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This paper aims to detect trends in mean flow and total precipitation data over southern parts of Quebec
and Ontario, Canada. The main purpose of the trend assessment is to find out what time scales are affect-
ing the trends observed in the datasets used. In this study, a new trend detection method for hydrological
studies is explored, which involves the use of wavelet transforms (WTs) in order to separate the rapidly
and slowly changing events contained in a time series. More specifically, this study co-utilizes the Dis-
crete Wavelet Transform (DWT) technique and the Mann–Kendall (MK) trend tests to analyze and detect
trends in monthly, seasonally-based, and annual data from eight flow stations and seven meteorological
stations in southern Ontario and Quebec during 1954–2008. The combination of the DWT and MK test in
analyzing trends has not been extensively explored to date, especially in detecting trends in Canadian
flow and precipitation time series. The mother wavelet type and the extension border used in the wavelet
transform, as well as the number of decomposition levels, were determined based on two criteria. The
first criterion is the mean relative error of the wavelet approximation series and the original time series.
In addition, a new criterion is proposed and explored in this study, which is based on the relative error of
the MK Z-values of the approximation component and the original time series. Sequential Mann–Kendall
analysis on the different wavelet detail components (with their approximation component added) that
result from the time series decomposition was also used and found to be helpful because it depicts
how harmonious each of the detail components (plus approximation) is with respect to the original data.
This study found that most of the trends are positive and started during the mid-1960s to early 1970s.
The results from the wavelet analysis and Mann–Kendall tests on the different data types (using the
5% significance level) reveal that in general, intra- and inter-annual events (up to 4 years) are more influ-
ential in affecting the observed trends.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The intensification of the hydrologic cycle is one of the most
evident effects caused by climate warming (Ampitiyawatta and
Guo, 2009; Zhang et al., 2009; Durdu, 2010). Changes in hydrolog-
ical processes may in turn affect the overall availability and quality
of water resources, and alter the spatiotemporal characteristics of
hydrologic occurrences, such as the timing of flow events, and
the frequency and severity of floods and droughts (Mishra and
Singh, 2010; Burn et al., 2010). High-latitude areas have been pro-
jected to experience more severe impacts associated with climate
change (Zhang et al., 2001). Labat et al. (2004) who studied the glo-
bal and continental runoff associated with temperature increases
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found that North America is very vulnerable to recent climate
change. One of the most significant consequences of temperature
increases and changes in precipitation patterns is the dramatic
modification of the hydrologic regimes of northern rivers (Boyer
et al., 2010).

The impacts of changing climate in Canada vary from one area
to another and have been studied by numerous authors, both at
the national and regional scale. Studies on trends of various hy-
dro-climatic indices reveal a variety of results; both positive and
negative trends were found across different parts of Canada.
According to Ehsanzadeh et al. (2011), who analyzed Canadian
low flows, there is a positive trend in winter low flows (including
in eastern Canada), but the trends are negative in western Canada.
Summer low flows are found to exhibit positive trends in central
Canada, but the trends are negative in regions such as eastern On-
tario and Quebec (Ehsanzadeh et al., 2011). Similarly, Adamowski
and Bocci (2001) found that there is a significant positive trend
in the yearly low flow in western Quebec and southern Ontario;
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however, the opposite was observed for central and eastern Canada
for the same variable. The latest assessment by the Intergovern-
mental Panel on Climate Change (IPCC) also stated that annual pre-
cipitation has increased over much of North America, especially in
northern Canada, but has decreased in the Canadian Prairies (IPCC,
2007). Recent changes in annual total precipitations in Canada
were between �10% and +35% (Zhang et al., 2001).

