j < k; and d+ ib� d0 > �1=2g:

The limit of log det(SSRT ( )) is in�nite if Xkt is nonstationary and �nite if Xkt is (asymp-
totically) stationary; and we therefore de�ne the subsets of N ,

Ndiv(�) = N\fd; b : d+ kb� d0 � �1=2 + �g; � � 0;
Nconv(�) = N\fd; b : d+ kb� d0 � �1=2 + �g; � > 0;
Nconv(0) = N\fd; b : d+ kb� d0 > �1=2 + �g;
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and note that Ndiv(�) is a family of sets decreasing (as �! 0) to the set Ndiv(0); where Xkt

is nonstationary and log det(SSRT ( )) diverges, and Nconv(�) increase to the set Nconv(0)
where Xkt is stationary and log det(SSRT ( )) converges. We therefore de�ne the limit like-
lihood function, `p( ); as

`p( ) =

�
1
log det(V ar(UktjFstat( )))

if  2 Ndiv(0);
if  2 Nconv(0):

(23)

where we use the notation for any random vectors W and V with �nite variance

V ar(W jV ) = V ar(W )� Cov(W;V )V ar(V )�1Cov(V;W ):

The above divergence and convergence results are proved in Theorem 4. It follows that the
probability limit of `T;p( ) for a �xed  = (d; b) is `p( ): 3

3.2 Convergence of the pro�le likelihood function and consistency of the MLE

We now show that if �b+kdXt is nonstationary, the likelihood pro�le function `T;p( ) is
uniformly divergent on Ndiv(0); and if �b+kdXt is (asymptotically) stationary the likelihood
converges in probability uniformly on compact sets of Nconv(0) to the deterministic limit
`p( ) for T ! 1. This implies that the maximum likelihood estimator in model Hp exists
with probability converging to one and is consistent, and that the same result holds for the
submodel Hr; see (1), and the model with d = b.
We de�ne the compact set

K(�; �1) = fd; b : � � b � d � d1; �1 � d� bg

for � > 0; �1 � 0, which is a family of sets such that K(�; �1) � N and K(�; 0) increase to
N as � ! 0.

Theorem 4 Let Assumptions 1-4 hold and assume that (d0; b0) 2 K(�; �1).

(i) Let 0 < � < min(1=3; 1� 2(d0 � b0)) and �1 > 0 and suppose Ej"tjq <1 for q > 2=�.
The likelihood function for Hp satis�es

inf
 2Ndiv (�)\K(�;�1)

`T;p( )
P!1 as (�; T )! (0;1); (24)

`T;p( ) =) `p( ) on C(Nconv(�) \ K(�; �1)) as T !1 for any � > 0: (25)

The function `p( ); has a strict minimum at  =  0; that is

`p( ) � `p( 0) = log det(
0);  2 N (26)

and equality holds if and only if  =  0:

(ii) Suppose X�n = 0; n > N0 and Ej"tjq < 1 for all q < 1.4 Then (24), (25), and (26)
hold on the larger sets with � > 0 and �1 = 0.

3SJ: Husk kontinuiteten af `r( )
Her vi kun brug for `p?
4SJ: Er det nu rigtigt er det ikke nok med 8 momenter?
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(iii) Suppose � � b0 = d0 � d1; b0 6= 1=2; and Ej"tjq <1 for q > 2=�. Then, for the model
Hr(b = d), the results (24), (25), and (26) hold on the sets Ndiv(�) \ fb = dg and
Nconv(�) \ fb = dg, respectively.

The proof is given in Appendix B. Note that the larger the compact set K(�; �1), the
more moments are needed. When consideration is restricted to the model Hr(b = d) and a
parameter set de�ned by � > 1=4, i.e. in particular if consideration is restricted to the case
of �strong cointegration�where b > 1=2, then the moment condition reduces to Ej"tj8 <1
5(from Assumption 2).
The reason for the restriction in K(�; �1) away from the boundary fd = bg is that close

to that boundary, the contribution from initial values does not vanish uniformly. This
uniformity can be obtained by setting X�n = 0; n > N0; and if d = b and b0 6= 1=2 the
problem does not arise.
We now derive the important consequence of Theorem 4.

Theorem 5 Let the assumptions of Theorem 4 be satis�ed.

(i) With probability converging to one, the maximum likelihood estimator in model Hr; r =
0; : : : ; p; exists uniquely on K(�; �1) for � > 0; �1 > 0, and is consistent.

(ii) Suppose X�n = 0; n > N0. Then the results hold on K(�; 0) = fd; b : � � b � d � d1g
for � > 0.

(iii) For the model Hr(b = d), existence, uniqueness, and consistency in model Hr; r =
0; : : : ; p; hold on fd; b : � � b = d � d1g for � > 0 provided b0 6= 1=2.

Proof. Assume that (24) and (25) hold. We start with model Hp; see (1), where � and
� are p � p: The result (24) shows that P ( ̂ 2 Nconv(�) \ K(�; �1)) ! 1. On the set
Nconv(�) \ K(�; �1) the convergence in distribution of the continuous process `T;p( ) =
log det(SSRT ( )) in (25) shows that the probability limit `p( ) is continuous on Nconv(�)\
K(�; �1) and hence continuous on Nconv(0) if Ej"tjq <1 for all q.
Let N( 0; �) = f : j �  0j < �g be a small neighborhood around  0 and denote

N0 = Nconv(�)\K(�; �1): Because `p( ) is continuous and > `p( 0) if  6=  0; see (26), and
N0nN( 0; �) is compact and does not contain  0; then min 2N0nN( 0;�)(`p( ) � `p( 0)) �
c0 > 0. By the uniform convergence of `T;p( ) to `p( ) on N0; we can take for any � > 0 a
T0(�; �) such that for all T � T0(�; �) we have

P ( min
 2N0nN( 0;�)

j`T;p( )� `p( )j � c0=3) � 1� �=2;

and therefore on this set we have

min
 2N0nN( 0;�)

(`T;p( )� `p( 0)) = min
 2N0nN( 0;�)

((`T;p( )� `p( )) + (`p( )� `p( 0)))

� �c0=3 + c0 = 2c0=3:

For any r � p we now get, because `p( 0) = log det(
0); that on this set,

min
 2N0nN( 0;�)

(`T;r( )� log det(
0)) � min
 2N0nN( 0;�)

(`T;p( )� log det(
0)) � 2c0=3:

5SJ: Det gør den da ikke. Man får at den reducerer til Ej"jq <1 for et q > 8:
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On the other hand, at the point  =  0 we have that for all T � T1(�; �);

P (j`T;r( 0)� log det(
0)j � c0=3) � 1� �=2;

which implies that the minimum of `T;r( ) is attained at a point in N( 0; �): Thus the
maximum likelihood estimator of  in modelHr exists with probability 1�� and is contained
in the set N( 0; �); which proves consistency; see also van der Vaart (1998, Theorem 5.7)6.
The second derivative of `p( ) is positive de�nite at  =  0 and therefore in N( 0; �) for
� small. It follows from Theorem 9 and Lemma 9 that also the second derivative of `T;p( )
is positive de�nite in N( 0; �) with large probability, but then `T;p( ) is convex and the
minimum is unique. The estimators �̂( ); �̂( ); �̂( ); 	̂�( ); 
̂( ); see (20) are continuous
functions of  and therefore also consistent.
If X�n = 0; n > N0; or if d = b and d0 6= 1=2; then the same proof can be used with

Nconv(�) \ K(�; 0) and Nconv(�) \ fd; b : � � b = d � d1g, respectively, instead of N0.
The result in Theorem 5 on existence and consistency of the MLE involves analyzing the

likelihood function on the set of admissible values 0 < b < d. The likelihood depends on
product moments of �d+ibXt for all such (d; b), even if the true values are �xed at some b0
and d0. Since the main term in Xt is �

�d0
+ "t, see (11), analysis of the likelihood function

leads to analysis of �d+ib�d0
+ "t, which may be asymptotically stationary, nonstationary, or it

may be critical in the sense that it may be close to the process ��1=2
+ "t. The possibility that

�d+ibXt can be critical or close to critical, even if Xt is not, implies that we have to split up
the parameter space around values where �d+ibXt is close to critical and give separate proofs
of uniform convergence of the likelihood function in each subset of the parameter space.
This is true in general for any fractional model, where the main term in Xt is typically

of the form ��d0
+ "t, and analysis of the likelihood function requires analysis of �dXt and

therefore of a term like �d�d0
+ "t which may be close to critical. To the best of our knowledge,

all previous consistency results in the literature for parametric fractional models have either
been of a local nature or have covered only the set where �dXt is asymptotically stationary,
due to the di¢ culties in proving uniform convergence of the likelihood function when �dXt

is close to critical and hence on the whole parameter set, see the discussion in Hualde and
Robinson (2010b, pp. 2-3).7

Unlike previous consistency results, our Theorem 5 applies to an admissible parameter
set so large that it includes values of (d; b) where �d+ibXt is asymptotically stationary,
nonstationary, and critical. The inclusion of the near critical processes in the proof is made
possible by a truncation argument, allowing us to show that when v 2 [�1=2� �;�1=2+ �]
for � su¢ ciently small, then the inverse of appropriately normalized product moments of
critical processes �v

+"t is tight in v, and further that it is convergent uniformly to zero for
(T; �)! (1; 0), see (87) in Lemma A.8 below.

6SJ: Kan vi ikke droppe dette argument og bare henvise til van der Vaart. Det sparer næsten en side
7In independent and concurrent work, Hualde and Robinson (2010b) prove consistency for a large set of

admissible values in a univariate fractional model. Their consistency proof applies only to the univariate
case (see their discussion on p. 19 and p. 21), and even then it requires all moments �nite, where our proof
requires only 8 moments in the univariate case.
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4 Asymptotic distribution of maximum likelihood estimators
In this section we exploit that the maximum likelihood estimator is consistent and expand
the likelihood in a neighborhood of the true parameter to �nd the asymptotic distribution
of the conditional maximum likelihood estimator.

4.1 A local reparametrization and the pro�le likelihood function for d; b; �;	�;


The likelihood function in a neighborhood of the true value is expressed in terms of "t(�)
see (18).
The parameter � has information proportional to

PT
t=1[�

d�bLb�t(1)]
2 = O(T 1�2(d�b))

for (d; b) close to (d0; b0) when d0 � b0 < 1=2: In order to get a T 1=2 consistent parameter
we introduce �� = (� � �0)T

�(d�b) or � = �0 + ��T
d�b; so that the information for �� is

proportional to T:
The parameters � and � are not identi�ed because ��0 = (��0��0)(�

0(��
0
0�)

�1) = ~�~�
0
; but

we can without loss of generality normalize � so that �00� = Ir: With this choice it follows
from (8) that

� = �0 + �0?(��
0
0?�) = �0 + �0?~��;

say. Finally we need the notation for the regressors

Xext
�1t =

�
�00?X�1t

�d�bLb�t(1)

�
; Xcent

�1 = �00X�1t + �00�
d�bLb�t(1): (27)

For b0 > 1=2 we let N( 0; �0) = fj � 0j � �0g: Then for (d; b) 2 N( 0; �0) we have the
��1 = d�b�d0 = (d�b�d0+b0)�b0 � �b0+2�0 < �1=2 and d+ib�d0 � ��0; for i � 0; and
hence �00?X�1t is the only nonstationary process in "t(�) and this is only possible for b0 > 1=2:
The information for ~�� is proportional to

PT
t=1(�

0
0?X�1t)(�

0
0?X�1t)

0 = OP (T
�2��1): We

therefore introduce the normalized parameter �� = ��
0
0?(� � �0)T

�(��1+1=2) = ~��T
�(��1+1=2)

or � = �0 + �0?��T
��1+1=2, so the information for �� is proportional to T . We let � =

(�0�; �
0
�)
0 be (p � r + 1) � r and de�ne NT = diag(T ��1+1=2Ip�r; T

d�b) which implies that
�0X�1t + �0�d�bLb�t(1) can be written as

�00X�1t + �00�
d�bLb�t(1) + T ��1+1=2�0��

0
0?X�1t + �0�T

d�b = Xcent
�1 + �0NTX

ext
�1t;

see (27). Let Vt = (Xcent0
�1 ; fX 0

itgk�1i=0 ; X
0
kt)

0 and de�ne, for � = (d; b; �;	�);

"t(�) = "t(�; �) = ��0NTX
ext
�1t + (��;	�; Ip)Vt; (28)

see (18). The product moments needed to calculate the conditional likelihood function
�2T�1 logLT (�; �); see (19), are�

AT CT
C 0T BT

�
= T�1

TX
t=1

�
NTX

ext
�1t

Vt

��
NTX

ext
�1t

Vt

�0
: (29)

Note that the matrices NT ;AT ;BT ; and CT depend on  = (d; b): We indicate the values for
 =  0 by N

0
T ;A0T ;B0T ; and C0T : Finally we de�ne

C0"T = T�1=2
TX
t=1

N0
TX

ext
�1t"

0
t: (30)
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The conditional likelihood �2T�1 logLT (�) can now be expressed as

log det(
) + trf
�1(��0AT ��
0 + (��;	�; Ip)BT (��;	�; Ip)0 + 2��0CT (��;	�; Ip)0)g: (31)

For �xed (d; b; �;	�;
) we estimate � by regression and �nd

�̂( ; �;	�;
) = �A�1T CT (��;	�; Ip)0
�1�(�0
�1�)�1; (32)

and the pro�le likelihood function �2T�1 logLpro�le;T ( ; �;	�;
) is then

log det(
) + trf
�1(��;	�; Ip)BT (��;	�; Ip)0g (33)

�trf(��;	�; Ip)C 0TA�1T CT (��;	�; Ip)0
�1�(�0
�1�)�1�0
�1g:

For (d; b) 2 N( 0; �0) and i = 0; 1; : : : ; k, the processes Uit and �00U�1;t; see (22), and their
derivatives with respect to (d; b) are stationary because d+ ib� d0 � d� d0 � ��0 > �1=2.
Only the process �00?X�1t is nonstationary when b0 > 1=2. When normalized by T ��1+1=2

it will converge to fBM provided Ej"tjq < 1 for some q > 1=(b0 � 1=2), see (4), so that on
Dp�r+1[0; 1],

NTX
ext
�1[tu] =

�
T ��1+1=2�0?0X�1[Tu]
T d�b�d�bLb�[Tu](1)

�
=)

�
�00?C0Wd0�d+b�1(u)
u�(d�b)=�(1� d+ b)

�
= F (u): (34)

We show that the initial values can be neglected asymptotically and that the stationary
processes f�00U�1t; Ujtgkj=�1 can replace the regressors f�00X�1t; Xjtgkj=�1: This means that
the limit of BT can be calculated as

B = V ar(U 0�1t�0; U
0
0t; : : : ; U

0
kt)

0:

For b0 < 1=2; all regressors Xit are stationary in a neighborhood of the true value and
we only re-scale �� �0 = T d�b��; but de�ne �� = ~��: The various quantities AT ;BT ; CT ; and
C"T are de�ned as above, but their asymptotic properties are now di¤erent. The estimator
of � and pro�le likelihood function are given by (32) and (33).
The next theorem summarizes the asymptotic results for the product moments and their

derivatives with respect to  , denoted Dm, when  2 N(�0; �0).

