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1 Introduction

The study of cartel stability is one of the traditional topics in oligopoly
theory. In particular, collusive pricing behavior, whether it is a result of overt
agreement or not, has been viewed as “the only feasible means of assuring
parallel actions among sellers” (Markham [11, p. 901]) and, then, the price
leadership cartel has received great concerns for decades. Although there is
an extensive literature on the price leadership models with one leader and
one follower,1 the studies of the price leadership cartel with many firms are
not still sufficient. In this paper, we study stability of price leadership cartel
in an oligopolistic market with many (but, finite) symmetric firms and show
that relatively large size of the cartel can prevail in the market when each firm
is assumed to have an ability to look ahead and the price leadership cartel
can adopt flexible pricing policies to influence the decision by the non-cartel
firms.

One of the earliest contributions concerning the stability of the price
leadership cartel is d’Aspremont, Jacquemin, Gabszewicz, and Weymark [1],
which had been a starting point of subsequent studies by other authors.
In their model, it is assumed that there is one and only one cartel in the
role of the price leader who announces and sets the price (the size of the
cartel in terms of the number of firms in it varies endogenously through
entry-exit by firms) and that, taking the price set by the leader as given,
the other fringe firms behave in a competitive fashion, that is, they follow
the price-equal-marginal-cost principle.2 Knowing the responses of the fringe
firms, the cartel can derive the residual demand function by subtracting the
total supply by the fringe firms from the total demand. Taking account
of the derived residual demand, the cartel members determine the price to
maximize the (joint) profit. In d’Aspremont et al. [1], a certain size of the
cartel is considered to be “stable” if (i) no firm in the existing cartel find it

1There are several studies exploring the reason that there is a firm in the position of the
price leader. Deneckere and Kovenock [2] and Furth and Kovenock [6] have considered a
model with the firms’ capacity constraints. Pastine and Pastine [14] have used the endoge-
nous timing model of Hamilton and Slutsky [8] to examine endogenous role assignment of
leader and follower. van Damme and Hurkens [17] have also used the endogenous timing
model with firms’ risk consideration by Harsanyi and Selten [9].

2Ono [13] regarded this kind of fringe firm’s behavior as optimal policy. He argued
that because, given the price set by the leader, a fringe firm can set a price infinitesimally
lower than the one set by the leader and sell qf that satisfies the price-equal-marginal-cost
condition, then the fringe firm can maximize its profit. However, there is some difficulty
in justifying this kind of behavior of fringe firms in a rigorous non-cooperative game model
with finite players, because there must be an interaction among fringe firms. Tasnadi [16]
shows that such behavior can be justified in a non-atomic model of the fringe firms.
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profitable to exit from the cartel and (ii) no fringe firm can be better off by
entering the existing cartel. Then, d’Aspremont et al. [1] have shown that
there exists a stable size of the cartel.

Although the model in d’Aspremont et al. [1] is simple and their results
are clear, there are three inadequacies in their analysis: (a) firm’s foresight,
(b) cartel identification, and (c) pricing behavior of the cartel. The studies
subsequent to d’Aspremont et al. [1] have tried to modify these inadequacies;
and our aim in the current paper is also to provide a model that overcomes
them.

The first inadequacy concerning firm’s foresight has been pointed out by
Diamantoudi [3]. She argued that the analysis by d’Aspremont et al. [1]
exhibited some inconsistency between an implicit assumption of the firms’
brightness embedded in the model and the stability criterion that assumes the
firms’ myopic view. Consider a firm in the cartel consisting of k firms. When
the firm contemplates the deviation (exiting from the cartel), it compares
the current profit (the profit of a firm in the size k cartel) with the profit
under a new price set by a new cartel established after its deviation (the
profit of a firm in the fringe with size k− 1 cartel). Since the cartel’s pricing
behavior is restricted to the optimal pricing at the very outset of the model,
the deviating firm should expect correctly the response of readjusting price by
the new cartel against its deviation. In this sense, a firm in their model should
have an ability to foresee the reaction of the other firms (in particular, those
remaining in the cartel) against its deviation. To the contrary, the stability
criterion adopted by d’Aspremont et al. [1] implies that a firm contemplating
deviation does not take account of possible subsequent deviations by other
firms after its own deviation. That is, the stability criterion assumes firm’s
myopic view, conflicting the foresight of firms assumed in the model. In
view of this inconsistency, Diamantoudi [3] has reconsidered the stability of
the price leadership of d’Aspremont et al. [1] adopting a different stability
criterion that incorporates firms’ farsighted perspective. Then, she has shown
that there exists a set of stable sizes of the cartel.

Both d’Aspremont et al. [1] and Diamantoudi [3] share the second inade-
quacy concerning cartel identification; in their models, cartels are identified
by their sizes (in terms of the number of firms) and two distinct cartels with
different members are regarded as the same if their sizes are equal. This
does not much matter in the case of d’Aspremont et al. [1] because of firms’
myopia embedded in their stability criterion. This, however, can become a
more serious problem when we fully take account of the farsightedness on
the side of firms as in Diamantoudi [3]. Suppose that each firm can foresee
a chain reaction of further deviations by other firms after its own deviation.
Then, it may be the case that one firm in the cartel finds it profitable to exit
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from the existing cartel and actually do so, expecting that another fringe
firm would enter the cartel after its deviation and that the resulting cartel
would be stable. In this argument, there are two cartels of the same size
involved: the initial cartel and the resulting cartel. The former is not consid-
ered to be stable, while the latter is. That is, when firms are farsighted, two
distinct cartels of the same size can have different stability properties; when
cartels of the equal size are treated as the same, this possibility would be ig-
nored. Therefore, cartels should be identified by their members (not by the
numbers of members). Kamijo and Muto [10] have argued as just described
and constructed an appropriate model in which cartels are identified by their
members. Then, they have shown that any Pareto-efficient and individually
rational cartel can always be stable with respect to the stability criterion
incorporating the firms’ farsighted view.

None of three studies, d’Aspremont et al. [1], Diamantoudi [3], and Kamijo
and Muto [10], has dealt with the third inadequacy concerning the cartel’s
pricing behavior, which we shall take up in this paper. As mentioned ear-
lier, the cartel’s pricing policy in the above three studies is restricted to the
optimal pricing in the sense that the cartel sets the price along the residual
demand to maximize the joint profit of the members. Restricting the cartel’s
pricing to the optimal pricing may seem to be an innocuous assumption, but
actually it is not.