One of the predicted effects of climate change in Quebec is the
increase in the intensity and frequency of heavy floods, resulting
from heavy precipitation (Assani et al., 2010). McBean and Motiee
(2006) also found that there are significant upward trends at the
5%-level in flow and precipitation for the Great Lakes watershed
over the period of 1930–1990. These findings are relatively consis-
tent with the predictions of the General Circulation Models (GCMs)
for the year 2050 (McBean and Motiee, 2006). The results of the
Canadian General Circulation Model (CGCMI) and a coupled hydro-
logic–hydraulic model used by Roy et al. (2001) predicted that the
magnitude of heavy precipitation occurrences will increase signif-
icantly in Quebec; and Burn and Hag Elnur (2002) observed that
annual maximum flows were increasing in southern Quebec (the
Great Lakes and St. Lawrence areas). Zhang et al. (2000) found that
the annual precipitation has gone up by between 5% and 35% in
southern Canada for the period of 1900–1998. Using a hydrological
model on different future climatic scenarios (based on greenhouse
gas emission scenarios), Boyer et al. (2010) also projected that in
the next 100 years there will be changes in river discharges for
both the north and south shores of the St. Lawrence River.

It is not surprising that many of the arguments made concern-
ing both climate variability and climatic change are directly related
to the detection of trends (or lack thereof) in hydro-climatic
parameters such as temperature, precipitation, and streamflow
(Birsan et al., 2005). Changes in the patterns and other characteris-
tics of precipitation caused by the daily, seasonal, yearly, and dec-
adal variations should be monitored because they have important
ramifications (Ampitiyawatta and Guo, 2009). It is therefore essen-
tial to investigate trends associated with hydrological events in or-
der to better assess the potential future impacts of climatic change
on water resources (e.g. at the regional level). Hydrologic variables
are also regarded as useful indicators of how the climate has chan-
ged and varied over time (Burn and Hag Elnur, 2002). It has been
suggested that public policies tailored to consider the effects of re-
gional climate change could be modified to cater for a specific eco-
zone. This would take into account knowledge of local climatic and
hydrological trends, rather than general patterns of global climate
change (Clark et al., 2000).

One way to accomplish trend assessments is through time-ser-
ies analysis. Using observational data instead of the output of a
model minimizes the uncertainties associated with the modelling
process such as assumption concept simplifications (Svensson
et al., 2005). Studies have applied several methods to detect and
quantify trends in precipitation and streamflow data. Some of the
more common methods found in the recent literature involve the
use of the bootstrap methods (Adamowski and Bougadis, 2003;
Cunderlik and Burn, 2004; Abdul Aziz and Burn, 2006; Burn
et al., 2010); regression models (Svensson et al., 2005; Shao
et al., 2010; Timofeev and Sterin, 2010); and non-parametric statis-
tical tests (Birsan et al., 2005; Zhang et al., 2009, 2010; Durdu,
2010; Liu et al., 2010). The Mann–Kendall (MK) trend test (Mann,
1945; Kendall, 1975) is probably the most widely used non-para-
metric test in detecting monotonic trends (Yue and Pilon, 2004;
Hamed, 2008). The most attractive features of this test are that it
is powerful even for skewed distributions (Önöz and Bayazit,
2003), simple to compute, and resilient to non-stationary data
and missing values (Partal and Küçük, 2006; Adamowski et al.,
2009). A noticeable weakness of the MK test is that it does not ac-
count for serial correlation, which is very often found in precipita-
tion and streamflow data (Hamed and Rao, 1998; Partal and Küçük,
2006). McBean and Motiee (2006) also specified that the MK test
may not necessarily detect non-linear trends. As a result, the MK
test is often used in conjunction with other methods or models
for trend-related studies in hydrology.