Theorem 6 Let Assumptions 1-4 be satis�ed and let N( 0; �0) = fj �  0j � �0g � N for
�0 so small that q > (b� d+ d0 � 1=2)�1 for  2 N( 0; �0).
(i) If 1=2 < b0 < d0 and j"tjq < 1 for some q > (b0 � 1=2)�1, then for m � 0, it holds

that DmAT ; D
mBT ; and DmCT are tight on N( 0; �0) and

(AT ;D
mBT ;DmCT ) =) (

Z 1

0

F (u)F (u)
0du;DmB; 0) (35)

as continuous processes on N( 0; �0). At the true value  0 = (d0; b0) we �nd, with F0 = F 0 ;

C0"T
d!
Z 1

0

F0(dW )
0: (36)

The same results hold for the model Hr(d = b).
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For k = r = 0; DmBT = DmT�1
PT

t=1�
dXt�

dX 0
t =) DmB:8

(ii) If 0 < b0 < 1=2; b0 < d0 (D
mAT ;D

mBT ;DmCT ) is tight on N( 0; �0) and converge
towards the deterministic mean, which we denote (DmA;DmB;DmC): Finally

C0"T
d! N(p�r+1)�p(0;A
 
0): (37)

(iii) For the model with d = b the results (35) and (36) hold if b0 > 1=2 and (37) hold if
b0 < 1=2:

Proof. Proof of (i): For 1=2 < b0 < d0 it follows from Theorem 2, see also (16), that �d+ibXt

has the representation

�d+ibXt = �
d+ib
+ Xt +�

d+ib
� Xt = �

d+ib�d0
+ (C0"t +�

b0
+Y

+
t ) +Dit( ); t = 1; : : : ; T; (38)

where Dit( ) = �d+ib
+ �t + �

d+ib
+ �t + �

d+ib
� Xt is the deterministic part generated by initial

values and the constant term �0�
0
0�t(1).

It follows from Lemma A.10 that DmDit( ); suitably normalized, is uniformly small so
that asymptotically we can replace the regressors Xit; i � 0 by the stationary variables Uit;
see (22). For i = �1 we have the regressor

Xcent
�1t = (�

d�b ��d+kb)�00Xt +�
d�bLb�

0
0�t(1) = �00X�1t +O(t�(d�b)); (39)

and we can replace the �rst term by �00U�1t and the other is uniformly small for (d; b) 2
N( 0; �0) when d0 > b0:
The nonstationary regressor (�d�b ��d+kb)�00?Xt is normalized by T ��1+1=2 and it fol-

lows from (104) that T ��1+1=2�00?D�1t( ) goes uniformly to zero. Thus we can replace this
regressor by (�d�b

+ ��d+kb
+ )�00?Ut in the evaluation of the limit of D

mAT ;D
mBT , and DmCt.

By Theorem 2, Ut = C0"t + �
b0Yt 2 Z, where the class Z is given in De�nition 1.

Lemma A.8, therefore applies directly to product moments of�d+ib�d0
+ Ut; using the stationary

processes �00Ujt; j � �1 with indices u = d+jb�d0+b0 � �1=2+(1=2�2�0) and �00?U 0it; i � 0
with index u = d + ib � d0 � d � d0 � �1=2 + (1=2 � �0) so �u = 1=2 � 2�0; and the
nonstationary process �00?U�1t with index w = d�b�d0 � �b0+2�0 � �1=2�(b0�1=2�2�0)
so we choose �w = b0�1=2�2�0 for small �0:We also take �0 so small that q > (b0�1=2)�1
implies that q > 1=�w: Tightness of Dm(AT ;BT ; CT ) and the convergence in (35) then follow
from (83), (82), and (84). Note that when b0 > 1=2 there is no critical process in the
neighborhood N( 0; �0): The proof of (36) follows from (5). 9

Proof of (ii): For b0 < 1=2 < d0 we apply (16) and the only di¤erence in the above proof
is that (�d�b ��d+kb)�00?Xt is asymptotically stationary and can be replaced by �

0
0?U�1t:

The limits of Dm(AT ;BT ; CT ) then follow from Lemma A.8, (83).
We �nd

A =
�
E(�00?U�1tU

0
�1t�0?) 0

0
R 1
0
u�2(d0�b0)du=�(1� d0 + b0)

2

�
:

8SJ: hvad skal vi med den?
9SJ: Her har jeg fjernet et bevis og henvist til (5)
Vi mangler produkt moment af t�(d�b) og �uZt så vi kan få hele C
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Finally �00?U�1t"
0
t is a martingale di¤erence sequence and the central limit theorem for mar-

tingales gives (37), see Hall and Heyde (1980, chp. 3).
If instead b0 < d0 < 1=2 we apply the representation, see (12) and �nd

�d+ibXt = �
d+ib�d0(C0"t +�

b0Yt) + C10�0�
0
0�t(1) + ��0t; t = 1; : : : ; T:

In this case the initial values play no role and the argument is as above.
Proof of (iii): The same proof as above works.
We next want to discuss the asymptotic variance of the stationary components and de�ne

for b0 > 1=2 the parameter � = (d; b; �;	�) and the residual "t(�) = "t(�; 0) = (��;	�; Ip)Vt,
c.f. (28). For (d; b) close to (d0; b0) we de�ne the corresponding stationary process

et(�) = Ukt � �Wt +

k�1X
i=0

	iUit = (��;	�; Ip)(�00U�1t; U 0�t; U 0kt)0 (40)

where Uit is given in (22). In the following we use D� and D2�� to denote �rst- and second-
order derivatives with respect to �:

Lemma 7 We �nd for � = �0 that et(�0) = "t(�0) = "t, and furthermore
(i) for b0 > 1=2

T�1
TX
t=1

"t(�)"t(�)
0 P! Eet(�)et(�)

0 = (��;	�; Ip)B(��;	�; Ip)0; (41)

D�Eet(�0)
0
�10 et(�0) = E(D�et(�0)

0
�10 "t) + E("0t

�1
0 D�et(�0)) = 0; (42)

D2��Eet(�0)
0
�10 et(�0) = E(D�et(�0)

0
�10 D�et(�0)) = �0; (43)

where �0 is positive de�nite if 	0k 6= 0 or equivalently �0k 6= 0.
(ii) for b0 < 1=2 we �nd

T�1
TX
t=1

"t(�)"t(�)
0 P! (44)

(���0�;���0�;��;	�; Ip)
�
A C
C 0 B

�
(���0�;���0�;��;	�; Ip)0

and that (42) and (43) hold with suitably de�ned et(�) with � = (��; ��; d; b; �;	�) and we
de�ne

�stat0 = D2��Eet(�0)
0
�10 et(�0): (45)

(iii) For d = b the results (41), (42), and (43) hold if b0 > 1=2 and (44), (42), and (43)
hold if b0 < 1=2.

Proof. Proof of (i): The transfer function for the stationary process C0"t+�b0Yt is f0(z)�1 =
(1 � z)d0�0(z)

�1 = (1 � y)	0(y)
�1 for y = 1 � (1 � z)b0 ; see (3), where subscripts indicate

that we consider the characteristic and transfer functions for the process de�ned by the true
parameter values. We then �nd the transfer function for et(�) to be

f�(z) = (1� z)d�b�d0+b0	(1� (1� z)b)j�=�0	0(y)
�1: (46)



Likelihood inference for cofractional processes 19

For � = �0 we �nd f�0(z) = 1 so that et(�0) = "t: The result (41) follows from (35) of
Theorem 6. Di¤erentiating the left hand side of (41), we �nd the limit

E(D�et(�0)
0
�10 et(�0)) = 2E(D�et(�0)

0
�10 "t) = 0;

because D�et(�0) is measurable with respect to "1; : : : ; "t�1: Therefore

D�E(et(�0)et(�0)
0) = E(D�et(�0)et(�0)

0) = 0

which proves (42). Di¤erentiating twice we �nd (43) the same way.
Finally we prove that if 	0k 6= 0; then �0 is positive de�nite. If �0 were singular, there

would exist a linear combination of the processes D�et(�0) which had variance zero. We want
to show that this is not possible when 	0k 6= 0. The statement that �0 is singular translates
into a statement that there is a linear combination of the derivatives of the transfer function
f�(z) which, for � = �0, is zero. That is, for some set of values h = (d1; b1; A;G�) of the
same dimensions as � = (d; b; �;	�); the derivative Dsf�0+sh(z)js=0 = 0: We �nd from (3)
and (46) the derivatives, where we use y = 1� (1� z)b0 ;

Ddf�0(z) = log(1� z)Ip = b�10 log(1� y)Ip;

Dbf�0(z) = �b�10 log(1� y)(Ip + Dy	0(y)(1� y)	0(y)
�1);

D	if�0(z) = (1� y)i; i = 0; : : : ; k � 1;
D�f�0(z) = ��00y:

This gives the directional derivative Dsf�0+sh(z)js=0 in the direction h = (d1; b1; A;G�) which,
multiplied by 	0(y); is

b�10 log(1� y)f(d1 � b1)	0(y)� b1Dy	0(y)(1� y)g � fA�00y	0(y) +
k�1X
i=0

Gi(1� y)i	0(y)g:

This should be zero for all y for �0 to be singular. Because log(1 � y) is not a polynomial
we have A�00y	0(y) +

Pk�1
i=0 Gi(1� y)i	0(y) = 0 for all y; and hence A = 0 and Gi = 0; i =

0; : : : ; k � 1. We then �nd that the coe¢ cient to b�10 log(1� y) should be zero, so that

(d1 � b1)	0(y)� b1Dy	0(y)(1� y) = 0 for all y:

For y = 1 we �nd from (3) that 	0(1) = ��0�00 and therefore (d1 � b1)�0�
0
0 = 0, and

hence b1 = d1; so that (d1 � b1)	0(y) = 0: The coe¢ cient of the highest order term in the
polynomial b1Dy	0(y) is (�1)k+1b1(k+1)	0k and for this to be zero when 	0k 6= 0 we must
have b1 = d1 = 0. Hence �0 is positive de�nite. From (3) 	0k 6= 0 is the same as �0k 6= 0.
Proof of (ii) and (iii): The same proof can be used as for (i) by a change of notation.

4.2 Asymptotic distribution of the MLE

We �rst �nd asymptotic distributions of the score functions and the limit of the information
at the true value. We then expand the likelihood function in a neighborhood of the true
value and �nd asymptotic distributions of MLEs. By Lemmas A.2 and A.3 we only need
the information at the true value because the estimators are consistent (by Theorem 5) and
�rst and second derivatives are tight on N( 0; �0) (by Theorem 6).
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Lemma 8 Let Assumptions 1-4 be satis�ed.
(i) If b0 > 1=2 and Ej"tjq < 1 for some q > (b0 � 1=2)�1; the limit distribution of the

Gaussian score function for model (1) at the true value is given by�
T�1=2D� logLT (�0)
T�1=2D� logLT (�0)

�
d!
�

Nn� (0;�0)

(vec
R 1
0
F0(dG0)

0)0

�
; (47)

where �0 is given in (43), n� = 1+1+pr+kp2 is the number of parameters in � = (d; b; �;	�);
F0 = (Wb0�1(u)

0C 00�0?; u
�(d0�b0)=�(1� (d0 � b0))�; and G0 = �00


�1
0 W .