From several fields in economics, we can draw many pieces of evidence
that some observed outcomes that satisfy certain criteria of rationality, ef-
ficiency and/or optimality, can often be sustained through some irrational,
inefficient and/or non-optimal behavior. On theoretical ground, take the
well-known folk theorem for instance; it states that nearly efficient and coop-
erative outcomes can be maintained through the “punishment” behavior after
one player’s deviation, which is irrational (at least, in the one shot game)
even if the continuation game satisfies the subgame perfection (see Fudenberg
and Tirole [5, Chap. 5]). On empirical ground, among the growing literature
on experimental economics, take Fehr and Gachter [4] for example; they have
examined a two-stage game composed of a voluntary contribution game in
the first stage and a punishment phase in the second and shown that higher
contributions by the subjects in the voluntary contribution game are realized
by the actual use of the punishment option, which has been designed not to
constitute the subgame-perfect equilibium. In sum, non-optimal behavior of
a player can work as “punishment” and/or “reward” to other players and,
therefore, it can induce other players’ optimal responses. Taking account of
the possibility of non-optimal behavior has a significant influence on the final
outcomes of the model. In our model, the cartel is allowed to choose not only
the optimal price, but also any non-negative price; this flexible pricing policy
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can be interpreted as punishment and/or reward to the fringe firms and, by
this, the cartel can induce the fringe firms to behave optimally.

In this paper, we present a model that takes full account of the three
points (a) through (c) mentioned above. That is, in our model, the price
leadership cartel is identified by its members, each firm has an ability to
foresee not only an immediate outcome but also the ultimate outcome after
its deviation, and the cartel can choose any nonnegative price, including
pricing policy in order to control the behavior of non-cartel members.

One additional difference between our work and Kamijo and Muto [10]
is that while sequences of coalitional or simultaneous deviations (of exiting
from the cartel or joining the cartel) are allowed in Kamijo and Muto [10],
only sequences of individual deviations are allowed in our model. In general,
this difference produces a large variation of the results. For example, Suzuki
and Muto [15] have analyzed the stability of an n-person prisoners’ dilemma
game and shown that Pareto-efficient and individually rational outcomes are
always stable if coalitional moves are allowed. On the other hand, Nakanishi
[12] have considered the same problem with only allowing individual moves
and shown that the set of the stable outcomes shows a rather complicated
figure, quite different from the result obtained by Suzuki and Muto [15].
Surprisingly, in contrast to the comparison of the prisoners’ dilemma cases,
we obtain an efficiency result similar to Kamijo and Muto [10] because of
the endogeneity of the price set by the cartel. Further, we also show that
although we do not restrict our analysis to the optimal pricing of the cartel,
the optimal pricing behavior of the stable cartel emerges as the result of
stability consideration.

Similar to Diamantoudi [3] and Kamijo and Muto [10], we shall adopt the
von Neumann and Morgenstern [18] stable set as the basis of our stability
concept in this paper.3 The stable set is defined for the pair of a set of the
outcomes and a dominance relation defined over the set of the outcomes. An
outcome of our model, which describes the current market structure, is a pair
of a cartel and a quoted price set by the cartel. The dominance relation is
extended to two directions: one is to capture firms’ farsighted view and the
other is to deal with the endogenous pricing by the cartel. The stable set
according to the set of the outcomes and this extended dominance relation
(called the indirect dominance) constitutes our solution concept called the
farsighted stable set.

3The von Neumann-Morgenstern stable set has been originally defined for characteristic
function form games. Greenberg [7]’s “Theory of Social Situations (TOSS)” has opened
the way to apply the concept of the von Neumann-Morgenstern stable set to more general
game-theoretical settings. Although we do not utilize the framework of TOSS explicitly
in this paper, our analysis can be reconstructed within the framework of TOSS.
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The rest of this paper is organize as follows. In the next section, we
present a price leadership model; we give the definitions of outcomes, the
indirect dominance relation, and the farsighted stable set. The endogeneity
of the pricing is embedded in the definition of our indirect dominance relation.
Main results and the proofs are given in Section 3. Some of the proofs of
lemmas are relegated to the Appendices. Section 4 includes some remarks.

2 Model

We consider an industry composed of n (n 2) identical firms, which produce
a homogeneous good. The demand for the good is represented by a function
d : + → +:

Q = d(p), (1)

where p is the price and Q is the total amount of demand of the good. We
assume that d is continuous and decreasing in p and it satisfies 0 < d(0) <
+∞ and d(a) = 0 for some a > 0.

Each firm has an identical cost function c(qi), where qi is the output
level of a firm (firm i). We assume that c is increasing, twice continuously
differentiable in qi, and it satisfies c(0) = 0, c′(0) = 0, c′(qi) > 0 for qi > 0,
and c′′(qi) > 0 for qi 0.

2.1 Collusive price leadership

Once k firms have decided to combine and form a cartel, the cartel can exer-
cise a power to determine the market price of the good. The remaining n−k
firms constitute a competitive fringe, whose members behave competitively.
That is, each firm in the fringe takes the price determined by the cartel as
given, and choose its output level to maximize its own profit. Given the
price p, the supply function of a fringe firm, qf (p), is determined through the
well-known price-equal-marginal-cost condition:

p ≡ c′(qf (p)). (2)

Given the responses by the fringe firms, the residual demand for the size
k cartel can be written as follows:

R(k, p) ≡ max {d(p) − (n − k)qf (p), 0} . (3)

To simplify the exposition, we assume that members in the cartel divide their
total quantity of production equally. Thus, the production per firm in the
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cartel can be written as follows:

r(k, p) ≡ R(k, p)

k
. (4)

With this, the profit of a firm in the cartel can be written as a function of
the cartel size k and the price p:

πc(k, p) ≡ pr(k, p) − c (r(k, p)) . (5)

On the other hand, the profit of a fringe firm can be written as a function of
p:

πf (p) = pqf (p) − c (qf (p)) . (6)

The optimal price for the size k cartel is determined by

p∗(k) = arg max
p>0

πc(k, p). (7)

We simply assume the existence and the uniqueness of p∗(k) for each k =
1, 2, . . . , n. The profits of a cartel firm and a fringe firm evaluated at the
optimal price p∗(k) can be written as functions of the cartel size k: For
k = 1, . . . , n,

π∗
c (k) ≡ πc(k, p∗(k)),

and for k = 1, . . . , n − 1,

π∗
f (k) ≡ πf (p

∗(k)).

If k = 0, that is, if there is no cartel, then it is assumed that the
market structure is competitive. The competitive equilibrium price, de-
noted by pcomp, is determined by d(pcomp) = nqf (p

comp). Then, we have
π∗

f (0) = πf (p
comp).

The following proposition is concerned with the profits of firms in the
cartel and in the fringe.

Proposition 1. πc and πf satisfy the following properties:

(i) If p �= pcomp and πc(k, p) > 0, then πc(k, p) is strictly increasing in
k—[Size monotonicity of π ]. If πc(k, p) = 0, πc(k + 1, p) πc(k, p)
holds. Further, if p = pcomp, πc(k, p) is invariant against changes in k;

(ii) πf (p) is strictly increasing in p;

(iii) πf (p) πc(k, p) for all p and for all k = 1, . . . , n − 1 with strict in-
equality when p �= pcomp.
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Proof. Properties (ii) and (iii) follow immediately from the definition of qf .
Thus, it suffices to show property (i). When πc(k, p) = 0, then either p = 0
or d(p) − (n − k)qf (p) 0 holds. In either cases, πc(k + 1, p) 0. Next,
we consider the case that πc(k, p) > 0. Partially differentiating πc(k, p) with
respect to k, we obtain

∂πc

∂k
= prk(k, p) − c′(r(k, p))rk(k, p) = rk(k, p) {p − c′(r(k, p))} , (8)

where

rk(k, p) ≡ ∂r(k, p)

∂k
=

nqf (p) − d(p)

k2
. (9)

Note that qf (p) > r(k, p) if and only if qf (p) > d(p)/n. If rk(k, p) > 0
or, equivalently, qf (p) > d(p)/n, then qf (p) > r(k, p). Because c′ is strictly
increasing, then this result implies p = c′(qf (p)) > c′(r(k, p)). Hence, we
have ∂πc/∂k > 0. In turn, if rk(k, p) < 0 or, equivalently, qf (p) < d(p)/n,
then qf (p) < r(k, p). Since p = c′(qf (p)) < c′(r(k, p)), we have ∂πc/∂k > 0
again. If rk(k, p) = 0, then p satisfies d(p) − nqf (p) = 0. Thus p must be
pcomp. In this case, ∂πc/∂k = 0.