More recently, the wavelet transform – a relatively recent devel-
opment in signal processing – has also emerged as a tool used in
trend analysis (Wang et al., 2011). Wavelet transform has a major
advantage over classical signal analysis techniques such as the Fou-
rier Transform, which only uses a single-window analysis, resulting
in time-averaged results that lose their temporal information
(Torrence and Compo, 1998; Drago and Boxall, 2002). The main issue
with the fixed window size used in the Windowed Fourier Trans-
form is that it loses the time localization at high frequencies when
the window is sliding along the time series because there are too
many oscillations captured within the window. It also loses the fre-
quency localization at low frequencies because there is only a few
low-frequency oscillations included in the window (Santos et al.,
2001). The wavelet transform can handle these issues by decompos-
ing a one-dimensional signal into two-dimensional time–frequency
domains at the same time (Adamowski et al., 2009). Unlike sine
waves, which are the main functions used in Fourier analysis, wave-
lets are usually irregular and asymmetric in shape. This property
makes a wavelet ideal for analyzing signals that contain sharp
changes and discontinuities – a localized signal analysis (Quiroz
et al., 2011). Wavelet transforms use different window sizes, which
are able to compress and stretch wavelets in different scales or
widths; these are then used to decompose a time series (Santos
et al., 2001). Narrow windows are used to track the high-frequency
components or rapidly-changing events of the analyzed signals
(which are represented by the lower detail levels), whereas wider
window sizes are used to track the signals’ low-frequency compo-
nents including trends (which are represented by the higher detail
levels and the approximation component) (Santos et al., 2001; Can-
nas et al., 2006). Additionally, wavelet analysis is able to show many
properties of a time series or data that may not be revealed by other
signal analysis techniques, such as trends, discontinuities, change
points, and self-similarity. In summary, the wavelet transform is
capable of analyzing a wider range of signals more accurately when
compared to the Fourier analysis (Nolin and Hall-McKim, 2006;
Goodwin, 2008). The results of wavelet analysis can be used to deter-
mine the main components or modes in the time series that may
contribute to producing trends (Kim, 2004). These results can then
be used to examine the temporal patterns of both a signal’s
frequency and time domains (Labat, 2005; Wang et al., 2011).

Several different studies conducted to analyze trends in stream-
flow and precipitation in different climate settings have employed
the use of wavelet-based methods. Zume and Tarhule (2006) used
the continuous wavelet transform and the MK test to analyze the
variability of precipitation and streamflow in northwestern Okla-
homa for a period of over 100 years. They found that both annual
precipitation and streamflow experience inter-annual to decadal
variability. Xu et al. (2009) studied the impact of climate change
in the Tarim River basin in China for the period of 1959–2006, by
approximating non-linear trends in annual temperature, precipita-
tion, and relative humidity time series using a wavelet-based
decomposition and reconstruction technique. They found that all
variables showed non-linear trends and/or fluctuating patterns,
especially at the 4-and 8-year scales. Partal (2010) analyzed
streamflow datasets from four stations with different climatic con-
ditions in Turkey, three from the Sakarya basin and one from the
Seyhan basin. The study found different scales were responsible
for the different trends in different climatic areas. In the Sakarya
basin, the real trends were associated with the 16-year periodic
component, whereas in the Seyhan basin, the trends were associ-
ated with the 4-year and 8-year modes.
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The main purpose of this study is to combine the use of the Dis-
crete Wavelet Transform (DWT) technique and the Mann–Kendall
trend tests in order to investigate trends in streamflow and precip-
itation datasets in Ontario and Quebec by analyzing their monthly,
seasonally-based, and annual time series. The analysis of monthly
to yearly data should allow this study to investigate the rapidly
and slowly changing events in the datasets used. The trend analysis
is done by examining the behavior and fluctuation of high-fre-
quency and low-frequency components of the available time ser-
ies, and whether they are contributing to the possible existence
of trends in these series. This is important because although re-
search on trend assessment of flow and precipitation has been con-
ducted in different parts of Canada, they have rarely focused on the
details of the time-scale fluctuations or cycles that affect the trends
in flow and precipitation in Ontario and Quebec. There could be
longer cycles than daily or seasonal fluctuations that exist to affect
the trends in these variables, which will be explored in this present
study. Using the DWT technique in conjunction with the MK test
has not been extensively explored to date, in analyzing streamflow
and/or precipitation data (especially in Canadian studies). Addi-
tionally, a new criterion of using the relative error of the trend val-
ues between the original data and the approximation component
of the DWT is proposed and successfully applied in this study.
The usefulness of this new criterion for the DWT procedure is dis-
cussed in detail in Section 4.3.

In this study, the possible existence of significant autocorrela-
tions and seasonality patterns in the data sets used is first checked.
Following this, each time series is decomposed via the DWT ap-
proach into its appropriate number of decomposition levels (the
explanation on how to determine the appropriate number of
decomposition levels is provided in Section 4.3). Finally, depending
on the characteristics of the analyzed time series (e.g. the presence
or absence of significant autocorrelations or seasonality cycles), the
most suitable MK test is applied to the original data and the series
resulting from the DWT decomposition. Although this type of de-
tailed information is very important to be explored and included
in the methodology, it is often overlooked or missing in most pub-
lished trend detection/estimation studies.