(ii) If 0 < b0 < 1=2 then the score with respect to all parameters is asymptotically
Gaussian, Nn�+(p�r)r+r(0;�

stat
0 ); see (45):

Proof. Proof of (i): For b0 > 1=2 the score function for � = (d; b; �;	�) evaluated at the
true value is

T�1=2D� logLT (�0) = �T�1=2
TX
t=1

"0t

�1
0 D�"t(�0; 0);

where T�1=2"0t

�1
0 D�"t(�0; 0) is a martingale di¤erence with sum of conditional variances

T�1
TX
t=1

D�"t(�0; 0)
0
�10 D�"t(�0; 0)

P! �0;

see Lemma 7. The result for the �rst block of (47) now follows from the central limit theorem
for martingales, see Hall and Heyde (1980, chp. 3).
The score function for �� and �� evaluated at the true value is

T�1=2D�� logLT (�0) = T�1=2
TX
t=1

"0t

�1
0 (�0 
 T�(b0�1=2)�00?Lb0�

d0�b0Xt)

d! (vec

Z 1

0

(�00?C0Wb0�1(dG0)
0)0;

T�1=2D�� logLT (�0) = T�1=2
TX
t=1

(vec(T d0�b0Lb0�t(1� d0 + b0)"
0
t


�1
0 �0))

0

d! (vec

Z 1

0

u�d0+b0

�(1� d0 + b0)
(dG0)

0)0

see (36) of Theorem 6, which proves the second block of (47).
Proof of (ii): If 0 < b0 < 1=2; all stochastic regressors are asymptotically stationary and

we take � = �0 + �0?�� and the score with respect to �� is

T�1=2D�� logLT (�0) = T�1=2
TX
t=1

(vec(�00?�
d0�b0Lb0Xt"

0
t


�1
0 �0))

0;

which is a martingale di¤erence sequence as is the score for �� given above. The central limit
theorem for martingales gives the result.
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Lemma 9 Let Assumptions 1-4 be satis�ed.
(i) If b0 > 1=2 and Ej"tjq <1 for some q > (b0 � 1=2)�1, the Gaussian information per

observation in model (1) for (�; �) = (�0; 0) converges in distribution to�
�0 0

0 �00

�1
0 �0 


R 1
0
F0F

0
0du

�
> 0; (48)

where �0 is given in (43) and F0 = (Wb0�1(u)
0C 00�0?; u

�(d0�b0)=�(1� (d0 � b0))�:
(ii) If 0 < b0 < 1=2 the information for all parameters is convergent in probability to a

non-stochastic limit given in (45).

Proof. Proof of (i): The information matrices for the di¤erent parameters can be found
from (31). From (35) of Theorem 6 it holds that DmC0T

P! 0. Using this and (43) we �nd for
�0 = 0 that

�T�1D2�� logLT (�0)
P! �0;

�T�1D2�� logLT (�0) = �00

�1
0 �0 
A0T

d! �00

�1
0 �0 


Z 1

0

F0F
0
0du;

�T�1D2�� logLT (�0) = D2��trf
�12��0CT (��;	�; Ip)0gj�=�0
P! 0:

Proof of (ii): If 0 < b0 < 1=2 we �nd the information for � = �0 + �0?�� and � =
�0 + T�d0+b0�� to be

�T�1D2���� logLT (�0) = �00

�1
0 �0 
 T�1

TX
t=1

(�d0�b0Lb0�
0
0?Xt)(�

d0�b0Lb0�
0
0?Xt)

0;

�T�1D2���� logLT (�0) = �00

�1
0 �0 
 T�1

TX
t=1

[T d0�b0Lb0�t(1� d0 + b0)]
2;

�T�1D2���� logLT (�0) = �00

�1
0 �0 
 T�1

TX
t=1

�d0�b0Lb0�
0
0?XtT

d0�b0Lb0�t(1� d0 + b0);

which converges to a non-stochastic limit by the law of large numbers because �d0�b0Lb0Xt

is stationary when b0 < 1=2.
We now apply the previous two lemmas in the usual expansion of the likelihood score

function to obtain the asymptotic distribution of the MLE.

Theorem 10 Let the assumptions of Theorems 4 and 5 be satis�ed and suppose (d0; b0) 2
int(N ).
(i) If b0 > 1=2 and Ej"tjq < 1 for some q > (b0 � 1=2)�1; the asymptotic distribution

of the Gaussian maximum likelihood estimators �̂ = (d̂; b̂; �̂; 	̂�); �̂, and �̂ for model (1) is
given by0@ T 1=2 vec(�̂� �0)�

T b0��
0
0?(�̂ � �0)

T 1=2�d0+b0(�̂� �0)

� 1A d!
�

Nn�

�
0;��10

�
(
R 1
0
F0F

0
0du)

�1 R 1
0
F0(dG0)

0(�00

�1
0 �0)

�1

�
; (49)
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where F0 = (Wb0�1(u)
0C 00�0?; u

�(d0�b0)=�(1� (d0� b0))�and G0 = �00

�1
0 W are independent.

It follows that the asymptotic distribution of vec(T b0��00?(�̂��0); T 1=2�d0+b0(�̂��0)) is mixed
Gaussian with conditional variance given by

(�00

�1
0 �0)

�1 
 (
Z 1

0

F0F
0
0du)

�1: (50)

In the model Hr(d = b) the same results hold with the relevant restriction imposed.
(ii) If 0 < b0 < 1=2 the estimators are asymptotically Gaussian with variance �stat0 .

Proof. Proof of (i): For b0 > 1=2 we �nd limit distributions of T 1=2(�̂� �0) and T
1=2�̂; by

applying the usual expansion of the score function around � = �0, � = 0, and 
 = 
̂. Using
Taylor�s formula with remainder term we �nd for lT = T�1 logLT that

0 =

�
T 1=2D�lT (�0; 0; 
̂)

T 1=2D�lT (�0; 0; 
̂)

�
+

�
D��lT (�

�) D��lT (�
�)

D��lT (�
�) D��lT (�

�)

��
T 1=2 vec(�̂� �0)

T 1=2 vec �̂

�
:

Here the asterisks indicate intermediate points between (�̂; �̂; 
̂) and (�0; 0; 
̂); one for each
score function, which therefore converge to (�0; 0;
0) in probability by Theorem 5.
Because the �rst and second derivatives are tight, see Theorem 6 and Lemma A.2, and

��
P! �0, see Theorem 5, we apply Lemma A.3 to replace intermediate points by (�0; 0;
0).

The score functions normalized by T 1=2 and their weak limits for � = �0 are given in Lemma
8 and the limit of the information per observation in Lemma 9, see (48). Pre-multiplying by
its inverse we �nd (49). The stochastic component of the process F0 is a function of �00?W;
see (10) and (36), whereas G0 = �00


�1
0 W; so that F0 and G0 are independent and the limit

distribution of T b0��0?0(�̂ � �0) and T
1=2�d0+b0(�̂� �0) is mixed Gaussian.

Proof of (ii): If 0 < b0 < 1=2 the result follows from the results about score and infor-
mation by the same type of proof.
In the model Hr(d = b); the same expansions can be made and similar results derived.

The results in Theorem 10 shows under i.i.d. errors with suitable moments conditions, that
�̂ is asymptotically Gaussian, while the estimated cointegration vectors �̂ are locally asymp-
totically mixed normal (LAMN) when 1=2 < b0. Results like these are well known from the
standard (non-fractional) cointegration model, but are much less developed for fractional
models, see the references in Section 1. These are important results, which allow asymp-
totically standard (chi-squared) inference on all parameters of the model � including the
cointegrating relations and orders of fractionality �using Gaussian likelihood ratio tests.
Furthermore, this result has optimality implications for the estimation of � in the cofrac-

tional VAR. In the LAMN case with stochastic information matrix, �̂ is asymptotically
optimal under the additional assumption of Gaussian errors in the sense that it has asymp-
totic maximum concentration probability, see, e.g., Phillips (1991) and Saikkonen (1991) for
the precise de�nitions in the context of the standard cointegration model.10

10SJ: Jeg mener vi gør så lidt som muligt ved modellen med � = 0; specielt her hvor der blot står at hvis
en parameter estimator er asymptotisk Gaussian kan man teste parameteren ved et �2 test
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5 Likelihood ratio test for cofractional rank
We consider the model

Hp : �
dXt = ��

d�bLbXt + ��d�bLb�t(1) +

kX
i=0

�i�
dLibXt + "t (51)

and want to test the hypothesisHr : rank(�; �) = r, against the alternativeHp : rank(�; �) =
p. Let `T;r( ) be the pro�le likelihood function, where �; �;��;
 have been concentrated
out by regression and reduced rank regression, see Section 3.1, and let  ̂r be the MLE of  
in model Hr; r = 0; 1; : : : ; p. The likelihood ratio (LR) statistic is

�2 logLR(HrjHp) = `T;p( ̂p)� `T;r( ̂r): (52)

Theorem 11 Under the assumptions of Theorem 10 and 1=2 < b0; the likelihood ratio
statistic for (�; �) = �(�0; �0) that is Hr in Hp has asymptotic distributions

�2 logLR(HrjHp)
d! trf

Z 1

0

(dB)Bext0
b0�1(

Z 1

0

Bext
b0�1B

ext0
b0�1du)

�1
Z 1

0

Bext
b0�1(dB)

0g; (53)

where B is (p � r)-dimensional standard BM, Bb0�1 is the corresponding fBM and Bext
b0�1 =

(B0
b0�1(u); u

�(d0�b0))0. The limit distributions are continuous in (d0; b0):
If 0 < b0 < 1=2 then

�2 logLR(HrjHp)
d! �2((p� r)2): (54)

If we take an alternative � = ��0 + �1�
0
1 = (�; �1)(�; �1)

0, where �1; �1 are p � r1 of
rank r1 and (�; �1) and (�; �1) are of rank r + r1 > r, and hence rank(�) > r, and assume
that Assumption 1 is satis�ed under the alternative, then

�2 logLR(HrjHp)
P!1: (55)

In the model d = b the same results hold, and in the model with � = 0 the results holds
with Bext

b0�1 replaced with Bb0�1.
If k = 0 and r = 0 then (53) holds with b0 replaced by d0.

Proof. We give the proofs only for the most general model, the other proofs being the same
but with di¤erent notation.
Proof of (53): We assume that rank(�; �) = r, and that �0 = �0�

0
0; �0 = �0�

0
0 where �0

and �0 are p� r of rank r. It is convenient to introduce the extra hypothesis that � = ��0

and � = �0; � = �0, or (�; �) = �(�00; �
0
0), see Lawley (1956), and Johansen (2002) for an

application to the cointegrated VAR model.
Then LR(HrjHp) is

max(�;�)=�(�0;�0) L

maxL
=
max(�;�)=�(�00;�00) L

maxL
=
max(�;�)=�(�00;�00) L

max�=��0 L
=
LR(Hr and � = �0; � = �0jHp)

LR(� = �0; � = �0jHr)

The statistic LR(Hr and � = �0; � = �0jHp) is the test that (�; �) = �(�00; �
0
0) (with rank r)

against (�; �) unrestricted, and LR(� = �0; � = �0jHr) is the test that (�
0; �0) = (�00; �

0
0) in
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the model with (�; �) = �(�0; �0) and rank(�) = r. We next �nd a �rst order approximation
to each statistic and subtracting them and passing to the limit we �nd the asymptotic
distribution.
In both cases we apply the result that when, in a statistical problem with vector valued

parameters � and �; the limiting observed information per observation is block diagonal and
tight as a continuous process in a neighborhood of the true value, then a Taylor expansion
of the log likelihood ratio statistic and the score function shows that

�2 logLR(� = �0) = D� logLT (�0; �0)(D
2
�� logLT (�0; �0))

�1D� logLT (�0; �0)
0 + oP (1); (56)

see JN (2010, Theorem 14) for a detailed discussion of the univariate case.
A �rst order approximation to �2 logLR(� = �0; � = �0jHr) : It follows from Lemma 9

that, for � = � = (��; ��); � = (d; b; �;	�;
); the asymptotic information per observation is
block diagonal at the true value, and Theorem 6 and Lemma A.2 show that the information
is tight as a process in the parameters. Thus we have that �2 logLR(� = �0; � = �0jHr) is

(vec C0"T
�10 �0)
0(�00


�1
0 �0 
A0T )�1 vec C0"T
�10 �0 + oP (1) (57)

= trf(�00
�10 �0)
�1�00


�1
0 C00"TA0�1T C0"T
�10 �0g+ oP (1);

using the relation trfABCDg = (vecB0)0(A0 
 C) vecD.
A �rst order approximation to �2 logLR(Hr and � = �0; � = �0jHp) : In model (51) we

introduce a convenient reparametrization by � = ���0; �� = T���1�1=2���0?; �� = T�(d�b)(��
��00); so that � = ��00 + T ��1+1=2�0�00? and � = ��00 + T d�b��: The equations are, see (27),
with NT = (T

d�b�d0+1=2Ip�r; T
�(d�b))

Xkt = �Xcent
�1t + �0NTX

ext
�1t +

kX
i=1

	iXit + "t:

The likelihood function �2T�1 logLT (�; �) conditional on initial values becomes

log det(
) + trf
�1(�0AT � + (��;	�; Ip)BT (��;	�; Ip)0 + 2�0CT (��;	�; Ip)0)g;

where � = (d; b; �;	�;
): This expression is the same as the conditional likelihood (31)
except that ��0 is replaced by �0. The properties of the likelihood function and its derivatives
can be derived from those of AT ;BT ; and CT ; and it is seen that the second derivative as a
function of the parameters is tight and that the limit is block diagonal. It follows as above
that

�2 logLR(Hr and � = �0; � = �0jHp) = trf
�10 C00"TA0�1T C0"Tg+ oP (1): (58)

A �rst order approximation to �2 logLR(HrjHp) : Subtracting (57) from (58) and ap-
plying the identity


�10 � 
�10 �0(�
0
0


�1
0 �0)

�1�00

�1
0 = �0?(�

0
0?
0�0?)

