Robin Beech

 

 

Associate Professor; Associate Dean, Graduate & Postdoctoral Studies

T: 514-398-7535  |  robin [dot] beech [at] mcgill [dot] ca (Email  )|  Parasitology, P-210
Graduate & Postdoctoral Studies: T: 514-398-1224  |  James Admin Bldg, Room 400

 

Degrees

BSc Nottingham
PhD Edinburgh

 

Short Bio

Professor Beech obtained a Joint-Honours degree in Genetics and Biochemistry from the University of Nottingham and a PhD in Molecular Population Genetics from the University of Edinburgh, from which he developed a life long interest in the interaction between the population biology of organisms and natural variation in their genome sequence. He moved to Canada in 1987 for a Postdoctoral fellowship at the University of Alberta to work on repeat gene families in conifers and population subdivision in bison. In 1992, he joined the Institute of Parasitology at McGill and introduced population genetic tools in the search for parasite genes linked with drug resistance, techniques that have become standard practice in this field. In 2006, his interest in bioinformatics led to a sabbatical year in Glasgow, with Prof John Gilleard, to work on the H. contortus genome project and a Le Studium Research Fellowship in France, 2013-2014, with Dr Cédric Neveu to model interactions of nicotine related compounds with parasite neurotransmitter receptors. His commitment to Graduate student training continues with a position as Associate Dean of Graduate and Postdoctoral studies from 2015. He began playing the concertina and diatonic accordion in 2003, focusing on irish and quebecois traditional music.

Awards and Recognitions

Le Studium Research Fellow, 2013-2014

Research Interests

Parasitic nematodes pose a significant risk for both human and animal health, yet are fascinating organisms that provide a unique opportunity to biologists. Drug therapy is currently the best treatment we have for nematode parasitic disease and so my goal is to investigate the targets for anthelmintic drugs, the mechanisms by which drugs impact nematode physiology, the genetics and spread of anthelmintic resistance and increase our understanding of the evolutionary changes in drug targets from one species to another.

Nervous and muscular control is a particularly attractive drug target for existing drugs such as ivermectin, levamisole and monepantel. There is also great potential that new drugs may be developed to target the nematode neuromusculature.

My current focus is to use data mining, molecular evolutionary analysis and protein modelling to support an effort to identify and express novel pentameric ligand-gated ion-channels (pLGICs) and characterize their biochemical and pharmacological properties. These channels mediate fast synaptic signalling and neuromuscular control. Nematode parasites have a large number of LGIC subunit genes compared to insects and vertebrates and provide an opportunity to identify new drug targets. In addition, the subunit composition of LGICs targeted by specific drugs has been shown to differ between parasitic nematodes and the free living model nematode Caenorhabditis elegans. The evolutionary mechanisms by which this change occurs provides a way to investigate the role these different subunits play and the mechanisms controlling their assembly and direction to the synaptic junction.

The Helminth Genome Initiative has produced a wealth of genome data for more than 70 species and this resource allows the identification of key events in the evolution of LGIC. Focusing on these key evolutionary changes will allow us to understand the mechanisms responsible for changes in ion-channel composition and the constraints on channel function in vivo.

 

Publications - Robin Beech