Water resource planners and managers can use the results ob-
tained from this study to address issues in water resources that
are associated with climate variability, by creating appropriate pol-
icies and strategies. Some potential applications include the imple-
mentation of useful adaptation and mitigation strategies as a
response to climate change; the optimization of various hydrologic
structural designs such as dams and reservoirs; and improvements
in stormwater planning (Coats, 2010) and flood protection pro-
jects. In addition, in order to improve the forecasting precision of
water resources for current and future management, an accurate
understanding of the temporal variations of hydrologic variables
is vital (Nolin and Hall-McKim, 2006). The authors of this paper be-
lieve that the findings from this study can serve as a baseline ref-
erence for future research and watershed planning/management,
and will advance the understanding of precipitation and stream-
flow dynamics in Canada and at the smaller, watershed-scale in
Quebec and Ontario.
2. Theoretical background

2.1. Wavelet Transforms (WTs)

A WT is used to mathematically decompose a signal into multi-
ple lower resolution levels by controlling the scaling and shifting
factors of a single wavelet – the mother wavelet W. This is accom-
plished by using a high-pass filter and a low-pass filter. A wavelet
function is a function having a wave shape and limited but flexible
length with a mean value that is equal to zero, and is localized in
both time and frequency domains. The term wavelet function gen-
erally refers to either orthogonal or non-orthogonal wavelets (Tor-
rence and Compo, 1998).

One of the main reasons to utilize wavelet-based methods in
hydrological studies is due to its robust property – it does not in-
volve any possibly incorrect assumptions of distribution and para-
metric testing protocols (Kisi and Cimen, 2011). The WT also filters
out the high-frequency components of a signal (de Artigas et al.,
2006). Wavelet transforms involve shifting forward the wavelet
in a number of steps along an entire time series, and generating
a wavelet coefficient at each step. This measures the level of corre-
lation of the wavelet to the signal in each section. The variation in
the coefficients indicates the shifting of similarity of the wavelet
with the original signal in time and frequency. This process is then
repeated for each scaled version of the wavelet, in order to produce
sets of wavelet coefficients at the different scales. The lower scales
represent the compressed version of the mother wavelet, and cor-
respond to the rapidly changing features or high-frequency com-
ponents of the signal. The higher scales are the stretched version
of a wavelet, and their wavelet coefficients are identified as slowly
changing or low-frequency components of the signal. Therefore,
wavelet transforms analyze trends in time series by separating
its short, medium, and long-period components (Drago and Boxall,
2002).

WT can be performed using two approaches: Continuous Wave-
let Transform (CWT) and Discrete Wavelet Transform (DWT). CWT
operates on smooth continuous functions and can detect and
decompose signals on all scales. Examples of mother wavelets used
in CWT are the Morlet and Paul wavelets, among others. DWT may
use mother functions such as the Mallat or à trous algorithms,
which operate on scales that have discrete numbers. The scales
and locations used in DWT are normally based on a dyadic arrange-
ment (i.e. integer powers of two) (Chou, 2007). DWT is especially
useful for time series containing sharp jumps or shifts (Partal
and Küçük, 2006). One requirement of DWT is that the mother
wavelet has to have an orthogonal basis, while a non-orthogonal
wavelet can be used with either DWT or CWT.

2.1.1. Continuous Wavelet Transform (CWT)
For a time series, xt, that has a continuous scale but a discrete

recording sequence and t = 0, . . . , t � 1, then the wavelet function
(W), which depends on a time variable (g), is generally defined
as (Partal and Küçük, 2006):

WðgÞ ¼ Wðs; cÞ ¼ 1ffiffi
s
p W

t � c
s

� �
ð1Þ

where t represents time; variable c is the translation factor (time
shift) of the wavelet over the time series; and variable s ranging
from 0 to +1 denotes the wavelet scale (scale factor). When c = 0
and s = 1, W(t) represents the mother wavelet – all wavelets follow-
ing this computation are the rescaled (translated and dilated) ver-
sions of the mother wavelet. In order to be acceptable as a
wavelet, the function W(g) has to satisfy the condition of having
zero mean (implying the existence of oscillations) and be localized
in time–frequency space (Torrence and Compo, 1998). As can be
seen in Eq. (1), when s is less than 1, W(g) corresponds to a high-fre-
quency function; when s is greater than 1, W(g) corresponds to a
low-frequency function.