�1�00?

we �nd that �2 logLR(HrjHp) has the same limit as

trf�0?(�00?
0�0?)�1�00?C00"TA0�1T C0"Tg (59)

d! trf�0?(�00?
0�0?)�1�00?
Z 1

0

(dW )F 00(

Z 1

0

F0F
0
0du)

�1
Z 1

0

F0(dW )
0g = DF ( 0);
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say, which is the desired result if we de�ne B = (�00?
0�0?)
�1=2�00?W:

The continuity of the limit distribution can seen by noticing that the matrices
R 1
0
(dB)F 0 

and
R 1
0
F F

0
 du; and hence also DF ( ); are continuous in L2 as functions of  and that is

enough for convergence in distribution so that if  n !  then DF ( n)
d! DF ( ).

Proof of (54): In this case the result follows from the usual expansion of the LR test
statistic and the asymptotic distribution in Theorem 10.
Proof of (55): We want to analyze the alternative that � = ��0+�1�

0
1 = (�; �1)(�; �1)

0,
where rank(�) > r, and apply the same methods as in the proof of (53). Under the
alternative there are more parameters and therefore the information matrix is larger, but
still asymptotically block diagonal. The information for the parameters (d; b; �; �; �;	�;
)
is therefore also asymptotically block diagonal so that (56) holds under the alternative.
Without loss of generality we can set �1 = �0?�0 for a conforming matrix �0, so that

� 00�
0
0?Xt is F(d0 � b0) under the alternative. Moreover, Assumption 1 holds under the

alternative, and in particular det((�0; �1)0?�0(�0; �1)?) 6= 0, so that � 00?�00?Xt is still F(d0).
Under the alternative we do not have "t(�0) = "t but instead

"altt (�0) = "t + �1(�
0
0; 0)X

ext
�1t = "t + �1�

0
0�

0
0?X�1t; (60)

where �01X�1t = � 00�
0
0?X�1t = � 00�

0
0?(�

d0�b0 � �d0+kb0)Xt is an asymptotically stationary
F(0) process � 00�00?(1 � �(1+k)b0)Y alt

t = � 00�
0
0?U

alt
�1t. To analyze the approximation (59) we

de�ne Calt"T = T�b0
PT

t=1 �
0
0?X�1t"

alt
t (�0)

0 and Aalt
T = T�2b0

PT
t=1 �

0
0?X�1tX

0
�1t�0? and �nd

the inequality
Calt0"T A0�1T Calt"T � (� 00Calt"T )0(� 00Aalt

T �0)
�1(� 00Calt"T ) (61)

and want to show that the right hand side tends to in�nity in probability. We �nd from (83)
of Lemma A.8 and (60) that

T b0�1� 00Calt"T = T�1
TX
t=1

� 00�
0
0?X�1t"

0
t + T�1

TX
t=1

� 00�
0
0?X�1tX

0
�1t�0?�0�

0
1;

which converges in probability to E(� 00�
0
0?U

alt
�1tU

alt0
�1t�0?�0�

0
1) = V ar(� 00�

0
0?U

alt
�1t)�

0
1. We also

�nd that

T 2b0�1� 00Aalt
T �0 = T�1

TX
t=1

� 00�
0
0?X�1tX

0
�1t�0?�0

P! E(� 00�
0
0?U

alt
�1tU

alt0
�1t�0?�0);

because under the alternative � 00�
0
0?U

alt
�1t is an asymptotically stationary F(0) process. In-

serting both these expressions into (61) we see that the right hand side multiplied by T�1

converges in probability to the deterministic limit �1V ar(�
0
0S

0
z;�1;t)�

0
1 > 0, which proves (55).

The distribution (53) of the LR test for cointegration rank is a fractional version of the
distribution of the trace test in the cointegrated I(1) VAR model, see Johansen (1988, 1991).
Note that it is the parameter b0, describing the �strength�of the cofractional relations, which
determines the order of the fBMs in the distribution, and the parameter d0 appears only in
the part of the distribution originating from the deterministic term. For given hypothesized
(d0; b0) or estimated (d̂r; b̂r), the distribution (53) can be simulated to obtain critical values
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on a case-by-case basis. The continuity of the limit distribution DF ( ) in  = (d; b) ensures
consistent estimates of p�values. Alternatively, numerical CDFs have been simulated as
functions of (d; b) by MacKinnon and Nielsen (2010), and their computer programs can be
used to obtain critical values or P-values for the test.
To �nd the cofractional rank a sequence of tests, for a given size �, can be conducted in

the usual way: test Hr for r = 0; 1; : : : until rejection, and the estimated rank is then the
last value of r which is not rejected by the sequence of tests. If the true rank is r0, then the
consistency of the LR rank test in Theorem 11 shows that any test of r < r0 will reject with
probability one as T !1. Thus, Pr0(r̂ < r0)! 0. Since the asymptotic size of the test for
rank is � we also have that Pr0(r̂ = r0) ! 1 � � and it follows that Pr0(r̂ > r0) ! �. This
shows that r̂ is almost consistent, in the sense that it attains the true value with probability
1� � as T !1.

6 Conclusion
We have generalized the well known likelihood based inference results for the cointegrated
VAR model,

�Xt = �(�0Xt�1 + �0) +
kX
i=1

�i�Xt�i + "t;

to the cointegrated fractional VAR model,

�dXt = �
d�bLb�(�

0Xt + �0) +
kX
i=1

�i�
dLibXt + "t; 0 < b � d:

We have analyzed the conditional Gaussian likelihood given initial values, which we assumed
bounded. Under the assumption that d0� b0 < 1=2 (and b0 6= 1=2) we have shown existence
and consistency on compact subsets of the parameter space and derived the asymptotic
distribution of the maximum likelihood estimator as well as the asymptotic distribution of
the LR test for the rank of ��0. In the asymptotic analysis we assumed i.i.d. errors with
suitable moment conditions. If 1=2 < b0 inference on � is asymptotically mixed Gaussian
while the estimators of the remaining parameters are asymptotically Gaussian, and the LR
test for rank is expressed in terms of fractional Brownian motion Bb0�1 extended by u

�d0+b0.
If b0 < 1=2 asymptotic distributions are Gaussian and the test for rank is asymptotically �2.
The same type of results hold for the models with d = b and d = d0 a prespeci�ed value.

For the model with � = 0 the same result hold except the test for rank involves Bb0�1 instead
of Bext

b0�1.
The main technical contribution in this paper is the proof of existence and consistency of

the maximum likelihood estimator, which allows standard likelihood theory to be applied.
This involves an analysis of the in�uence of initial values as well as proving tightness and
uniform convergence of product moments of processes that can be critical and nearly critical,
and this was made possible by a truncation argument.

Appendix A Product moments
In this appendix we evaluate product moments of stochastic and deterministic terms and
�nd their limits based on results for convergence in distribution of probability measures on
Cp[0; 1]m and Dp[0; 1]m.
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A.1 Results on convergence in distribution

For a multivariate random variable Z with EjZjq <1 the Lq norm is jjZjjq = (EjZjq)1=q.

Lemma A.1 If Xn(s) is a sequence of p-dimensional continuous processes on [0; 1]2 for
which

jjXn(s)jj4 � c; and jjXn(s)�Xn(t)jj4 � cjs� tj (62)

for some constant c > 0; which does not depend on n, s, or t, then Xn(s) is tight on [0; 1]2:

Proof. This is a consequence of Kallenberg (2001, Corollary 16.9).

Lemma A.2 If the continuous process Xn(s) is tight on [0; 1]m and F : Rk � Rp 7�! Rq is
continuously di¤erentiable, then Zn(u; s) = F (u;Xn(s)) is tight on [0; 1]k+m.

Proof. JN (2010, Lemma A.2).

Lemma A.3 Assume that Sn
P! s0 2 [0; 1]m and that the p � p matrix-valued continuous

process Xn(s) is tight on [0; 1]m. Then Xn(Sn)�Xn(s0)
P! 0:

Proof. See JN (2010, Lemma A.3) for the univariate (p = 1) result.

A.2 Bounds on product moments

We begin with some bounds on the fractional coe¢ cients.

Lemma A.4 For juj � u0 and all j � 1 it holds that

jDm�j(�u)j � c(u0)(1 + log j)
mj�u�1; (63)

jDmT u�j(�u)j � c(u0)T
u(1 + j log j

T
j)mj�u�1; (64)

uniformly in u. For jv + 1=2j � �0 and all j � 1 it holds that

�j(�v) � c(�0)j
�v�1; (65)

uniformly in v.

Proof. For (63) and (64), see JN (2010, Lemma B.3). For (65), let u = �v 2 [1=2��0; 1=2+
�0]. We apply Stirling�s formula,

�j(u) =
�(u+ j)

�(u)�(j + 1)
=

1

�(u)
ju�1(1 + �(u; j));

where maxju�1=2j��0 j�(u; j)j ! 0 as j ! 1. This proves the result and shows that the
constant can be chosen to depend only on �0.
Our proof of tightness applies the result of Kallenberg (2001) in Lemma A.1 and involves

evaluation of the fourth moment of product moments of linear processes. We give a number
of evaluations of such moments in terms of the quantity

�T (�1; �2) = max
1�n;m�T

TX
t=max(n;m)

j�1;t�n�2;t�mj; (66)

where �1n; �2n; n = 0; 1 : : : ; are real coe¢ cients.
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Lemma A.5 For i = 1; 2; let "it be i.i.d.(0; �2i ) with Ej"itj8 <1. Assume that �in are real
coe¢ cients satisfying

P1
n=0 j�inj < 1; and de�ne Z+it =

Pt�1
n=0 �in"i;t�n. Let �1n; �2n be real

coe¢ cients, then

jjT�1
TX
t=1

(

t�1X
n=0

�1nZ
+
1;t�n)(

t�1X
m=0

�2mZ
+
2;t�m)jj4 � c�T (�1; �2) (67)

Proof. Proof of (??): We �nd
Pt�1

n=0 �1nZ
+
1;t�n =

Pt�1
h=0(�1 � �1)h"1;t�h; where (�1 � �1)h =Ph

n=0 �1;h�n�1n; and

�T ((�1 � �1); (�2 � �2)) �
TX

h=max(n1;n2)

h�n1X
n=0

j�1;h�n1�njj�1nj
h�n2X
m=0

j�2;h�n2�mjj�2mj

� c
1X
m=0

j�2mj
1X
m=0

j�1mj�T (�1; �2) � c�T (�1; �2)

because
P1

n=0 j�inj <1: Thus, it is enough to prove (??) for Z+it = "it:
We �nd the expression

E(T�1
TX
t=1

(
t�1X
n1=0

�1n1Z
+
1;t�n1)(

t�1X
n2=0

�2n2Z
+
2;t�n2))

4 = T�4
X
(1)

(
4Y
i=1

�1;ti�n1i�2;ti�n2i)E(
4Y
i=1

"1;n1i"2;n2i);

(68)
where

P
(1) is the sum over 1 � n1i; n2i � ti � T; i = 1; : : : ; 4: We �rst sum over ftigki=1; for

�xed (n1i; n2i) and �nd the bound

�4T (�1; �2)T
�4
X
(2)

E(
4Y
i=1

"1;n1i"2;n2i);

where
P

(2) is the summation over 1 � n1i; n2i � T; i = 1; : : : ; 4: The expectation is zero
unless for each (l; i) there is a (k; j) for which nli = nkj giving at least four restrictions, which
we get for the indices being equal in four pairs. There are eight summations, and with at
least four restrictions that gives at most four summations which gives the bound �4T (�1; �2).