The next proposition for the optimal profits is due to d’Aspremont et
al. [1] and Kamijo and Muto [10].

Proposition 2. π∗
c and π∗

f satisfy the following properties:

(i) π∗
c (k) is increasing in k—[Size monotonicity of π ];

(ii) π∗
c (k) > π∗

f (0) for all k = 1, . . . , n;

(iii) π∗
f (k) > π∗

c (k) for all k = 1, . . . , n − 1.

2.2 Stability of collusive cartel

Consider an n-vector x = (x1, x2, . . . , xn) such that for each i, xi is equal to
0 or 1. Here, xi = 1 means that firm i belongs to the existing cartel, whereas
xi = 0 means firm i does not belong to the cartel. That is, an n-vector x
represents a cartel structure. Let X ≡ {0, 1}n be the set of all possible
cartel structures. By definition, xf ≡ (0, . . . , 0) represents a situation with
no actual cartel and xc ≡ (1, . . . , 1) represents a situation with the largest
cartel that consists of all the firms. Given x ∈ X, C(x) denotes the set of
firms belonging to the cartel at x, that is, C(x) ≡ {i ∈ N | xi = 1}. We
identify C(x) with the cartel at x. Given x, y ∈ X, x ∧ y denotes a cartel
structure z such that zi = min{xi, yi} for i = 1, . . . , n. We can easily verify
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that C(x ∧ y) = C(x) ∩ C(y). For x ∈ X, let us define |x| ≡ ∑n
i=1 xi, which

signifies the cartel size at x in terms of the number of the participating firms.4

A pair of a cartel structure x ∈ X and a quoted price p ∈ + describes
a market structure; it specifies the current price and the firms in the cartel
(and, implicitly, the firms in the fringe). Incidentally, what will happen to
the market structure if there is no actual cartel (i.e., if x = xf )? In this case,
we assume that (xf , pcomp) will be realized. That is, if there is no actual
price-leader, only the competitive equilibrium price pcomp will prevail in the
market. In other words, any market structure such as (xf , p) with p �= pcomp

is meaningless. Excluding such meaningless market structures, we now define
the set A of all possible market structures:

A ≡ {
(x, p) ∈ {0, 1}n × +

∣∣ x �= xf or (x, p) = (xf , pcomp)
}

. (10)

We shall call an element in A as an “outcome.”5

Let gi be the payoff function of firm i defined on A: For (x, p) ∈ A,

gi(x, p) =

{
πc(|x|, p) if xi = 1,

πf (p) if xi = 0.
(11)

For a fringe firm, only quoted price p matters; it does not matter who are
the members of the current cartel nor how many firms are in the cartel.

Let us define a set of outcomes where a cartel charges the optimal price,
denoted by AOP = {(x, p) ∈ A | p = p∗(|x|)}. For two distinct outcomes
(x, p), (y, w) ∈ A, we say that “(y, w) Pareto-dominates (x, p)” if gi(y, w)
gi(x, p) for all i ∈ N and gi(y, w) > gi(x, p) for some i ∈ N . The set of
Pareto-efficient outcomes, denoted by APE, is a subset of outcomes that are
not Pareto-dominated. Let us define another subset of A, denoted by B,
which will turn out to be a subset of APE:

B ≡ {
(x, p∗(|x|)) ∈ A

∣∣ x = xc or π∗
f (|x|) > π∗

c (n)
}

. (12)

Because the largest-cartel optimal-pricing outcome (xc, p∗(|xc|)) always ex-
ists, B is nonempty.

Lemma 1. B coincides with the intersection of AOP and APE.

4That is, |x| = |C(x)|.
5If the price p is high enough, the demand d(p) becomes zero and the supply by the

fringe firms becomes strictly positive. Therefore, in an outcome (x, p) with a sufficiently
high price, the market clearing condition can be violated; in this sense, such an outcome is
not feasible. Although we can redefine the set of possible outcomes so that it only includes
feasible outcomes, this will make the model unnecessarily complicated.
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Proof is relegated to the Appendix.
Next, we define the inducement relation on A. We assume that each

individual firm can enter or exit from the existing cartel freely and, thereby,
change the current market structure to another. In the course of entry-exit,
only individual moves are allowed, while coalitional (simultaneous) moves are
not. Furthermore, we assume that the cartel members can change the current
price to another through a unanimous agreement. By changing the price, the
cartel can induce another market structure from the current market structure.
In general, when a nonempty subset S of N changes a given market structure

(x, p) to another (y, w), we write (x, p)
S−→ (y, w). The relation { S−→}S⊂N is

formally defined as follows:

Definition 1 (Inducement relation). For outcomes (x, p), (y, w) ∈ A and

nonempty S ⊂ N , we have (x, p)
S−→ (y, w) if either one of the following

conditions is satisfied:

(i) S = C(x) and x = y,

(ii) S = {i} �= C(x), xj = yj for all j �= i, and p = w,

(iii) S = {i} = C(x) and (y, w) = (xf , pcomp).

Part (i) means that cartel C(x) can change the current price p to another
w through a unanimous agreement by the members. Part (ii) means that a
single player i can change the current market structure to another by entry-
exit from the cartel without affecting the current price. Part (iii) means that
if a single player i is the last one member of the current cartel, it can change
the current outcome to the competitive equilibrium outcome by exiting from
the cartel.

The indirect dominance relation is defined as follows.

Definition 2 (Indirect domination). For outcomes (x, p), (y, w) ∈ A, we
say that “(y, w) indirectly dominates (x, p)” or “(x, p) is indirectly dominated
by (y, w),” which we shall write (y, w) � (x, p) or (x, p) � (y, w), if and only
if there exists a sequence of outcomes and nonempty coalitions

(x, p) = (x0, p0)
S1−→ (x1, p1)

S2−→ · · · SM−−→ (xM , pM) = (y, w) (13)

such that for each m = 1, . . . , M , (a) (xm−1, pm−1)
Sm−−→ (xm, pm) and (b)

gi(x
m−1, pm−1) < gi(x

M , pM) = gi(y, w) for all i ∈ Sm.