The wavelet coefficients (WW) of CWT for the time series xt

(with equal time interval, dt), is calculated using the convolution
of xt with the scaled and translated versions of the wavelet, W(g)
(Partal and Küçük, 2006):

WWðs; cÞ ¼
1ffiffi
s
p

Z 1

�1
xðtÞW� t � c

s

� �
dt ð2Þ
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where the asterisk symbol represents the complex conjugate num-
bers. If the scale (s) and translation (c) functions are smoothly chan-
ged according to time t, a scalogram can be produced from the
calculation, revealing the amplitude of a specific scale and how it
fluctuates over time (Torrence and Compo, 1998).
2.1.2. Discrete Wavelet Transform (DWT)
Although CWT is able to locate specific events in a signal that

may not be obvious, one of the main disadvantages of the CWT is
that the construction of the CWT inverse is more complicated (Fu-
gal, 2009). In practice this may not always be desirable because of-
ten, signal reconstructions are needed (Fugal, 2009). In addition,
the use of the CWT can generate too many data (coefficients) and
is more difficult to implement. It may also be more desirable to
choose the DWT over CWT because CWT does not produce infor-
mation in the form of a time series, but rather in a two-dimen-
sional format (Percival, 2008). This causes a high amount of
redundant information produced by CWT and the coefficients are
correlated spatially and temporally (Percival, 2008). If the DWT is
chosen, the process of transformation is simplified and the amount
of work is reduced; yet, it still produces a very efficient and accu-
rate analysis (Partal and Küçük, 2006). This is because the DWT is
normally based on the dyadic calculation of position and scale of a
signal (Chou, 2007). The DWT of a vector is the outcome of a linear
transformation resulting in a new vector that has equal dimensions
to those of the initial vector (Chou, 2011). This transformation is
the decomposition process. The discretization of wavelet functions
is accomplished using a logarithmic uniform spacing that has a
coarser resolution at higher scales (Mallat, 1989; Daubechies,
1990).

Some important features of DWT are: (i) at each scale, the num-
ber of convolutions using orthogonal wavelets is proportional to
the width of the wavelet function at that particular scale (Torrence
and Compo, 1998; Kulkarni, 2000); (ii) the wavelet spectra gener-
ated are in discrete steps and give a very compact representation of
the signal (Kulkarni, 2000); (iii) due to its orthogonal property, sig-
nal reconstruction is not complicated (Torrence and Compo, 1998);
and (iv) results of transformations using DWT do not contain the
unwanted relation between the wavelet coefficients, which are ob-
served in the CWT (i.e. DWT removes the redundant information
within the wavelet coefficients in order to better identify processes
contained in signals) (Daubechies, 1992). DWT adopts the follow-
ing form (Partal and Küçük, 2006):

Wða;bÞ
t � c

s

� �
¼ 1

ðs0Þa=2 W
t � bc0sa

0

sa
0

� �
ð3Þ

W denotes the mother wavelet; a and b are integers, which repre-
sents the amount of dilation (scale factor) and translation of the
wavelet, respectively; s0 denotes a dilation step whose value is un-
changed and is greater than 1; and c0 symbolizes the location var-
iable whose value is greater than zero. Generally, for practical
reasons, the values for s0 and c0 are chosen to be 2 and 1, respec-
tively (Mallat, 1989; Daubechies, 1992). This is the DWT dyadic grid
arrangement (i.e. integer powers of two; logarithmic scaling of the
translations and dilations). If a time series exhibits discrete proper-
ties, with a value of xt, occurring at a discrete time t, the wavelet
coefficient (Ww(a,b)) for the DWT becomes (Partal and Küçük,
2006):

WWða; bÞ ¼
1

ð2Þ
a
2

XN�1

t¼0

xtW
t

2a � b
� �

ð4Þ

The wavelet coefficient for the DWT is calculated at scale s = 2a and
location c = 2ab, revealing the variation of signals at different scales
and locations (Partal and Küçük, 2006). Since most precipitation
and streamflow data are sampled in discrete intervals, it makes
sense to use the DWT.

