
The Twelve Principles of Green Chemistry

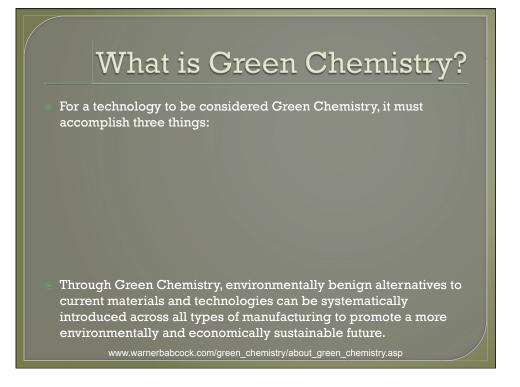
Goals for this class:

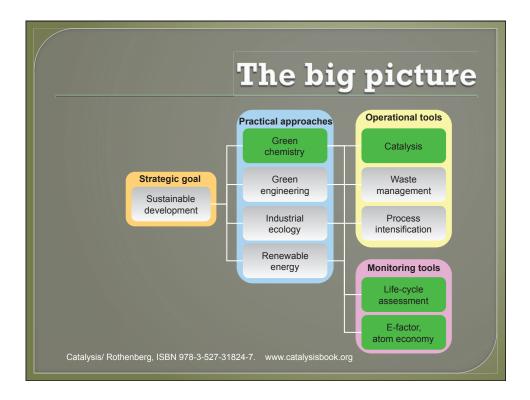
- Become familiar with the 12 Principles
- Discuss specific examples of practical value
- · See the principles from a chemist's perspective
- Analyze the case of ibuprofen as an example of a green approach

Source material reproduced with modifications from:

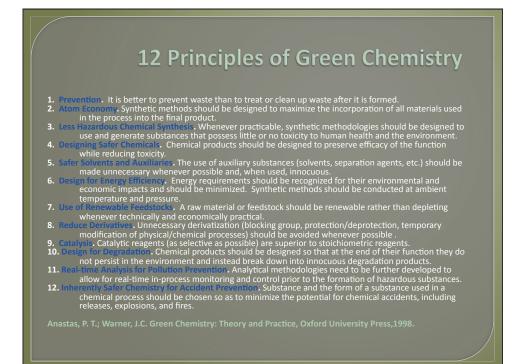
www.beyondbenign.org/professional/community_college/12_principles_Cannon.ppt ((c) 2010 Beyond Benign) Imperial College, London

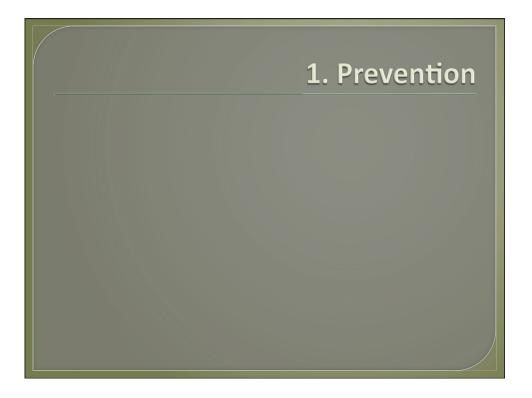
Green Chemistry is a revolutionary approach to the way that products are made; it is a science that aims to reduce or eliminate the use and/or generation of hazardous substances in the design phase of materials development.

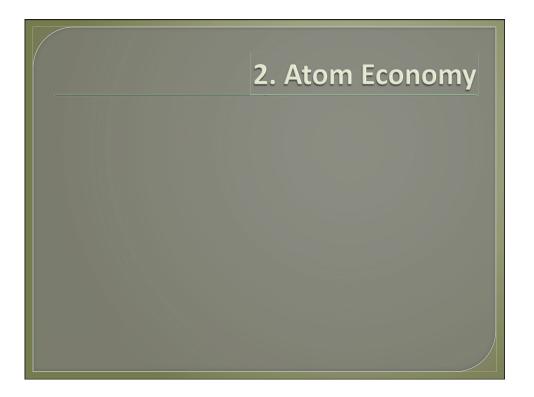

It requires an inventive and interdisciplinary view of material and product design. Green Chemistry follows the principle that it is better to consider waste prevention options during the design and development phase than to dispose or treat waste after a process or material has been developed.