A pair (A,�) is called the abstract system associated with the price
leadership model. Now we define the solution concept of our model, that is,
the farsighted stable set.
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Definition 3 (Farsighted stable set). A subset K of A is said to be a
farsighted stable set for the abstract system (A,�) associated with the price
leadership model if it satisfies the following two conditions:

(i) For any (x, p) ∈ K, there does not exist any outcome (y, w) ∈ K such
that (y, w) � (x, p);

(ii) For any (x, p) ∈ A \ K, there exists an outcome (y, w) ∈ K such that
(y, w) � (x, p).

Conditions (i) and (ii) are called internal stability and external stability of
K, respectively.

3 Results

The following lemmas characterize the indirect domination.

Lemma 2. The largest-cartel optimal-pricing outcome (xc, p∗(|xc|)) indi-
rectly dominates any other outcome.

Lemma 3. Take distinct outcomes (x, p), (y, w) ∈ A. Then, (x, p) indirectly
dominates (y, w) if either one of the following conditions is satisfied:

(i) C(x) ∩ C(y) = ∅, πf (p) > 0 and πf (p) > πc(|y|, w);

(ii) C(x) ∩ C(y) �= ∅, πf (p) > πc(|y|, w), πc(|x|, p) > 0, and πc(|x|, p) >
πc(|x ∧ y|, w);

(iii) C(x)∩C(y) �= ∅, C(x) �⊂ C(y), C(x) �⊃ C(y), p �= pcomp, πc(|x|, p) > 0,
and πc(|x|, p) πc(|y|, w).

With Lemmas 2 and 3, we can show the existence of the farsighted stable
sets:

Theorem 1. For any outcome (x, p) ∈ B, the singleton set {(x, p)} consti-
tutes a farsighted stable set.

Proof. Because the internal stability is satisfied automatically, it suffices to
show the external stability. If (x, p) = (xc, p∗(|xc|)), then the external sta-
bility follows from Lemma 2 immediately. Then, let us assume x �= xc and
p = p∗(|x|). Take an arbitrary (y, w) ∈ A with (x, p) �= (y, w). We dis-
tinguish three cases: (i) x = y; (ii) x �= y and |x| |y|; (iii) x �= y and
|x| < |y|.
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Let us consider case (i). By the definition of the inducement relation, we

have (y, w) = (x, w)
C(y)−−→ (x, p∗(|x|)) = (x, p). Further, by the definition of

p∗, we can show the following relation: for all i ∈ C(y),

gi(y, w) = πc(|y|, w) < πc(|y|, p∗(|y|)) = πc(|x|, p∗(|x|)) = gi(x, p). (14)

Then, we obtain (x, p) � (y, p).
Next, let us consider case (ii). By the size-monotonicity of πc, the defini-

tion of p∗, and Proposition 2-(iii), we have the following relation:

πc(|y|, w) πc(|x|, w) πc(|x|, p∗(|x|)) < πf (p
∗(|x|)) = πf (p). (15)

This relation and the fact πc(|x|, p∗(|x|)) > 0 imply both πf (p) > πc(|y|, w)
and πf (p) > 0. Therefore, if C(x) ∩ C(y) = ∅, then the conditions in
Lemma 3-(i) are satisfied. On the other hand, if C(x) ∩ C(y) �= ∅, we have
πc(|x ∧ y|, w) π∗

c (|x ∧ y|) < π∗
c (|x|) = πc(|x|, p∗(|x|)) = πc(|x|, p) by the

size-monotonicity of π∗
c . Then, the conditions in Lemma 3-(ii) are satisfied.

Thus, we obtain the desired result.
Lastly, let us consider case (iii). Since (x, p) ∈ B and (x, p) �= (xc, p∗(|xc|)),

we have 0 < π∗
c (|xc|) < π∗

f (|x|) = πf (p
∗(|x|)) = πf (p). By the definition and

the size-monotonicity of π∗
c , we have πc(|y|, w) π∗

c (|y|) π∗
c (|xc|) = π∗

c (n).
Combining these inequalities, we obtain πf (p) > πc(|y|, w) and πf (p) > 0.
If C(x) ∩ C(y) = ∅, then the conditions in Lemma 3-(i) are satisfied. If
C(x)∩C(y) �= ∅, then we have πc(|x∧ y|, w) πc(|x|, w) < πc(|x|, p∗(|x|)) =
πc(|x|, p). Then, the conditions in Lemma 3-(ii) are satisfied.

As shown in Lemma 1, any outcome in B is Pareto-efficient. Then, our
Theorem 1 shows that an efficient outcome can be attained as an ultimate
outcome in an essentially noncooperative circumstance through the solution
concept of the farsighted stable set . A similar result as our Theorem 1 has
been obtained by Kamijo and Muto [10].6 In their model, however, it is
assumed that even firms who are not the members of the current cartel can
make joint deviations and that the current cartel sets the price at the optimal,
joint-profit-maximizing level automatically. Because the cooperative actions
by the firms are embedded in their model at the very outset, it is natural
to have the efficiency result. On the other hand, because in our model it
is assumed that joint entry or exit by a group of firms are not allowed and
only the members of the current cartel can make joint moves (of changing
price) through a unanimous agreement, it is somewhat surprising to obtain
the efficiency result.

6Suzuki and Muto [15] have also shown a similar result as Kamijo and Muto [10] in an
n-person prisoners’ dilemma.
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The key in our model is the endogeneity of the price. Let us consider, for
example, the largest-cartel optimal-pricing outcome (xc, p∗(|xc|)), which con-
stitutes a (singleton) farsighted stable set, and another nonstable outcome
(x, p) with a smaller size cartel C(x). Even if (xc, p∗(|xc|)) is better than
(x, p) for the members of C(x), the members of C(x) can do nothing except
for waiting entry by other firms when the price in (x, p) is determined auto-
matically through the optimal pricing rule as in Kamijo and Muto [10]. On
the other hand, if C(x) can control the price, it can force the remaining fringe
firms to enter the cartel by decreasing the price to zero and, thereby, form
the largest cartel C(xc). Once the largest cartel C(xc) has been formed, it
can choose the optimal monopoly price and make its members (i.e., all firms)
better-off.

We have to prepare the additional lemma to show the uniqueness of our
farsighted stable set mentioned in Theorem 1.

Lemma 4. Let K be a farsighted stable set. Then, for any (x, p) ∈ K with
(x, p) �= (xf , pcomp), we have πc(x, p) > 0.

The next theorem shows that there is no other type of farsighted stable
set.

Theorem 2. There is no other type of farsighted stable sets than the one
described in Theorem 1.

Proof. Let K be a farsighted stable set. If K ∩ B �= ∅, then K must be a
singleton, otherwise it violates the internal stability. In this case, K is of the
type just described in Theorem 1. Then, we can assume K ∩ B = ∅. In the
following, we prove by contradiction that this cannot be the case. Specifically,
we show that, under the condition K ∩ B = ∅, there is an infinite sequence
(x1, p1), (x2, p2), . . . of outcomes in K such that |x1| > |x2| > · · · . This
contradicts the finiteness of the number of the firms.