The next Lemma is the key result on the evaluation of �T (�1; �2) and hence the empirical
moments for a class of processes de�ned by coe¢ cients (�1n(a1); �2n(a2)) satisfying conditions
of the type

j�1;0(a)j � 1; j�1n(a)j � c(1 + log n)m1n�a�1; n � 1; (69)

j��1;0(a)j � 1; j��1n(a)j � cT a+1=2(1 + j log n
T
j)m1n�a�1; n � 1; (70)

where c does not depend on a or n. These inequalities are satis�ed by the fractional coe¢ -
cients and their derivatives, see Lemma A.4.
Proof of (ii): Proof of (ii):
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We repeatedly use the elementary inequalities, for 0 < � < 1,

TX
n=1

n�u�1 � 1 +

Z T

1

x�u�1dx = 1 + u�1(1� T�u) � 1 + 1
u
� 2��1; u � �; (71)

��1(1� T��) � u�1(1� T�u) =

Z T

1

x�u�1dx �
TX
n=1

n�u�1; u � �: (72)

Lemma A.6 Let �1n(a1); �2n(a2); �
�
1n(a1); and �

�
2n(a2) satisfy (69)�(70), and let �1 � ai �

a0; i = 1; 2: Then:
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(i) Uniformly for min(a1 + 1; a2 + 1; a1 + a2 + 1) � a we have

�T (�1(a1); �2(a2)) � c

�
(1 + log T )m1+m2+1T�a;
a�1;

a � 0;
a > 0:

(73)

(ii) Uniformly for max(a1; a2; a1 + a2 + 1) � �� for some � > 0; we have

�T (�
�
1(a1); �

�
2(a2)) � c��1: (74)

(iii) Uniformly for a1 � �1=2+ a and a2 � �1=2� � we have, for any a, and any � < 1=2

�T (�1(a1); �
�
2(a2)) � c(1 + log T )m1+m2+1T�min(a;�) (75)

Proof. In evaluating (66) we focus on terms with t > max(m;n); because the analysis with
t = m or t = n is straightforward.
Proof of (73): For t > max(m;n) we �rst apply (69) and therefore bound the summationPT
t=max(n;m)+1 j�1;t�n(a1)�2;t�m(a2)j by

TX
t=max(n;m)+1

c(1 + log(t� n))m1(t� n)�a1�1c(1 + log(t�m))m2(t�m)�a2�1:

For a � 0, we bound the log factors by (1 + log T ) and (t � n)�a1�1(t � m)�a2�1 � (t �
max(n;m))�(a1+a2+1)�1: Then the bound for �T (�1(a1); �2(a2)) follows because

TX
t=max(n;m)+1

(t�max(n;m))�a�1 � c(log T )T�a for a � 0:

For a > 0 we bound (1 + log(t� n))m1(t� n)�a=3 and (1 + log(t�m))m2(t�m)�a=3 by
a constant. Then �T (�1(a1); �2(a2)) is by (71) bounded by

max
1�n;m�T

TX
t=max(n;m)+1

(t�max(n;m))�a+2a=3�1 � ca�1:

Proof of (74): We �nd that �T (�
�
1(a1); �

�
2(a2)) is bounded by a constant times times the

maximum of

T�1
TX

t=max(n;m)+1

(1 + j log(t� n

T
)j)m1(

t� n

T
)�(a1+1)(1 + j log(t�m

T
)j)m2(

t�m

T
)�(a2+1)

!
Z 1

max(x;y)

(1 + j log(s� x)j)m1(s� x)�(a1+1)(1 + j log(s� y)j)m2(s� y)�(a2+1)ds

for T !1: This is uniformly bounded by c��1 if max(a1; a2; a1 + a2 + 1) � ��:
Proof of (75): We evaluate the log factors by (1+ log T ) and T a2+1=2(t�m)�(a2+1=2+�) �

T a2+1=2T�(a2+1=2+�) = T��. Because a1 + 1 � 0 and 1=2� � > 0 we �nd that the remaining
terms in the summation are bounded as

(t� n)�a1�1(t�m)�1=2+� � (t�max(n;m))�a1�1�1=2+� � (t�max(n;m))�a�1+�;

where the last inequality follows from �a1 � 1=2 � a. Summing over t gives the bound
T��Tmax(�a+�;0) = T�min(a;�).
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Lemma A.7 Let "t = ("1t; "2t) be i.i.d. in two dimensions with E("t) = 0; Cov("it; "jt) =
�ij; and Ej"tj8 <1; and let � in = � in(ai) satisfy (69) with m1+m2 = m and jai+1=2j � �

for some 0 < � < 1=6: We de�ne Uit =
PN

n=0 � in"it�n and Vit =
Pt�1

n=N+1 � in"it�n and the
product moments

MT (a1; a2) = T�1
TX

t=N+1

(U1tU2t � E(U1tU2t)); and QT (a1; a2) = T�1
TX

t=N+1

U1tV2t:

Then

jjMT (a1; a2)jj4 � c(1 + logN)mT�1=4N1=4+2�; (76)

jjQT (a1; a2)jj4 � c(1 + log T )mT�1=4+3�=2N1=4+�=2: (77)

If in particular � in(vi) = D
mi�n(�vi) where jvi + 1=2j � �; then if � < (1� 6�)=(1 + 2�)

(MT (v1; v2); QT (v1; v2)) =) 0 on C([�1=2� �;�1=2 + �]� [�1=2� �;�1=2 + �]): (78)

Proof. Proof of (76): Raising the summation to the fourth power we �nd, see (68)

X
(1)

(
4Y
i=1

�1n1i�2n2i)E
4Y
i=1

("1;ti�n1i"2;ti�n2i � �121fti�n1i=ti�n2ig) (79)

where
P

(1) is the sum over 1 � n1i; n2i � N < ti � T; i = 1; : : : ; k: The expectation in
(79) is only nonzero if for each (i; l) there is a (j; k) such that ti � nli = tj � nkj: A special
case of this is if ti � n1i = ti � n2i for all i; but ti � n1i 6= tj � n1j for j 6= i; so that
E
Q4

i=1 "1;ti�n1i"2;ti�n2i =
Q4

i=1E"1;ti�n1i"2;ti�n2i = �412: In this case there is no contribution
due to the centering in MT (a1; a2). This means we only get a contribution if for each (i; l)
there is (s; j) (i 6= j) so that ti�nli = tj �nsj; but then ti� tj = nli�nsj which is bounded
in absolute value by N . Hence, when we sum over ftig4i=1 we get at most 2N(T �N) terms
from the summation over ti and tj and at most T 2 when summing over the rest.
Next we evaluate the summation over fn1i; n2ig4i=1 for �xed ftig4i=1: For given (l; i) and

ti; nli we de�ne the sets of indices:

Gli = f(s; j) : tj � nsj = ti � nlig:

For �xed ftig4i=1 and (l; i) we have for (s; j) 2 Gil that nsj = nli + tj � ti and we use this to
eliminate all nsj but the smallest, which we call n; and �nd nsj = n+ rsj where rsj � 0: Let
r = maxs;j rsj; then X

nsj :s;j2Gli

Y
s;j2Gli

�s;nsj =

N�1�rX
n=0

Y
s;j2Gli

�s;n+rsj :

We �rst take k � 3 and evaluate

�s;n+rsj � c(1 + log(n+ rsj))
ms(n+ rsj)

�1=2+� � cn�1=2+�=3;



Likelihood inference for cofractional processes 32

say, so that the sum of more than 3 products is bounded by c
PN�1�r

n=0 n(�1=2+�=3)k � c: For
k = 2 use the bound

(1 + log(n+ rsiji))
msi (n+ rsiji)

�1=2+� � (1 + logN)msin�1=2+�

and �nd

c

N�1�rX
n=0

2Y
i=1

(1 + log(n+ rsiji))
msin(�1=2+�) � c(1 + logN)ms1+ms2N2�: (80)

Thus the summation
P

(1)

Q4
i=1 �1;n1i�2;n2i for �xed ftig4i=1 depends on the groups of identical

indices, but is clearly maximized for 4 pairs and the upper bound is c(1+logN)4(m1+m2)N8�:
Therefore, the fourth moment is bounded by

cT�4T 2N(T �N)(1 + logN)4mN8� = c(1 + logN)4mT�1N1+8�;

which proves (76).
Proof of (77): Note that because n1 < N � n2 the expectation of QT is zero. If

we raise the sum to the fourth power we get (79), but now the summation
P

(1) is over
1 � n1i < N � n2i < ti � T; i = 1; : : : ; k.
Because sums of products of three or more � terms are bounded as in (80), the largest

contribution is from the case where the subscripts are equal in pairs, but n1i < N < n2i
implies that ti � n1i > ti � n2i: This means that ti � n1i must equal tj � n1j for some j 6= i;
implying jti � tjj < N: For �xed ftig4i=1 we �nd that summing over n1j = tj � ti + n1i such
a pair will give a contribution, apart from the log-factors, of cN2�; whereas summation over
the other three pairs give at most c(T 2�)3 because N < n2i; n2j < T: Similarly, summation
over ti; tj give at most N(T �N)3 terms, but then E(QT (a1; a2)

4) is bounded by

T�4c(1 + log T )4mT 6�(T �N)3NN2� = c(1 + log T )4mT�1+6�N1+2�;

which proves (77).
Proof of (78): In order to prove tightness we check condition (??). It follows from (76)

and (77) that for � < 1=(1 + 8�) < (1� 6�)=(1 + 2�) we have

jjMT (v1; v2)jj4 � cT ! 0 and jjQT (v1; v2)jj4 � cT ! 0:

Next de�ne �t�n1;t�n2 = "t�n1"t�n2��121ft�n1=t�n2g and considerMT (v1; v2)�MT (~v1; ~v2)
which contains the di¤erence

�n1(�v1)�n2(�v2)� �n1(�~v1)�n2(�~v2)
= (�n1(�v1)� �n1(�~v1))�n2(�~v2) + �n1(�v1)(�n2(�v2)� �n2(�~v2));

where the �rst term is, by the meanvalue theorem,

(�n1(�v1)� �n1(�~v1))�n2(�~v2) = (v1 � ~v1)D�n1(�v�1)�n2(�~v2) = (v1 � ~v1)�1n1�2n2 :

Here �1n1 and �2n2 satisfy (69) with ai = vi � �1=2� � and m1 = 1;m2 = 0: Therefore we
have from (76) that

jj
TX

t=N+1

X
1�n1;n2<N

(�n1(�v1)� �n1(�~v1))�n2(�~v2)�t�n1;t�n2jj4 � cT jv1 � ~v1j;
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where cT ! 0; and a similar expression for the other term. This shows that

jjMT (v1; v2)�MT (~v1; ~v2)jj4 � cT jv � ~vj � cjv � ~vj;

and hence that MT (v1; v2) is tight.
Next consider jjQT (v1; v2)�QT (~v1; ~v2)jj4 which is bounded by

jjT�1
TX

t=N+1

(U1t � ~U1t)Vtjj4 + jjT�1
TX

t=N+1

~U1t(Vt � ~Vt)jj4;

where U1t � ~U1t =
PN�1

n=0 (�n(�v1)� �n(�~v1))"t�n = jv1 � ~v1j
PN�1

n=0 �1n"1;t�n and Vt � ~Vt =Pt�1
n=N(�n(�v2) � �n(�~v2))"2;t�n = jv2 � ~v2j

Pt�1
n=N �2n"2;t�n. Now apply the same proof as

above.

A.3 Limit theory for product moments of stochastic terms

In this section we analyze product moments of processes that are either asymptotically
stationary, near critical, or nonstationary and we �rst de�ne the corresponding fractional
indices.

De�nition A.1 We take three fractional indices w; v; and u in the intervals

[�w0;�1=2� �w]; [�1=2� �v;�1=2 + ��v]; and [�1=2 + �u; u0]; (81)

respectively, where we assume 0 � ��v < 1=2 and 0 < �v < min(�w; �u):

In the following we assume these bounds on (u; v; w). In the applications we always
choose �xed values of �u and �w; but we shall sometimes choose small values (! 0) of ��v:
Thus for Zt 2 Z; see De�nition 1 and indices (w; v; u) as in De�nition A.1, �w

+Z
+
t is

nonstationary, �u
+Z

+
t is asymptotically stationary, and �

v
+Z

+
t is close to a critical process

of the form �
�1=2
+ "t. In the subsequent lemmas we derive results for product moments of

fractional di¤erences of processes in the class Z.
For m = m1 +m2 we de�ne the product moments

DmM1T (a1; a2) = T�1
TX
t=1

(Dm1T a1�a1�t(1))(D
m2�a2Z2t)

0

DmMT (a1; a2) = T�1
TX
t=1

(Dm1�a1
+ Z

+
1t)(D

m2�a2
+ Z

+
2t)

0;

MT ((a1; a2); (a1; a2)) = T�1
TX
t=1

�
�a1
+ Z

+
1t

�a2
+ Z

+
2t

��
�a1
+ Z

+
1t

�a2
+ Z

+
2t

�0
;

etc. Let NT be a normalizing sequence and de�ne MT (a1; a2) = OP (NT ) on a compact
set K to mean that N�1

T MT (a1; a2) is tight on K and MT (a1; a2) = oP (NT ) to mean that
N�1
T MT (a1; a2) =) 0 on K.
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Lemma A.8 Let Zit = �i"t+�
b0
P1

n=0 �
�
in"t�n 2 Z; i = 1; 2; and de�ne MT (a1; a2) as above

and assume that Ej"tjq <1 for q > ��1w and q � 8. Then:
(i) Uniformly for �w0 � w � �1=2 � �w and �1=2 + �u � u � u0; see De�nition A.1,

we �nd

DmMT (u1; u2) =) DmE(�u1Z1t)(�
u2Z2t)

0; (82)

MT (w1; w2)T
w1+w2+1 =) �1

Z 1

0

W�w1�1(s)W�w2�1(s)
0ds�02; (83)

DmMT (w; u)T
w+1=2 = OP ((1 + log T )

2+mT�min(�u;�w)): (84)

Uniformly for �w0 � w � �1=2��w, �1=2��v � v � v0, and �1=2+�u � u � u0 we �nd

MT (w; v)T
w+1=2 = OP ((1 + log T )

2T �v); (85)

MT (v; u) = OP (1): (86)

(ii) If we assume further that �v < min(b0=2; 1=6) and choose N = T�; � < (1�6�v)=(1+
2�v); and (�

0
1; �

0
2) has full rank, then for �1=2� �v � vi � �1=2 + ��v we �nd

MT ((v1; v2); (v1; v2)) � c
1�N�2��v

2��v
+RT ; (87)

where RT = oP (1) uniformly for jvi + 1=2j � �v. This implies that for (��v; T )! (0;1) we
have

min
�1=2��v�vi��1=2+��v

det(MT ((v1; v2); (v1; v2)))
P!1; (88)

max
�1=2��v�vi��1=2+��v

MT ((v1; v2); (v1; v2))
�1 P! 0: (89)

Proof. A matrix valued process DmMT (a1; a2) is tight if the coordinate processes are tight,
and the (i; j)�th coordinate is a �nite sum of univariate processes constructed the same way,
so it is enough to prove the result for univariate processes. We prove tightness by checking
condition (62) of Lemma A.1 for DmMT (a1; a2). The moments are evaluated by �T (�1; �2);
see (??), for suitable coe¢ cients satisfying (69) and (70).
We introduce the notation M��

T (w1; w2) = Tw1+w2+1MT (w1; w2) to indicate that the non-
stationary processes have been normalized by Twi+1=2. We give the proofs for m1 = m2 = 0;
as the extra factors of (1 + log T )mi do not change the evaluations.
Proof of (83): We de�ne the coe¢ cients � i;t�n = �t�n(�ui); which satisfy condition (69).