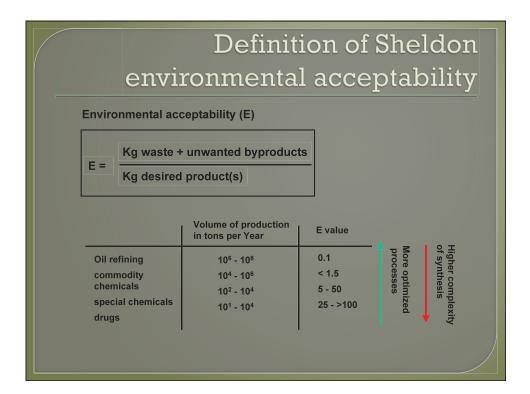

www.warnerbabcock.com/green_chemistry/about_green_chemistry.asp

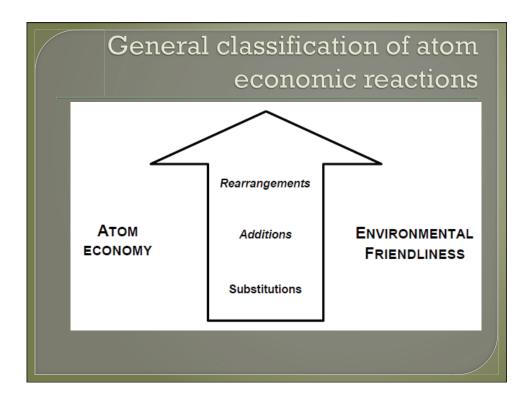
What is Green Chemistry?

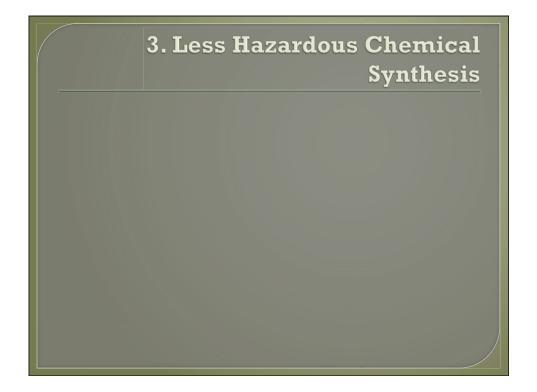

- Green Chemistry presents industries with an opportunity for growth and competitive advantage. This is because there is currently a significant shortage of green technologies: we estimate that only 10% of current technologies are environmentally benign; another 35% could be made benign relatively easily. The remaining 65% have yet to be invented!
- Green Chemistry also creates cost savings: when hazardous materials are removed from materials and processes, all hazardrelated costs are also removed, such as those associated with handling, transportation, disposal, and compliance


www.warnerbabcock.com/green_chemistry/about_green_chemistry.asp___

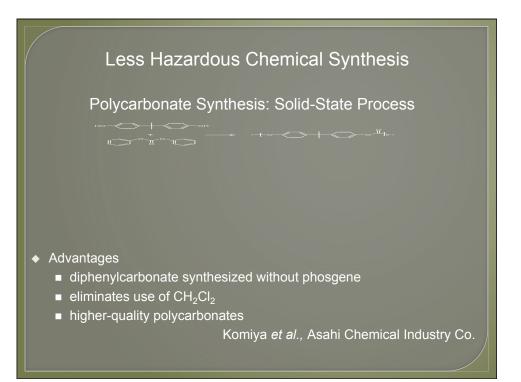


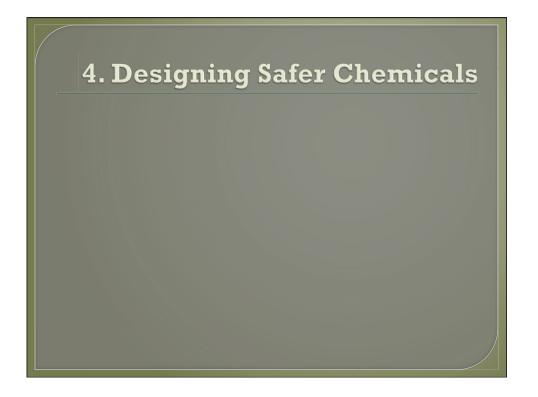


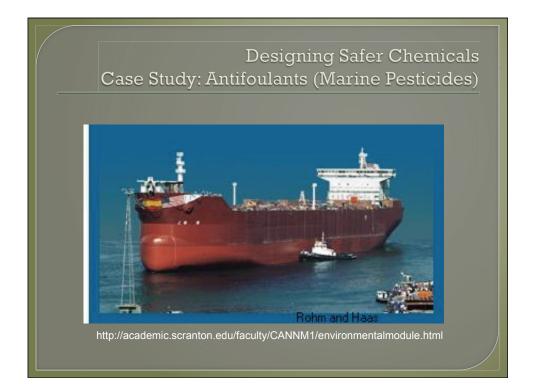

Environmental Disasters


Love Canal

• in Niagara Falls, NY a chemical and plastics company had used an old canal bed as a chemical dump from 1930s to 1950s. The land was then used for a new school and housing track. The chemicals leaked through a clay cap that sealed the dump. It was contaminated with at least 82 chemicals (benzene, chlorinated hydrocarbons, dioxin). Health effects of the people living there included: high birth defect incidence and seizure-inducing nervous disease among the children.







TBTO and other organotin antifoulants have long halflives in the environment (half-life of TBTO in seawater is > 6 months). They also bioconcentrate in marine organisms (the concentration of TBTO in marine organisms to be 104 times greater than in the surrounding water).