The fact (xc, p∗(|xc|)) ∈ B implies (xc, p∗(|xc|)) /∈ K. By the external
stability of K, there must exist an outcome (x1, p1) ∈ K that indirectly
dominates (xc, p∗(|xc|)). If x1 = xc, we must have p1 �= p∗(|xc|). Then, by
the definition of p∗, we have

gi(x
1, p1) = πc(|xc|, p1) < πc(|xc|, p∗(|xc|)) = gi(x

c, p∗(|xc|)) (16)

for all i ∈ N = C(xc). This implies that (x1, p1) cannot indirectly dominate
(xc, p∗(|xc|)). Hence, x1 �= xc must hold and thus, |x1| < |xc|.

In addition, we can show that |x1| �= 0, that is, x1 �= xf . Suppose,
in negation, that x1 = xf . Because we have gi(x

c, p∗(|xc|)) = π∗
c (|xc|) >

π∗
f (0) = gi(x

f , pcomp) for all i ∈ N by Proposition 2-(ii), then no player wants

to deviate from (xc, p∗(|xc|)) toward (x1, p1) = (xf , pcomp)—a contradiction.
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Moreover, we can show that p1 �= p∗(|x1|). Let S be the first coalition
in a sequence that realizes (xc, p∗(|xc|)) � (x1, p1) and suppose, in negation,
that p1 = p∗(|x1|). Because (x1, p1) ∈ K implies (x1, p1) /∈ B, we have

π∗
c (|xc|) π∗

f (|x1|) = πf (p
∗(|x1|)) = πf (p

1). (17)

Further, for any firm i ∈ N \ C(x1) = C(xc) \ C(x1), we have7

gi(x
c, p∗(|xc|)) = π∗

c (|xc|) πf (p
1) = gi(x

1, p1). (18)

Then, S = C(xc) cannot be true. Therefore, S must be a singleton {i1}
for some i1 ∈ C(x1); otherwise the definition of the indirect domination
will be violated. For i1, we have π∗

c (|xc|) = gi1(x
c, p∗(|xc|) < gi1(x

1, p1) =
πc(|x1|, p1) = πc(|x1|, p∗(|x1|)) = π∗

c (|x1|). But, since xc �= x1 implies |x1| <
|xc| = n, the inequality π∗

c (|xc|) < π∗
c (|x1|) contradicts the size-monotonicity

of π∗
c . Hence, p1 �= p∗(|x1|).
Let us consider an outcome (x1, p∗(|x1|)). Because C(x1) can induce

(x1, p∗(|x1|)) from (x1, p1) by changing price and because we have

gi(x
1, p1) = πc(|x1|, p1) < πc(|x1|, p∗(|x1|)) = gi(x

1, p∗(|x1|)) (19)

for all i ∈ C(x1), then (x1, p∗(|x1|)) indirectly dominates (x1, p1). By the
internal stability of K, (x1, p∗(|x1|)) cannot be in K. Then, there must exist
an outcome (x2, p2) ∈ K that indirectly dominates (x1, p∗(|x1|)).

We show that there is at least one firm in C(x1) who becomes worse-
off in (x2, p2) than in (x1, p∗(|x1|)). Let S1, S2, . . . , SM be the sequence of
coalitions that appear in a sequence that realizes (x1, p∗(|x1|)) � (x2, p2):

(x1, p∗(|x1|)) = (y0, w0)
S1−→ (y1, w1)

S2−→ · · ·
· · · SM−1−−−→ (yM−1, wM−1)

SM−−→ (yM , wM) = (x2, p2).
(20)

Suppose, in negation, that every firm in C(x1) is not worse-off in (x2, p2)

than in (x1, p∗(|x1|)). Because (x1, p1)
C(x1)−−−→ (x1, p∗(|x1|)) and (x1, p1) �

(x1, p∗(|x1|)), every firm in C(x1) is strictly better-off in (x1, p∗(|x1|)) than
in (x1, p1) and, therefore, is strictly better-off in (x2, p2) than in (x1, p1).
Moreover, we have the following inducement relation:

(x1, p1)
C(x1)−−−→ (x1, p∗(|x1|)) S1−→ · · · SM−−→ (x2, p2). (21)

Thus, (x2, p2) indirectly dominates (x1, p1); but, this contradicts the internal
stability of K. Hence, there must be at least one firm in C(x1) who becomes

7Firm i is a cartel member at xc, but a fringe firm at x1.
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worse-off in (x2, p2) than in (x1, p∗(|x1|)). We denote the set of such firms in
C(x1) by T ; note that ∅ �= T ⊂ C(x1).

Next, we show that |x1| > |x2|. Again, let S1, S2, . . . , SM be the sequence
of coalitions that appear in a sequence that realizes (x1, p∗(|x1|)) � (x2, p2).
We have to distinguish two cases: case (a) where Sm ∩ T = ∅ for all m =
1, . . . , M and case (b) where Sm ∩ T �= ∅ for some m.

Let us consider case (a). In this case, no firm in T exits from C(x1). In
other words, all firms in T remain inside the cartel all the way along the
sequence. Then, if a certain coalition S in the sequence were to change price
from p∗(|x1|) to another one, then S must include T . But, this contradicts the
definition of the indirect domination. Therefore, the price remains unchanged
along the sequence. Then, for each i ∈ T , we have

πc(|x1|, p∗(|x1|)) = gi(x
1, p∗(|x1|)) > gi(x

2, p2) = πc(|x2|, p∗(|x1|)). (22)

By the size-monotonicity of πc, the inequality |x1| > |x2| follows.
In turn, let us consider case (b). We first show that T = C(x1) ∩ C(x2)

and, then, we proceed to the proof of |x1| > |x2|. Let Sk+1 be the first
coalition in the sequence that contains at least one firm in T (that is , Sk+1∩
T �= ∅ and Sm ∩ T = ∅ for all m k) and let (yk, wk) be the outcome from
which Sk+1 deviates. Further, by the same reason just described in the above
paragraph, wk = p∗(|x1|) must hold. Take an arbitrary firm i ∈ Sk+1 ∩ T ;
note that i ∈ C(x1) and i ∈ C(yk). Then, for firm i, we have

gi(x
1, p∗(|x1|)) = πc(|x1|, p∗(|x1|)),

gi(y
k, wk) = πc(|yk|, wk) = πc(|yk|, p∗(|x1|)),

gi(x
1, p∗(|x1|)) > gi(x

2, p2) > gi(y
k, wk).

Combining these [in]equalities, we obtain πc(|x1|, p∗(|x1|)) > πc(|yk|, p∗(|x1|)).
By the size-monotonicity of πc, we have |x1| > |yk|. This implies that some
firms in C(x1) \ T have to exit from the cartel before (yk, wk) is reached; in
other words, we must have C(x1) \ T �= ∅.