The assumption that ui � �1=2 + �u implies min(u1 + u2 + 1; u1 + 1; u2 + 1) � 2�u; so we
can apply (??) and (73) which shows that jjMT (u1; u2)jj4 � c:
Next we consider jjMT (u1; u2)�MT (~u1; ~u2)jj4 which we bound by

jjT�1
TX
t=1

(�u1
+ Z

+
1t ��~u1

+ Z
+
1t)(�

u2
+ Z

+
2t)

0jj4 + jjT�1
TX
t=1

(�~u1
+ Z

+
1t)(�

u2
+ Z

+
2t ��~u2

+ Z
+
2t)

0jj4: (90)

We apply (??) to the �rst term with �1;t�n = (�t�n(�u1)��t�n(�~u1)) and �2;t�n = �t�n(�u2)
bounded by (69), see also JN (2010, Lemma B.3), and it follows from (73) with a = 2�u that
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the �rst term of (90) is bounded by c(u1 � ~u1). A similar proof works for the other term of
(90), and tightness then follows from (62).
Notice that the second condition of (62) follows in the same way as the �rst using the

inequalities in Lemma A.6. The only di¤erence is an extra log factor and the factor (u1� ~u1).
We next apply the law of large numbers to identify the limit as an expectation. From

�uiZit = �
ui
+Zit +�

ui
�Zit =

P1
j=0 & ij(�ui)"t�j we �nd

MT (u1; u2) = T�1
TX
t=1

�u1Z1t�
u2Z 02t + T�1

TX
t=1

�u1
� Z1t�

u2
� Z

0
2t

� T�1
TX
t=1

�u1Z1t�
u2
� Z

0
2t � T�1

TX
t=1

�u1
� Z1t�

u2Z 02t:

The �rst term converges in probability toE(�u1Z1t)(�
u2Z2t)

0 by a LLN for stationary ergodic
processes. By the Cauchy-Schwarz inequality the remaining terms tend to zero because

E(T�1
TX
t=1

�ui
�Zit�

ui
�Z

0
it) = T�1

TX
t=1

1X
k=t

& ik(�ui)
& ik(�ui)0 ! 0:

We proved above thatMT (u1; u2) is tight and thereforeMT (u1; u2) =) E(�u1Z1t)(�
u2Z2t)

0:
Proof of (82): We de�ne ��i;t�n(wi) = Twi+1=2�t�n(�wi) for wi � �1=2 � �w so that

max(w1; w2; w1+w2+1) � �2�w < 0:We then apply (??) and (74) with � = 2�w; and �nd
that (62) holds so that M��

T (w1; w2) is tight. Because �1=(wi + 1=2) � ��1w < q we obtain
the limit

Twi+1=2�wi
+ Z

+
i[Ts] =) W�wi�1(s); i = 1; 2; on D[0; 1];

see (4) and JN (2010, Lemma D.2) for a few more details. The continuous mapping theorem
gives the result (82).
Proof of (84): We apply (??) and (75) for �1;t�n(u) = �t�n(�u) and ��2;t�n(w) =

Tw+1=2�t�n(�w) and �nd for w � �1=2� �w and u � �1=2 + �u that with a = �u; � = �w;

jjM�
T (w; u)jj4 � c(1 + log T )T�min(�u;�w);

jjM�
T (w; u)�M�

T ( ~w; ~u)jj4 � cj(w; u)� ( ~w; ~u)j(1 + log T )2T�min(�u;�w);

and (62) implies that M�
T (w; u) = OP ((1 + log T )

2T�min(�u;�w)):
Proof of (85): We �rst apply (??) with �1;t�n = �t�n(�v) and ��2;t�n = Tw+1=2�t�n(�w)

and �nd from (75) with a = ��v and � = �w that for v � �1=2 � �v and w � �1=2 � �w
we get

jjM�
T (w; v)jj4 � c(1 + log T )T �v ; (91)

jjM�
T (w; v)�M�

T ( ~w; ~v)jj4 � cj(w; v)� ( ~w; ~v)j(1 + log T )2T �v ;

and (62) shows that M�
T (w; v) = OP ((1 + log T )

2T �v):
Proof of (86): We de�ne �1;t�n = �t�n(�u) and �2;t�n = �t�n(�v) where v � �1=2� �v

and u � �1=2 + �u; so that min(u + 1; v + 1; u + v + 1) � �u � �v > 0, see De�nition A.1:
It then follows from (??) and (73) that (62) is satis�ed and hence that MT (u; v) is tight.
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Proof of (87), (88), and (89): De�ne ~Z+it by Z
+
it = �i"t + �

b0
+
~Z+it ; i = 1; 2; and because

we need to decompose the processes we use the notation

MT (U; V ) = T�1
TX
t=1

U+t V
+0
t

for product moments. We de�ne � = blockdiag(�1; �2); �
v
+Zt = (�

v1
+Z

0
1t;�

v2
+Z

0
2t)

0, �v
+
~Zt =

(�v1
+
~Z 01t;�

v2
+
~Z 02t)

0, and �v
+"t = (�

v1
+ "

0
t;�

v2
+ "

0
t)
0 and �nd the evaluation

MT (�
v
+Z;�

v
+Z) � �MT (�

v
+";�

v
+")�

0 +MT (�
b0+v
+

~Z;�v
+")�

0 + �MT (�
v
+";�

b0+v
+

~Z);

where the inequality means that the di¤erence is positive semi-de�nite.
We de�ne the index ui = vi + b0 � �1=2 + (b0 � �v) for �

b0+vi
+

~Z+it so that �u � �v =
b0 � 2�v > 0: It follows that we can use (86) for the components of MT (�

b0+v
+

~Z;�v
+") and

its transposed which are therefore OP (1):
We next consider MT (�

v
+";�

v
+") and decompose �

vi
+"t for t > N = T� :

�vi
+"t =

N�1X
n=0

�n(�vi)"t�n +
t�1X
n=N

�n(�vi)"t�n = U+it + V +
it : (92)

We de�ne U+t = (U
+0
1t ; U

+0
2t )

0 and V +
t = (V +0

1t ; V
+0
2t )

0 and evaluate the product moment as

MT (�
v
+";�

v
+") �MT (U;U) +MT (U; V ) +MT (V; U):

We next show that MT (U; V ) +MT (V; U) = oP (1): We apply (77) in Lemma A.7 and
�nd for QT =MT (U

+
it ; V

+
jt ) =) 0 for � < (1� 6�v)=(1 + 2�v). Thus,

MT (U; V ) +MT (V; U) = oP (1): (93)

What remains is the term MT (U;U) where the dependence on ��v appears for the �rst
time. We de�ne for integer N and �1=2� �v � vi � �1=2 + ��v the coe¢ cient

FNij =

N�1X
n=0

�n(�vi)�n(�vj) � 1 + c
N�(vi+vj+1) � 1
�(vi + vj + 1)

� 1 + c1�N�2��v

2��v
;

see (65) and (72). Note that FNij !1 as (��v; N)! (0;1). The mean of MT (U;U) is

E(T�1
TX

t=N+1

U+t U
+0
t ) = T�1(T �N)

�
FN11 FN12
FN12 FN22

�

 
0;

and the di¤erence RT (v1; v2) =MT (U;U)�E(MT (U;U)) =) 0 uniformly for jvi+1=2j � �v.
It follows that �MT ((v1; v2); (v1; v2))�

0 is bounded below by

�MT (U;U)�
0 � c

1�N�2��v

2��v
(�01; �

0
2)
0
0(�

0
1; �

0
2) + oP (1);
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where the remainder term is uniformly small for jvi + 1=2j � �v independently of ��v. This
proves (87), (88) and (89).
For the proof of existence and consistency of the MLE we need the product moments

that enter the likelihood function `T;p( ) and therefore de�ne

MT ((a1; a2); a3) = T�1
TX
t=1

�
Dm1�a1

+ Z
+
1t

Dm2�a2
+ Z

+
2t

�
(Dm3�a3

+ Z
+
3t)

0;

MT (a1; a2ja3) = MT (a1; a2)�MT (a1; a3)M
�1
T (a3; a3)MT (a3; a2);

and so on.

Corollary A.9 If the assumptions of Lemma A.8 (i) hold, then

Tw1+w2+1MT (w1; w2ju) = Tw1+w2+1MT (w1; w2) + oP (1); (94)

MT (u1; u2jw; u3) =) V ar(�u1Z1t;�
u2Z2tj�u3Z3t); (95)

MT (v; u1jw; u2) = OP (1): (96)

If the assumptions of Lemma A.8 (ii) hold and also � < (�w � �v)=(1=2 + �v), then

MT ((v1; v2); (v1; v2)jw; u) � c
1�N�2��v

2��v
+RT ; (97)

where RT = OP (1) uniformly for jvi + 1=2j � �v. This implies that, if S denotes the set
de�ned by �w; �u; �v; ��v in (81), and �v < min(b0=2; 1=6), we have for (��v; T )! (0;1);

min
S
det(MT ((v1; v2); (v1; v2)jw; u))

P!1; (98)

max
S

MT ((v1; v2); (v1; v2)jw; u)�1
P! 0: (99)

Proof. Proof of (94): We decompose

M��
T (w1; w2ju)�M��

T (w1; w2) = �M�
T (w1; u)MT (u; u)

�1M�
T (u;w2);

and �nd from (84) that M�
T (wi; u) =) 0; which together with (83) shows the result.

Proof of (95): We decompose

MT (u1; u2jw; u3)�MT (u1; u2ju3) = �M�
T (u1; wju3)M��

T (w;wju3)�1M�
T (w; u2ju3);

and �nd from (94) and Lemma A.8 that the right hand side is oP (1) as T ! 1; because
M�

T (ui; wju3) = OP ((1 + log T )
2T�min(�u;�w)); see (84). The result then follows from (83).

Proof of (96): We decompose MT (v; u1jw; u2) as

MT (v; u1)�
�
M�

T (w; v)
MT (u2; v)

�0�
M��

T (w;w) M�
T (w; u2)

M�
T (u2; w) MT (u2; u2)

��1�
M�

T (w; u1)
MT (u2; u1)

�
:

Because M�
T (w; u2) =) 0 by (84), we �rst note that the second term is

M�
T (v; w)M

��
T (w;w)

�1M�
T (w; u1) +MT (v; u2)MT (u2; u2)

�1MT (u2; u1) + oP (1):
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Now by (85),M�
T (w; v) = OP ((1+log T )

2T �v) andM�
T (w; u1) = OP ((1+log T )

2T�min(�u;�w));
so that by (82) and because �v < min(�u; �w),M

�
T (v; w)M

��
T (w;w)

�1M�
T (w; u1) =) 0: Using

(83) and (86) the result follows.
Proof of (97), (98), and (99): The proof is similar to that of (87) except for conditioning

on a stationary and a nonstationary variable. We start by eliminating the stationary variable.
We �nd

MT ((v1; v2); (v1; v2)jw; u)�MT ((v1; v2); (v1; v2)jw)
= �MT ((v1; v2); ujw)MT (u; ujw)�1MT (u; (v1; v2)jw);

where MT (u; ujw)�1 = OP (1); see (95), and MT ((v1; v2); ujw) = OP (1), see (96). Thus, for
�vi
+Z

+
it = �

vi
+"t + �

vi+b0
+

~Z+it ; i = 1; 2; Z
+
t = (Z

+0
1t ; Z

+0
2t )

0, and �w
+Z

+
3t = �

w
+"t + �

w+b0
+

~Z+3t it is
enough to consider MT ((v1; v2); (v1; v2)jw) =MT (�

vZ;�vZj�wZ3) which is bounded below
by

MT (�
v";�v"j�wZ3) +MT (�

v";�b0+v ~Zj�wZ3) +MT (�
b0+v ~Z;�v"j�wZ3):

It follows from (96) for ui = vi + b0 � �1=2 + b0 � �v (i.e., �u = b0 � �v > �v), and
w � �1=2� �w; that the last two terms are OP (1).
We next decompose the �rst term as �vi

+"t = U+it + V +
it ; see (92), and evaluate

MT (�
v";�v"j�wZ3) �MT (U;U j�wZ3) +MT (U; V j�wZ3) +MT (V; U j�wZ3):

The last two terms are evaluated as

MT (U; V j�wZ3) =MT (U; V )�M�
T (U;�

wZ3)M
��
T (�

wZ3;�
wZ3)

�1M�
T (�

wZ3; V ):