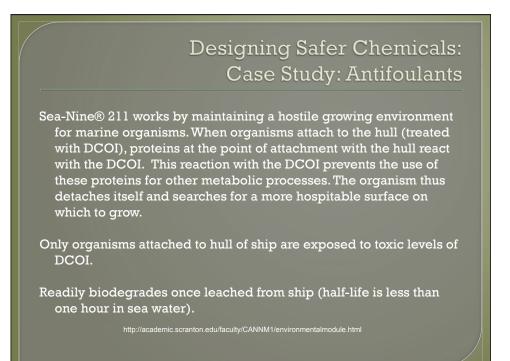
area

Organotin compounds are chronically toxic to marine life and can enter food chain. They are bioaccumulative.

Tributyltin Oxide

Designing Safer Chemicals: Case Study: Antifoulants

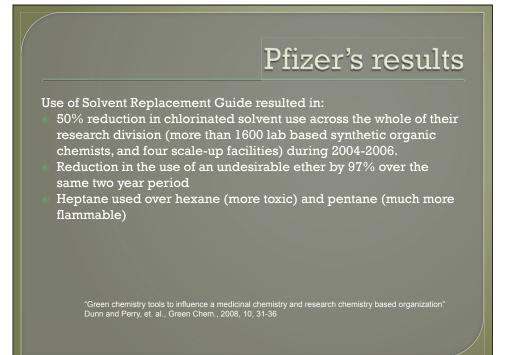
Rohm and Haas Presidential Green Chemistry Challenge Award, 1996

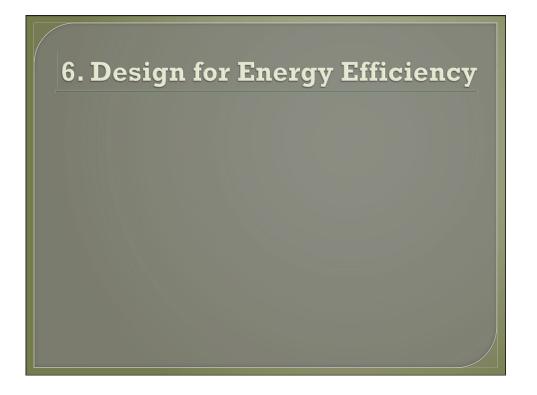

The active ingredient in Sea-Nine @211, 4,5-dichloro-2-*n*-octyl-4-isothiazolin-3-one (DCOI), is a member of the isothiazolone family

of antifoulants.

_C₈H₁₇

4,5-dichloro-2-n-octyl-4-isothiazolin-3-one


5. Safer Solvents and Auxiliaries



Preferred Water Acetone Ethanol 2-Propanol	Useable Cyclohexane Heptane Toluene	Undesirable Pentane Hexane(s)
Water Acetone Ethanol 2-Propanol	Cyclohexane Heptane	Pentane Hexane(s)
Ethanol 2-Propanol		
2-Propanol	Toluene	
		Di-isopropyl ether
		Diethyl ether
1-Propanol	Methyl t-butyl ether	Dichloromethane
Ethyl acetate	Isooctane	Dichloroethane
Isopropyl acetate	Acetonitrile	Chloroform
Methanol	2-MethyITHF	Dimethyl formamide
Methyl ethyl ketone	Tetrahydrofuran	N-Methylpyrrolidinone
1-Butanol	Xylenes	Pyridine
<i>t</i> -Butanol	Dimethyl sulfoxide	Dimethyl acetate
	Acetic acid	Dioxane
	Ethylene glycol	Dimethoxyethane
	Dimethyl sulfoxide Acetic acid	Dimethyl acetate Dioxane

Solvent replacement table		
Undesirable Solvent	Alternative	
Pentane	Heptane	
Hexane(s)	Heptane	
Di-isopropyl ether or diethyl ether	2-MeTHF or tert-butyl methyl ether	
Dioxane or dimethoxyethane	2-MeTHF or tert-butyl methyl ether	
Chloroform, dichloroethane or carbon tetrachloride	Dichloromethane	
Dimethyl formamide, dimethyl acetamide or N-methylpyrrolidinone	Acetonitrile	
Pyridine	Et ₃ N (if pyridine is used as a base)	
Dichloromethane (extractions)	EtOAc, MTBE, toluene, 2-MeTHF	
Dichloromethane (chromatography)	EtOAc/heptane	
Benzene	Toluene	

"Green chemistry tools to influence a medicinal chemistry and research chemistry based organization" Dunn and Perry, et. al., Green Chem., 2008, 10, 31-36

Energy in a chemical process

- Thermal (electric)
- Cooling (water condensers, water circulators)
- Distillation
- Equipment (lab hood)
- Photo
- Microwave

Source of energy:

Power plant – coal, oil, natural gas