Consider arbitrary firms i and j such that i ∈ C(x1) \ T and j ∈ T . By
the definition of T , the status of firm i at (x2, p2) must be different from
that of firm j at (x2, p2). There are two cases: one where i ∈ C(x2) and
j ∈ N \ C(x2) and the other where i ∈ N \ C(x2) and j ∈ C(x2). In the
former, we have

πc(|x1|, p∗(|x1|)) = gi(x
1, p∗(|x1|)) gi(x

2, p2) = πc(|x2|, p2),

πc(|x1|, p∗(|x1|)) = gj(x
1, p∗(|x1|)) > gj(x

2, p2) = πf (p
2).
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Combining these inequalities and taking account of Proposition 1-(iii), we
obtain a contradiction:

πf (p
2) < πc(|x1|, p∗(|x1|)) πc(|x2|, p2) < πf (p

2). (23)

Thus, the former case is not possible and the latter case must hold. The
latter case produces two implications: one is that j ∈ T implies j ∈ C(x2)
and the other is that i ∈ C(x2) implies i ∈ T or i /∈ C(x1). From the
former implication, we obtain T ⊂ C(x1) ∩ C(x2). Similarly, from the latter
implication, we obtain T ⊃ C(x1) ∩ C(x2). Hence, T = C(x1) ∩ C(x2).

Now, we prove |x1| > |x2| for case (b). Suppose, to the contrary, that
|x1| |x2|. The facts C(x1) \ T �= ∅, T = C(x1) ∩ C(x2), and |x1| |x2|
imply C(x2)\T �= ∅. Then, we have both C(x1) �⊂ C(x2) and C(x1) �⊃ C(x2).
Further, by Lemma 4 we have πc(|x1|, p1) > 0 and πc(|x2|, p2) > 0. Therefore,
by Lemma 3-(iii), one of (x1, p1) and (x2, p2) indirectly dominates the other
outcome. This contradicts the internal stability of K. Hence, |x1| > |x2|.

Similar to the case of (x1, p1), it is easy to show that |x2| �= 0, that
is (x2, p2) �= (xf , pcomp). Moreover, we can show that p2 �= p∗(|x2|); the
proof is slightly different from the case of (x1, p1). Assume, in negation,
that p2 = p∗(|x2|). By the very definition of (x2, p2), there is a dominance
sequence from (x1, p∗(|x1|)) to [(x2, p2) = (x2, p∗(|x2|))]. Let S be the first
coalition that appears in the dominance sequence. By the fact |x1| > |x2|,
the size monotonicity of π∗

c , and Proposition 2-(iii), we have

πc(|x2|, p∗(|x2|) = π∗
c (|x2|) < π∗

c (|x1|)
= πc(|x1|, p∗(|x1|))
< π∗

f (|x1|) = πf (|x1|, p∗(|x1|)).
(24)

Thus, any player i in S must be in the fringe position at the final out-
come (x2, p∗(|x2|)). When the firm belongs to the cartel at (x1, p∗(|x1|)),
πf (p

∗(|x2|)) > πc(|x1|, p∗(|x1|)) must hold by the incentive of deviation,
and when the firm belongs to the fringe at (|x1|, p∗(|x1|)), πf (p

∗(|x2|)) >
πf (p

∗(|x1|)) = π∗
f (|x1|) > π∗

c (|x1|) = πc(|x1|, p∗(|x1|)). By Proposition 2-(iii)
and the definition of p∗, in both cases, we have

πf (p
∗(|x2|)) > πc(|x1|, p∗(|x1|)) πc(|x1|, p1)). (25)

In the case of C(x1) ∩ C(x2) �= ∅,
πc(|x2|, p∗(|x2|)) = π∗

c (|x2|) > π∗
c (|x1 ∧ x2|) πc(|x1 ∧ x2|, p1), (26)

where the second inequality is by the size monotonicity of π∗
c and the third

is by the definition of p∗. Hence, by Lemmas 3-(i) and 3-(ii), (x2, p∗(|x2|))
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indirectly dominates (x1, p1). This contradicts the internal stability of K and
thus p2 �= p∗(|x2|).

Then, the outcome (x2, p∗(|x2|)) indirectly dominates (x2, p2) and it is
not in K; therefore, there must exist (x3, p3) ∈ K that indirectly dominates
(x2, p∗(|x2|)). In addition, (x3, p3) must satisfy |x2| > |x3| and x3 �= xf .
Repeatedly applying the same argument, we obtain an infinite sequence of
outcomes (x1, p1), (x2, p2), . . . such that |x1| > |x2| > · · · . This contradicts
the finiteness of the number of the firms. Hence, finally, we obtain the desired
result: K ∩ B �= ∅.

4 Remarks

In this paper, we considered the stability of price leadership cartel when each
firm has an ability to foresee the future, only the individual moves are allowed
to the firms and the cartel can choose any non-negative price. As mentioned
in the Introduction, Kamijo and Muto [10] have considered a similar prob-
lem without endogeneity of the price and with coalitional deviations. To
abstract the pure effect of endogeneity of the price of the cartel, we have to
analyze the farsighted stability of the cartel with only individual deviations
and without price endogeneity. We are working now on this point in a com-
panion paper; it can be shown that, similar to Nakanishi [12], the shape of
the stable set is quite complicated; the existence of the stable set is assured,
but the uniqueness cannot be established.

On the other hand, if both coalitional moves and price endogeneity are
allowed, the result is obvious. As our Theorems 2 and 3 show, only the one-
point stable sets are admitted and, thus, the internal stability does not have
concern. Because one situation is more likely to be dominated by another
if we allow coalitional deviations, the outcomes described in Theorem 1 are
the only stable set in the coalitional move cases.
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Appendix

A Proof of Lemma 1

We first show B ⊇ AOP ∩ APE. Because B is a subset of AOP, it suffices to
show that any outcome (x, p∗(|x|)) ∈ AOP with π∗

f (|x|) π∗
c (n) is Pareto-

dominated by another outcome. Fortunately, it is obvious that such an out-
come (x, p∗(|x|)) is Pareto-dominated by (xc, p∗(n)).

Next, we show B ⊆ AOP ∩ APE. Because B is a subset of AOP, we will
show that B is a subset of APE. Take an arbitrary (x, p) ∈ B. We have
to show that (x, p) cannot be Pareto-dominated. We distinguish two cases:
case 1 where (x, p) = (xc, p∗(|xc|)) and case 2 where (x, p) �= (xc, p∗(|xc|)).

Let us consider case 1. Take an arbitrary (y, w) ∈ A other than (x, p). If
C(y) = ∅ or, equivalently, y = xf , then we have gi(x, p) = π∗

c (n) > π∗
f (0) =

πf (p
comp) = gi(y, w) for all i ∈ N by Proposition 2-(ii). On the other hand, if

C(y) �= ∅, we have gi(x, p) = π∗
c (n) > π∗

c (|y|) = πc(|y|, p∗(|y|)) πc(|y|, w) =
gi(y, w) for all i ∈ C(y) by the size-monotonicity of π∗

c and the definition of
p∗. That is, (y, w) cannot Pareto-dominate (xc, p∗(|xc|)).

Next, let us consider case 2. By the inequality π∗
f (|x|) > π∗

c (n), neither
|x| = 0 nor |x| = n can be true. Therefore, we have both C(x) �= ∅ and
N \C(x) �= ∅. Suppose, in negation, that there exists an outcome (y, w) ∈ A
that Pareto-dominates (x, p).