It follows from (93) that MT (U; V ) = T�1
PT

t=N+1 U
+
t V

+0
t = oP (1), because � < (1 �

6�v)=(1 + 2�v): From (82) we �nd that, because q > ��1w ; we have M��
T (�

wZ3;�
wZ3)

�1 =
OP (1) for w � �1=2 � �w, and (85) shows that M�

T (�
wZ3; V ) = OP ((1 + log T )

2T �v). For
the term

M�
T (U;�

wZ3) = T�1
TX

t=N+1

U+t �
w
+Z

+0
3t T

w+1=2 =
N�1X
n=0

�n(�v1)(T�1
TX

t=N+1

"t�n�
w
+Z

+0
3t T

w+1=2);

we apply (84) with u = 0 = �1=2+1=2 (�u = 1=2) so that T�1
PT

t=N+1 "t�n�
w
+Z

+0
3t T

w+1=2 =
OP ((1 + log T )

2T��w): It follows that

M�
T (U;�

wZ3) = OP ((1+ log T )
2T��w

N�1X
n=1

n�v1�1) = OP ((1+ log T )
2T��w+�(1=2+�v)): (100)

Combining these results we �nd MT (U; V j�wZ3) = OP ((1 + log T )
4T��w+�v+(1=2+�v)�) =

oP (1) for � < (�w � �v)=(1=2 + �v).
Finally we need to analyze

MT (U;U j�wZ3) =MT (U;U)�M�
T (U;�

wZ3)M
��
T (�

wZ3;�
wZ3)

�1M�
T (�

wZ3; U);

where the dependence on ��v enters. Here MT (U;U) � c(1 � N�2��v)=2��v + oP (1), where
the oP (1) term is uniform in jvi + 1=2j � �v, see (87). Furthermore, (100) shows that
M�

T (U;�
wZ3) = oP (1) because � < (�w � �v)=(1=2� �v)

11. Together with (82) this proves
(97), (98), and (99).
11SJ: Hvad skal du bruge < �w=(1=2 + �v) til?
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A.4 Limit theory for product moments of deterministic terms

The next lemma gives results for the impact of initial values and deterministic terms; see
(38), in the models considered, using the bounds in JN (2010, Lemma C.1). We de�ne

d > b : Dit( ) =

�
�d+ib
+ �0t +�

d+ib
� Xt +�

d+ib
+ �0t;

�d+ib
+ �0t;

d0 � 1=2
d0 < 1=2

(101)

d = b;Dit(d) =

(
�
(1+i)d
+ �0t +�

(1+i)d
� Xt +�

(1+i)d
+ ��0t;

�
(1+i)d
+ ��0t

d0 � 1=2
d0 < 1=2

(102)

and let Dm be the derivative with respect to d + ib. Note that when d = b the term
C1�0�

0
0�t(1) is not included in Dit( ) but is part of ??:

Lemma A.10 For �1 > 0; and 0 < �1 < 1=2 we have

(i) For �i = d+ ib� d0 and d� b � �1; the functions D
mDit( ) are continuous in  and

max
�1=2��1��i�u1

jDmDit( )j ! 0 as t!1; (103)

max
�u0��i��1=2��1

max
1�t�T

jDmT �i+1=2�00?Dit( )j ! 0 as T !1: (104)

(ii) If the initial values satisfy X�n = 0; n > N0; then (103)�(104) hold for d� b � 0.
(iii) If d = b (� � d � d1) the results (103)�(104) hold if � � b0 6= 1=2:

Proof. Theorem 3 and (6) show that becauseC0�0�00 = 0; we have that �0t = ��+(L)�1��(L)Xt

is

� (C0��d0
+ +��d0+b0

+ F+(L))(��0�00�d0�b0
� +

kX
j=0

	0j�
d0+jb0
� )Xt

= �
kX
j=0

[C0	0j�
�d0
+ + F+(L)	0j�

�d0+b0
+ ]�d0+jb0

� Xt + F+(L)�0�
0
0�

�d0+b0
+ �d0�b0

� Xt: (105)

From JN (2010, Lemma C.1) we �nd for G(z) =
P1

n=0 gnz
n and

P1
n=0 jgnj <1 that

max
�1�min(u+v;u+1;v)�u1

jG+(L)Dm�u
+�

v
�Xtj ! 0 as t!1; (106)

max
�1�min(v�1=2;�u�1=2;1=2)�u1

max
1�t�T

jG+(L)DmT u+1=2�u
��

v
�Xtj ! 0 as T !1: (107)

It is seen from (63) that di¤erentiating the fractional coe¢ cients give an extra factor of the
order (1+ log t) and it is seen from the proof, that such a factor does not change the results,
so we shall give the proof for m = 0.
Proof of (i):
Proof of (103) and (104) for �d+ib

�: Xt; d0 � 1=2: We �nd, uniformly for d+ ib � �1 that
for t!1;

j�d+ib
� Xtj = j

1X
n=0

�t+n(�d� ib)X�nj � c

1X
n=0

(t+ n)�d�ib�1 � c

1X
n=0

(t+ n)��1�1 ! 0; (108)



Likelihood inference for cofractional processes 40

which proves (103). Multiplying by T �i+1=2 ! 0 when �i + 1=2 � ��1 shows (104).
Proof of (103) for �d+ib

+ �0t; d0 � 1=2: The term �d+ib
+ �0t contains terms of the form

G(L)�u
+�

v
�Xt where u = d + ib � 
0 and v = d0 + jb0 � 
0 with 
0 = d0 or 
0 =

d0 � b0; see (105). If d + ib � 
0 � �1=2 � �1 in (103), then for both choices of 
0 we �nd
min(u+ v; u+1; v) � min(�1; 1=2� �1; d0� b0) > 0; and the result (103) follows from (106).
Proof of (104) for �d+ib

+ �0t; d0 � 1=2: If d+ ib� 
0 � �1=2� �1 in (104), then v � �u
so that min(v � 1=2;�u� 1=2; 1=2) = min(�u� 1=2; 1=2) � �1 > 0; and the result follows
from (107) because the normalization T d+ib�d0+1=2 of �d+ib

+ �00?�0t is enough for both choices
of 
0 to ensure max1�t�T jT d+ib�d0+1=2�d+ib

+ �00?�0tj ! 0. Note that the condition d� b � �1
is not used in this case.
Proof of (103) and (104) for �d+ib

+ �0t: We �nd from Theorem 3 that j�d+ib
+ �0tj � ct��1

when d�b � �1; which proves both (103) and (104) because T
�i+1=2 ! 0 when �i+1=2 � ��1:

Proof of (ii): We next consider the case X�n = 0; n � N0.
Proof of (103) and (104) for �d+ib

�: Xt: From (108) we �nd that j�d+ib
� Xtj � c

PN0
n=0(t +

n)�(d+ib)�1 � ct�1 ! 0 for d+ib � 0, so that (103) holds. In (104) we assume �i � �1=2��1
so that T �i+1=2 ! 0; and that proves (104).
Proof of (103) and (104) for �d+ib

+ �0t : This contains terms of the form G(L)�u
+�

v
�Xt:

For u = d+ ib� 
0 � �1=2� �1 and v = d0 + jb0 � 
0 we have u+ v � 0: For such a term
we apply the evaluation from JN (2010, Lemma B.4, equation (62))

j�u
+�

v
�Xtj = j

N0X
n=0

(
t�1X
j=0

�j(�u)�n+t�j(�v))X�nj � ct�min(u+v+1;u+1;v+1); (109)

which tends to zero because min(u + v + 1; u + 1; v + 1) � min(1; 1=2 � �1; 1 + 
0) > 0:
This proves (103) for the term �d+ib

+ �0t. For (104) we need not prove anything because the
condition d� b � �1 was not used in the proof in case (i):
Proof of (iii): The model with d = b is not covered by the previous results because they

were proved under the assumption that d� b � �1 > 0:

Proof of (103) and (104) for �(1+i)d
�: Xt: For i � 0 we �nd from (108) that j�(1+i)d

� Xtj �
ct�d � ct�� ! 0 whereas for i = �1 we have �0

�Xt = 0:

Proof of (103) and (104) for �(1+i)d
+ �0t: Because the condition (1 + i)d � �1 was not

used in the proof of (104) for the term T �i+1=2�00?�0t we only have to consider (103): As in
the proof of (i) we get terms of the form G(L)�u

+�
v
�Xt where u = d(1 + i)� 
0 is assumed

� �1=2� �1; and v = d0(1 + j) � d0; for j � 0 with 
0 = d0 or 
0 = 0; see (105), and the
term with �d0�d0

� Xt = �
0
�Xt = 0. Then for i � 0 we �nd u+ v � d(i+1)� 
0+ d0(1+ j) �

d � 
0 + d0 � � so that min(u + v; u + 1; v) � min(�; 1=2 � �1; d0) > 0 which proves (103)
for i � 0: For i = �1 we get u = �
0 � �1=2 � �1; v � d0: If 
0 = 0; then u = 0 and
j�u

+�
v
�Xtj = j�v

�Xtj � ct�d0 ! 0; and if 
0 = d0 then we are left with the term �
�d0
+ �d0

�Xt;
where u = �d0 � �1=2 � �1 implies d0 � 1=2 + �1: If d0 > 1=2 we choose �1 < d0 � 1=2
and there is nothing to prove. If d0 = b0 < 1=2 we instead represent Xt by the stationary
solution, Xt = C0�

�d0"t + Yt + �0t then �0t is not present and there is nothing to prove.
Proof of (103) and (104) for �d+ib

+ ��0t: Finally, see (102), we have j�d+ib
+ ��0tj = j�

d(1+i)
+

Pt�1
t=0 �n0�0�

0
0�t�n(1�

d0)j ! 0 uniformly in d 2 [�; d1]:
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Figure 1: The parameter space N is the set
bounded by b > 0, b � d, and d � d1. The
sets N bd

m = N bd
m (�1; �2); where a process is

close to being critical, and the sets N int
m =

N int
m (�1; �2) are illustrated assuming k = 1.

If k � 2 there would be more lines.

Appendix B Proof of Theorem 4
We give the proof for case (i).
By Lemma A.10 the deterministic terms generated by initial values are uniformly small.

Note that (103) is formulated for index� �1=2��1; which covers not only the asymptotically
stationary �00Xjt and �

0
0?Xit but also those which are nearly critical, whereas (104) deals

with the nonstationary �00Xjt and �
0
0?Xit. Hence initial values do not in�uence the limit

behavior of product moments, and in the remainder of the proof of Theorem 4 we therefore
assume that the deterministic terms generated by initial values are zero.
In the following we use the result that if we regress a stationary variable on stationary

and nonstationary variables, the limit of the normalized residual sum of squares is the same
as if we leave out the nonstationary variables from the regression. Similarly if we regress a
nonstationary variable on stationary and nonstationary variables, the limit of the normalized
residual sums of squares is the same as if we leave out the stationary variables from the
regression. Special problems arise if the regression contains processes that are nearly critical.
These results are made precise in Lemma A.8 and Corollary A.9, which we apply repeatedly
below to prove uniform convergence.
The behavior of the processes depends on d and b:Note that �00?�

d+mbXt 2 F(d0�d�mb)
and �00�

d+nbXt 2 F(d0 � b0 � d � nb); and it is convenient to de�ne the fractional indices
�m = d� d0 +mb. Thus the fractional order is the negative fractional index. For notational
reasons in De�nition B.2 below we de�ne ��2 = �1 and �k+1 =1.
The process �d+mb�00?Xt is critical if �m = d + mb � d0 = �1=2; see Figure 1, and

we partition the parameter space into �interiors� and �boundaries� as given in the next
de�nition.

De�nition B.2 We take 0 < �2 < �1 and de�ne the (�1; �2)�interiors,

N int
m (�1; �2) = f 2 N : �m�1 � �1=2��1 and �1=2+�2 � �mg; �1 � m � k+1; (110)

and the (�1; �2)�boundaries,

N bd
m (�1; �2) = f 2 N : �1=2� �1 � �m � �1=2 + �2g; �1 � m � k: (111)
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Note (recalling �k+1 =1) that N int
k+1(�1; �2) = N int

k+1(�1) does not depend on �2 and

Nconv(�) = [k�1m=�1(N int
m (�1; �2) [N bd

m (�1; �2)) [N int
k (�1; �) = f 2N : �k � �1=2 + �g;

Ndiv(�) = N int
k+1(�1) [N bd

k (�1; �) = f 2N : �k � �1=2 + �g:

We have de�ned in (110) the (�1; �2)�interior N int
m (�1; �2) as the set of  for which all

processes are either clearly stationary or clearly nonstationary in the sense that their frac-
tional index is either � �1=2 + �2 or � �1=2 � �1: The (�1; �2)�boundary N bd

m (�1; �2) is
the set where the process �00?Xmt has an index which is close to the critical value of �1=2;
see Figure 1 for an illustration.
We apply Lemma A.8 and Corollary A.9 as well as De�nition A.1 of the notation

�w; �v; �v; and �u: We note that for (d; b) 2 N all indices are bounded.