If there is a player i such that i ∈ N \ C(x) and i ∈ C(y), then, by the
definition of the Pareto-domination, we have

πc(|y|, w) = gi(y, w) gi(x, p) = π∗
f (|x|). (27)

On the other hand, by the definitions of π∗
c and B, we have

π∗
c (|y|) πc(|y|, w) and π∗

f (|x|) > π∗
c (n). (28)

Combining the above inequalities, we obtain π∗
c (|y|) > π∗

c (n). This con-
tradicts the size-monotonicity of π∗

c . Such player i cannot exist. Hence,
i ∈ N \ C(x) implies i ∈ N \ C(y); equivalently, C(y) ⊂ C(x).

In turn, if there is a player j such that j ∈ C(x) and j ∈ C(y), then,
similar to the above paragraph, we obtain the following inequalities:

π∗
c (|y|) πc(|y|, w) = gj(y, w) gj(x, p) = π∗

c (|x|). (29)

By the size-monotonicity of π∗
c , the fact π∗

c (|y|) π∗
c (|x|) implies |y| |x|.

This, together with C(y) ⊂ C(x), implies C(y) = C(x) or, equivalently,
x = y. Then, by the definition of p∗, we obtain

gj(y, w) = gj(x, w) = πc(|x|, w) < πc(|x|, p∗(|x|)) = π∗
c (|x|) = gj(x, p). (30)
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This contradicts the definition of the Pareto-domination. Such player j can-
not exist. Hence, j ∈ C(x) implies j ∈ N \ C(y); equivalently, C(x) ⊂
N \C(y). Therefore, we have C(y) ⊂ C(x) ⊂ N \C(y). This can be possible
only if C(y) = ∅, but, as already shown, C(y) = C(x) �= ∅—a contradiction.
No outcome can Pareto-dominate (x, p) ∈ B.

B Proof of Lemma 2

Take an arbitrary outcome (y, w) other than (xc, p∗(|xc|)). We distinguish
three cases: case 1 where y = xc, case 2 where y = xf , and case 3 where
y �= xc and y �= xf .

First, let us consider case 1: y = xc. Clearly, the cartel C(y) = C(xc) can

change the current price w to the optimal price p∗(|y|), that is, (y, w)
C(y)−−→

(y, p∗(|y|)) = (xc, p∗(|xc|)). Further, by the definition of p∗, we have

gi(y, w) = πc(|y|, w) = πc(|xc|, w) < πc(|xc|, p∗(|xc|)) = gi(x
c, p∗(|xc|)) (31)

for all i ∈ C(y). The desired result obtains.
Next, let us consider case 2: y = xf . Consider a sequence of deviations

in which (a) each player enters the cartel one by one and (b) after all the
players enter the cartel, the largest cartel changes the price to p∗(|xc|):

(y, w) = (x0, pcomp)
{i1}−−→ (x1, pcomp)

{i2}−−→ · · ·
· · · {in}−−→ [(xn, pcomp) = (xc, pcomp)]

C(xc)−−−→ (xc, p∗(|xc|)).
(32)

For each ik in the above sequence, we have gik(x
k−1, pcomp) = πf (p

comp) =
π∗

f (0) < π∗
c (n) = π∗

c (|xc|) = gik(x
c, p∗(|xc|)) by Proposition 2-(ii). Further,

in the last step, we have gi(x
n, pcomp) = gi(x

c, pcomp) < πc(|xc|, p∗(|xc|)) =
π∗

c (|xc|) = gi(x
c, pcomp) for all i ∈ C(xc). Again, the desired result obtains.

Lastly, let us consider case 3: y �= xc and y �= xf . It immediately follows
that 0 < |y| < n. Now, consider a sequence of deviations in which (a) cartel
C(y) decreases the price down to zero, (b) each player in N \ C(y) enter
the cartel one by one until all the players enter the cartel, and (c) after
establishing the largest cartel, the cartel C(xc) changes the price to p∗(|xc|):

(y, w)
C(y)−−→ [

(y, 0) = (x0, 0)
] {j1}−−→ (x1, 0)

{j2}−−→ · · ·
· · · {jr}−−→ [(xr, 0) = (xc, 0)]

C(xc)−−−→ (xc, p∗(|xc|)),
(33)

where N \ C(y) ≡ {j1, j2, . . . , jr}. In the first (price-cutting) step, we have

gi(y, w) = πc(|y|, w) π∗
c (|y|) < π∗

c (n) = π∗
c (|xc|) = gi(x

c, p∗(|xc|)) (34)
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for all i ∈ C(y) by the size-monotonicity of π∗
c . In each of the intermediate

(entry) steps, we have

gjk
(xk−1, 0) = πf (0) = 0 < π∗

c (|xc|) = gjk
(xc, p∗(|xc|)) (35)

for jk (k = 1, 2, . . . , r) by Proposition 2-(ii). In the last (price-increasing)
step, we have

gi(x
c, 0) = πc(|xc|, 0) < πc(|xc|, p∗(|xc|)) = gi(x

c, p∗(|xc|)) (36)

for all i ∈ C(xc) by the definition of p∗. Hence, the desired result obtains.

C Proof of Lemma 3

We first prove case (ii) and, then, turn to case (i) and case (iii).

C.1 Part (ii)

Let p̂ ∈ + be a price level that satisfies

πf (p̂) < πc(|x|, p). (37)

Such a price level p̂ exists since πc(|x|, p) > 0, limp→+0 πf (p) = 0 by 0 <
d(0) < +∞, and πf is a continuous function of p.

Consider the following steps that form an appropriate sequence of devia-
tions from (y, w) to (x, p):

Step 1 If C(y) \ C(x) = ∅, then go to the next step. Otherwise, consider
a sequence in which each firm in C(y) \ C(x) exits from the cartel in
turn. Let C(y) \ C(x) = {i1, i2, . . . , ir}. Then,

(y, w) = (x0, w)
{i1}−−→ (x1, w)

{i2}−−→ (x2, w)
{i3}−−→ . . .

{ir}−−→ (xr, w), (38)

where xk ∈ X is defined to satisfy C(xk) = C(y) \ {i1, . . . , ik} for each
k = 1, . . . , r. Note that xr = x ∧ y.

Step 2 Cartel C(x∧y) changes the price from w to p̂. (Note that C(x∧y) �=
∅ by assumption.) Thus,

(x ∧ y, w)
C(x∧y)−−−−→ (x ∧ y, p̂). (39)
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Step 3 If C(x) \ C(y) = ∅, then go to the next step. Otherwise, consider a
sequence in which each firm in C(x) \ C(y) enters the cartel in turn.
Let C(x) \ C(y) = {j1, j2, . . . , jr′}. Then,

(xr, p̂)
{j1}−−→ (xr+1, p̂)

{j2}−−→ (xr+2, p̂)
{j3}−−→ . . .

{jr′}−−−→ (xr+r′ , p̂), (40)

where xr+k ∈ X is defined to satisfy C(xr+k) = C(x ∧ y) ∪ {j1, . . . , jk}
for each k = 1, . . . , r′. Note that xr+r′ = x.