B.1 Proof of (24): divergence of `T;p( ) on Ndiv(�) \ K(�; �1)
In this proof we �rst show that, for a suitable �1 > 0,

inf
 2N bd

k (�1;�)\K(�;�1)
`T;p( )

P!1 as (�; T )! (0;1): (112)

Then we show that, for the above choice of �1 and for �xed � > 0;

inf
 2N int

k+1(�1)\K(�;�1)
`T;p( )

P!1 as T !1: (113)

Proof of (112): In this set, �00?Xkt is near critical with index v1 = d+ kb� d0 2 [�1=2�
�1;�1=2+�]; so we take �v = �1 and �v = � and choose � < �=2: The processes �00?Xit; i < k;
are nonstationary with index d+ ib�d0 � d+(k� 1)b�d0 � �1=2� (���) � �1=2� �=2,
which determines �w = �=2. Then q > 2=� are enough moments for weak convergence of the
nonstationary processes to fBM, c.f. (82) of Lemma A.8. The stationary processes �00Xjt

have index d+jb�d0+b0 � �d0+b0 = �1=2+(1=2�d0+b0) such that �u = 1=2�d0+b0 > 0.
We want to apply Corollary A.9, so the choice of �1 = �v needs to be such that the

condition from Corollary A.9, �v < min(b0=2; 1=6); is satis�ed along with �v < min(�u; �w)
from De�nition A.1. The choice �1 = �v < �=2 satis�es these inequalities if we take �=2 <
min(1=6; 1=2� 2(d0 � b0)): We further take �1 so close to �=2 that q > 1=�1 > 2=�:
For Xkt = ��0�

0
0Xkt+ ��0?�

0
0?Xkt = B0(X

0
kt�0; X

0
kt�0?)

0 where B0 = (��0; ��0?); see (8), we
decompose the determinant det(SSRT ( )) = det(B0MT ((v1; u2); (v1; u2)ju;w)B0

0) as

det(MT (u2; u2ju;w)) det(MT (v1; v1ju; u2; w))(det(B0))2;

where the �rst factor converges in distribution by (95) uniformly in  2 N bd
k (�1; �), and the

second factor diverges to in�nity uniformly in  2 N bd
k (�1; �) for (�; T )! (0;1), see (99).

This proves (112).
Proof of (113): On N int

k+1(�1); all �
0
0?Xit are nonstationary with index d + ib � d0 �

�1=2 � �1 so we set �w = �1. Thus, we need q > ��11 moments for weak convergence of
the nonstationary processes to fBM, which is satis�ed because 1=q > 1=�1 > 2=�. As above,
�00Xjt are stationary with �u = 1=2� d0 + b0.
We decompose det(SSRT ( )) = det(B0MT ((w1; u2); (w1; u2)ju;w)B0

0) as

det(MT (w1; w1jw; u)) det(MT (u2; u2jw1; u; w)) det(B0)2:
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The second factor is OP (1) uniformly in  2 N int
k+1(�1)\K(�; �1) by (95). In the �rst factor

we normalize Tw1+w2�1MT (w1; w1jw; u) to convergence, see (94), so that the �rst factor is
OP (T

�(w1+w2�1)) = OP (T
2�1), and

min
 2N int

k+1(�1)\K(�;�1)
`p;T ( )

P!1 as T !1:

This proves (113) and completes the proof of (24).

B.2 Proof of (25): weak convergence of `T;p( ) to `p( ) on C(Nconv(�) \ K(�; �1))
For this proof, we take � > 0 as �xed and examine the subsets of Nconv(�) in turn. The
idea in the proof below is that we �rst choose a suitable �xed �1 > 0 and then show, for
m � k � 1;

sup
 2N bd

m (�1;�2)\K(�;�1)
j`T;p( )� `p( )j

P! 0 as (�2; T )! (0;1): (114)

Next we �x �1 > 0 (at the above choice) and also �x �2 > 0 and show that, for m � k;

sup
 2N int

m (�1;�2)\K(�;�1)
j`T;p( )� `p( )j

P! 0 as T !1; (115)

noting that in the case m = k we have �2 = �:
Proof of (114): We want to show that the pro�le likelihood `T;p( ) = log det(SSRT ( )),

see (21), converges as a continuous process to `p( ) by choosing a suitable �1 and letting
(�2; T )! (0;1) in the application of Corollary A.9.
On N bd

m (�1; �2) the near critical index of �
0
0?Xmt is v = d+mb�d0 2 [�1=2��1;�1=2+

�2]; and we choose �v = �1 < �=2 as above so that q > 1=�1 > 1=�w and �v = �2 < �=2:
The pro�le likelihood is derived by regressing �d+kbXt on the other variables, which

can be either asymptotically stationary or not. Again, the processes �d+jb�00Xt is station-
ary and we choose �u = 1=2 � d0 + b0: We collect all asymptotically stationary regressors
f�00?Xitgk�1i=m+1 and f�00Xjtgk�1j=�1 in a vector where the lowest fractional index for �

0
0?Xit

is �m+1 = �m + b � �1=2 + (� � �1) > �1=2 + �=2; so we choose �u = �=2: The non-
stationary processes f�00?Xitgm�1i=�1 are collected in a vector with largest fractional index
w = �m�1 = d+ (m� 1)b� d0 � �1=2+ �2� b � �1=2� �=2, so we set �w = �=2. This im-
plies that q > 2=� = ��1w are enough moments to get weak convergence of the nonstationary
processes to fBM.
Since  2 N bd

m (�1; �2) and m � k � 1; �00?Xkt and �
0
0Xkt are asymptotically stationary

(indices u1 = d + kb � d0 = d + mb � d0 + (k � m)b � �1=2 � �1 + b � �1=2 + �=2 and
u2 = d+ kb� d0 + b0 � �1=2 + (1=2� d0 + b0) � �1=2 + �=2.
Thus, for the application of Corollary A.9, we have chosen

�u = �w = �=2; �v = �2 < �=2; �v = �1 < �=2;

so that �1 satis�es the conditions for the results in Corollary A.9.
We �nd, see Corollary A.9, that SSRT ( ) = B0MT ((u1; u2); (u1; u2)jv; w; u)B0

0; where

B0MT ((u1; u2); (u1; u2)jv; w; u)B0
0 � V ar(UktjFstat( ))

= B0MT ((u1; u2); (u1; u2)jw; u)B0
0 � V ar(UktjFstat( ))

�B0MT ((u1; u2); vjw; u)MT (v; vjw; u)�1MT (v; (u1; u2)jw; u)B0
0:
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For �xed �2 > 0, we �nd from (96) the uniform convergence on C(N bd
m (�1; �2) \ K(�; �1)):

B0MT ((u1; u2); (u1; u2)jw; u)B0
0 � V ar(SktjFstat( )) =) 0 as T !1:

From (97) we �nd similarly that for �v < min(�u; �w) it follows that on C(N bd
m (�1; �2) \

K(�; �1))
MT (ui; vjw; u) = OP (1) as T !1:

Finally we �nd from (99) that if S denotes the set de�ned by the choices of (�u; �w; �v; ��v)
we have

max
S

MT (v; vjw; u)�1
P! 0 as (�2; T )! (0;1)

with N = T� for some � < (�w � �v)=(1=2 + �v),which is a positive number because (� �
�2 � �1)=(1=2 + �1) > 0.
This proves (114) on N bd

m (�1; �2) \ K(�; �1); m = �1; : : : ; k � 1.
Proof of (115): For  2 N int

m (�1; �2); we collect all asymptotically stationary regressors
f�00?Xitgk�1i=m and f�00Xjtgk�1j=�1 in a vector where the lowest fractional index for �

0
0?Xit is

�m � �1=2+�2 and the lowest for �00Xjt is �1=2+1=2�d0+ b0; so we choose �u = �2. The
nonstationary processes f�00?Xitgm�1i=�1 are collected in a vector with largest fractional index
w = �m�1 � �1=2� �1; so �w = �1. Because m � k, �00?Xkt and �

0
0Xkt are asymptotically

stationary with indices u1 = d+kb�d0 � �1=2+�2 and u2 = d+kb�d0+b0 � u1 � �1=2+�2.
Here, �1 and �2 are �xed, and we want to apply (95) of Corollary A.9. With �w =

�1 chosen as 1=q > ��11 > 2=� we need q > 2=� moments for weak convergence of the
nonstationary processes to fBM.
With the notation from Lemma A.8 and Corollary A.9 we have that SSRT ( ) = B0MT ((u1; u2); (u1; u2)jw; u)B0

0

and it follows from (95), see also (23), that for �xed �1; �2 and T !1; (115) follows.

B.3 Proof of (26): Unique minimum

OnNdiv(0) the inequality is trivially satis�ed and onNconv(0) we have that Ukt = �d+kb�d0(C0"t+
�b0Yt) is stationary. The transfer function for Ut = C0"t + �

b0Yt is f0(z)�1; where f0(z) =
(1 � z)�d0�0(z) = (1 � z)�b0	0(z) for jzj < 1; see (3). For given  let us assume that
f�00?Uitgki=m are stationary and f�00?Uitgm�1i=�1 are nonstationary. We de�ne

St = Ukt �
k�1X
i=m

	i��0?�
0
0?Uit �

k�1X
j=�1

	j��0�
0
0Ujt = fm(L)(C0"t +�

b0Yt);

and

fm(L) = �
d�d0 [�kbIp �

k�1X
i=m

	i��0?(�
ib ��kb)�00? �

k�1X
j=�1

	j��0(�
jb ��kb)�00]:

The transfer function of the stationary linear process St is fm(z)f0(z)�1; which has
fm(0)f0(0)

�1 = Ip; so that St is of the form St = "t+� 1"t�1+: : : : It follows that V ar(St) � 
0
and equality holds only for St = "t or fm(z) = f0(z); which implies that (d; b) = (d0; b0): Note
that V ar(St) is quadratic in the parameters f	i��0?gk�1i=m; f	j��0gk�1j=�1; and that minimizing
over these, the residual variance satis�es the same inequality

V ar(UktjFstat( )) = V ar(StjFstat( )) � 
0;
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where equality holds only for  =  0:
This completes the proof of Theorem 4.
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Kommentarer
5. MN: Jeg har delt den meget lange Assumption 1 fra foer op i �ere dele, ala artikel 1.

Det goer det noget mere overskueligt. Det koster kun et par linjer, men hvis det bliver et
problem, saa kan vi aendre det tilbage til sidst.
SJ: Du kan vel et eller andet med linie afstand så det ikke ser så diominerende ud?
9. MN: Jeg har aendret antagelsen saa roedderne skal vaere udenfor Cb0_1:
SJ: OK se formuleringen i Theorem 3
8. MN: Nu hvor vores assumptions er lidt mere overskuelige har jeg alligevel medtaget

d0 � b0 < 1=2 her. Vi diskuterer den jo ogsaa i teksten umiddelbart efter antagelserne, saa
man kan vel ikke paastaa at vi proever at gemme den vaek.
SJ: OK
7. MN: Vi skal bruge 8 momenter hele vejen igennem, saa det har jeg tilfoejet her.
SJ: OK
6. MN: Modellen Hr(d = d0) er ikke naevnt i Assumption 1. Burde vi naevne den ogsaa?

Vi naevner Hr(d = b) eksplicit, for da er antagelserne paa k; r lidt anderledes end for Hr.
Antagelserne for Hr(d = d0) er praecis som for Hr:
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SJ: Jeg synes faktisk at hypotesen fylder lidt for meget. Kan vi ikke bare nævne i intro-
duktionen at man selvfølgelig kan antage parameteren d kendt og får tilsvarende resultater,
samt at man kan sætte konstanten til nul og får samme resultater undtagen at fBM ikke skal
forlænges med u�(d�b). Jeg skal formulere et forslag.
Hypotesen d = b kræver special behandling så den er anderledes.
11. MN: Skal vi have �k 6= 0; ��k 6= 0, som jeg har skrevet nu, eller er det ok med

(�k; ��k) 6= (0; 0), som der stod foer? Eller er det det samme?
SJ: OBS Dette afsnit skal måske skrives om med henblik på bedømmer bemærkningerne.

(a; b) 6= (0; 0) betyder geometrisk hele R2 uden (0; 0) men a 6= 0 og b 6= 0 betyder hele R2
uden de to koordinatakser.
13. MN: I beviset for saetningen har jeg ikke kunnet komme udenom at kraeve q > 1=�1

momenter (udover q > 2=�). Det er lidt aergeligt, men jeg har proevet at reparere. Nu er
resultatet (ii) selvfoelgelig ikke laengere saa staerkt som foer. Vi har stadig at det gaelder
for en lidt stoerre maengde, men vi faar ikke laengere en paenere momentbetingelse der.
Faktisk bliver den grimmere idet vi skal have q > (1=2� d0 + b0)

�1, og dvs alle momenter.
SJ: Det har vi diskuteret, men jeg mener at �1 > 0 er nødvendig for initial værdierne, på

den måde det nu gøres, hvorimod � skal bruges til momenter.
14. MN: Her skal vaere et argument for at de andre parametre (fundet ved regression for

Hp) er konsistente. Det maa vaere noget med at de er kontinuerte funktioner af  ̂ og derfor
er konsistente fordi  ̂ er konsistent.
SJ: Er indføjet
30. MN: Bemaerk at begge Lemmaer om MT og QT kun har en-dimensionale "it. Skal

der tilfoejes en kort kommentar om at de samme resultater holder multivariat, eller skal vi
aendre dem til multivariate "it?
SJ: Vi har i begyndelsen af beviset for Lemma A. 10 en bemærkning om at det er nok

med eendimensionale.
MN: Her har jeg forsoegt ved hjaelp af en kort kommentar at komme udenom at skulle

bevise det hele for hver eneste delmodel. Er det godt nok?
SJ: Se andre kommentarer
MN: Blev det for kort?
SJ: Nej