Step 4 Cartel C(x) changes the price from p̂ to p.

(x, p̂)
C(x)−−→ (x, p). (41)

Now we show that each firm in the sequence defined above has an incentive
to deviate actually. For each ik in Step 1, we have

gik(x
k−1, w) = πc(|xk−1|, w) πc(|y|, w) < πf (p) = gik(x, p), (42)

where the second inequality follows from the size-monotonicity of πc ((i) in
Proposition 1) and the penultimate strict inequality is due to the condition
given in this lemma. Thus, all the deviating firms in Step 1 have incentives
to deviate toward the ultimate outcome (x, p).

In Step 2, we have

gi(x ∧ y, w) = πc(|x ∧ y|, w) < πc(|x|, p) = gi(x, p) (43)

for all i ∈ C(x ∧ y). (Note that C(x ∧ y) ⊂ C(x).) The above inequality
follows from the condition given in the lemma. Therefore, cartel C(x ∧ y)
has an incentive to change the price as in Step 2.

Moreover, for each deviating firm jk in Step 3, we have

gjk
(xr+k−1, p̂) = πf (p̂) < πc(|x|, p) = gjk

(x, p) (44)

by the definition of p̂. Thus, jk is better off in (x, p) than in (xr+k−1, p̂).
For p̂, we have πc(|x|, p̂) πf (p̂) < πc(|x|, p) by the definition of p̂ and

Proposition 1-(iii). Then, in Step 4, we have

gi(x, p̂) = πc(|x|, p̂) < πc(|x|, p) = gi(x, p) (45)

for all i ∈ C(x). Cartel C(x) has an incentive to change their price to p.
Hence, (x, p) � (y, w) holds through this sequence of deviations.
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C.2 Part (i)

Let p̂ ∈ + be the price such that

πf (p̂) < πf (p) and πc(|z|, p̂) < πc(|x|, p) (46)

for any z ∈ X. Such a price p̂ exists since 0 < d(0) < +∞.
Take an arbitrary i ∈ C(y). Consider the following finite sequence of

deviations:

Step 1 Cartel C(y) changes its price from p to p̂.

Step 2 Firms in C(y) \ {i} exit from the cartel in turn.

Step 3 Firms in C(x) enter the cartel in turn.

Step 4 Firm i exits from the cartel.

Step 5 Cartel C(x) changes its price from p̂ to p.

Applying almost the same argument as the proof of “Part (ii),” we can
show the incentives of the deviating players in each step.

C.3 Part (iii)

Let z = x ∧ y; then C(z) = C(x) ∩ C(y). By the conditions given in the
lemma, we have both C(x) \ C(z) �= ∅ and C(y) \ C(z) �= ∅. Consider the
following sequence of deviations:

Step 1 Firms in C(y)\C(z) exit from C(y) one by one until the cartel C(z)
is realized:

(y, w) = (x0, w)
{i1}−−→ (x1, w)

{i2}−−→ · · · {ir}−−→ (xr, w) = (z, w), (47)

where r ≡ |y| − |z|.

Step 2 C(z) decreases the price down to zero: (z, p)
C(z)−−→ (z, 0).

Step 3 Firms in C(x) \ C(z) enter the cartel until C(x) is established:

(z, 0) = (xr+1, 0)
{j1}−−→ (xr+2, 0)

{j2}−−→ · · ·
· · · {jr′}−−−→ (xr+1+r′ , 0) = (x, 0),

(48)

where r′ = |x| − |z|.
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Step 4 C(x) increases the price up to p: (x, 0)
C(x)−−→ (x, p).

In Step 1, we have

gik(x
k−1, w) = πc(|y| − k + 1, w) πc(|y|, w)

πc(|x|, p)

< πf (p) = gik(x, p)

(49)

for all k = 1, . . . , r, where the first inequality follows from the size-monotonicity
of πc, the second from the condition given in the lemma, and the third from
Proposition 1-(iii). In Step 2, we have, if πc(|z|, w) = 0,

gi(z, w) = πc(|z|, w) < πc(|x|, p) = gi(x, p) (50)

and if πc(|z|, w) > 0,

gi(z, w) = πc(|z|, w) < πc(|y|, w) πc(|x|, p) = gi(x, p) (51)

for all i ∈ C(z). Thus, in each case, gi(x, p) > gi(z, w) for all i ∈ C(z). In
Step 3, we have

gjk
(xr+k, 0) = πf (0) = 0 < πc(|x|, p) = gjk

(x, p) (52)

for all k = 1, . . . , r′. And, in Step 4, we have

gi(x, 0) = πc(|x|, 0) < πc(|x|, p) = gi(x, p) (53)

for all i ∈ C(x). Hence, (x, p) indirectly dominates (y, w).

D Proof of Lemma 4

We distinguish two cases: case 1 where (xf , pcomp) ∈ K and case 2 where
(xf , pcomp) /∈ K. Note that gi(x

f , pcomp) = πf (p
comp) = π∗

f (0) > 0 for all
i ∈ N .

First we consider case 1 where (xf , pcomp) ∈ K. Take any (y, w) ∈ K such
that πc(y, w) 0. Consider the following finite sequence of deviations from
(y, w) to (xf , pcomp):

Step 1 Cartel C(y) changes its price from w to 0.

Step 2 Firms in C(y) exit from the cartel in turn.
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In Step 1, we have

gi(y, w) = πc(y, w) 0 < πf (p
comp) = gi(x

f , pcomp) (54)

for all i ∈ C(y).
In Step 2, for each deviant firm, the current profit of the deviant firm is

0 and thus is less than the profit of the firm in the final outcome (xf , pcomp).
Therefore, (xf , pcomp) indirectly dominates (y, w) through above sequence

of deviations and this contradicts the internal stability of K.
Next we consider case 2 where (xf , pcomp) /∈ K. In this case, there must

exist (x, p) ∈ K such that (x, p) � (xf , pcomp) to assure the external stability
of K. We show that in the outcome (x, p), the firms in the cartel obtain a
positive profit. In a dominance sequence that realizes (x, p) � (xf , pcomp),
there must be at least one firm, say firm i, who joins in the cartel at some
step of the sequence and remains in the cartel at the final outcome because
the initial outcome has no actual cartel. By the definition of the indirect
dominance, we have

0 πf (p
k) = gi(x

k, pk) < gi(x, p) = πc(x, p). (55)

The first weak inequality follows from the definition of πf . Thus, we obtain
0 πf (p

k) < πc(x, p) 0.
Note that πc(x, p) > 0 implies πf (p) > 0. Then, we have gi(x, p) > 0 for

all i ∈ N . Finally, we show that for any (y, w) ∈ K such that πc(y, w) 0,
(x, p) indirectly dominates (y, w). Consider a sequence of deviations from
(y, w) to (x, p) such that the dominance sequence from (xf , pcomp) to (x, p)
follows the sequence from (y, w) to (xf , pcomp) described as Step 1 and Step
2 in the first part of this proof. Then, it is easily verified that this sequence
realizes (x, p) � (y, w). This contradicts the internal stability of K. So we
have the desired result.
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