2.2. The Mann–Kendall (MK) trend test

The computation of the MK S-statistic value from the raw data
can yield a large positive or negative value for S, indicating a posi-
tive or negative trend, respectively. The null hypothesis (Ho) of the
MK test assumes that the ranked data (Xc, c = 1, 2, 3, . . . ,n � 1) and
(Xd, d = c + 1, . . . ,n) belong to a sample of n independent and iden-
tically distributed random variables. The alternative hypothesis
(H1) of the two-sided test assumes that the distributions of Xc

and Xd are not identical for all c, d 6 n with c – d (Partal, 2010).
The S-statistic of the MK test is computed as (Hirsch and Slack,
1984):

St ¼
Xn�1

c¼1

Xn

d¼cþ1

signðXd � XcÞ ð5Þ

SignðXd � XcÞ ¼
þ1; when Xd > Xc

0; when Xd ¼ Xc

�1; when Xd < Xc

8><
>: ð6Þ

Xc and Xd denote the ranked values of the data, and n is the length of
the data record. For data that are distributed identically and inde-
pendently with a zero mean, the variance for the St statistic can
be calculated as (Adamowski and Bougadis, 2003):

VarianceðStÞ ¼ nðn� 1Þð2nþ 5Þ �
Xn

c¼1

tcðcÞðc � 1Þð2c þ 5Þ
( ),

18

ð7Þ

tc represents the summation of t, which is the number of tied values
to the extent of c. The statistic of the Mann–Kendall test, Z, is then
given as (Xu et al., 2009):

Z ¼

St�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarianceðStÞ
p 0 ðif St > 0Þ

0; ðif St ¼ 0Þ
Stþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarianceðStÞ
p 0 ðif St < 0Þ

8>>><
>>>:

ð8Þ

The statistic of the MK test, Z, given in Eq. (8) can be used where the
number of records, n, is larger than 10. The trend’s significance is as-
sessed by comparing the Z value with the standard normal variate
at the pre-specified level of statistical significance (Hamed and
Rao, 1998). In a two-sided trend test, with alpha (a) representing
the significance level, the null hypothesis should not be accepted
if |Z| > Za/2; this suggests that the trend is significant. A positive Z-
value at the significance level implies that there is a positive trend,
whereas a negative value indicates a negative trend. The probability
value (p-value) obtained from the MK Z-value can be used to verify
the significance of a trend. If the p-value is less than the pre-deter-
mined significant level (e.g. a = 5%) or greater than the confidence
level (if a = 5%, confidence level = 95%), it means that the null
hypothesis of no trend cannot be accepted.

2.2.1. Modified Mann–Kendall (MK) trend tests that account for
seasonality and autocorrelation structures in the data

It is well known that the original Mann–Kendall test does not
consider the autocorrelation factor that may be present in the time
series being analyzed. The presence of an autocorrelation in a data-
set may lead to inaccurate interpretations of the MK test. A time
series exhibiting positive autocorrelation causes the effective sam-
ple size to be less than the actual sample size, thereby increasing
the variance and the possibility of detecting significant trends
when in fact, there are no trends (Hamed and Rao, 1998; Ehsan-
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zadeh et al., 2011). On the contrary, the existence of negative auto-
correlation in a time series enhances the possibility of accepting
the null hypothesis (absence of significant trends), when actually,
there are significant trends (Ehsanzadeh et al., 2011).

There have been several approaches developed that deal with
the effects of autocorrelation in a time series. Yue et al. (2002)
developed the Trend-Free Pre-whitening method (TFPW) – the
trend component is assumed to be linear, and is first removed be-
fore the pre-whitening procedure is applied. Kumar et al. (2009)
found that for data that have significant autocorrelation coeffi-
cients extending beyond the first lag, the TFPW method was not
the best method to account for all these significant autocorrela-
tions. In the present study, significant autocorrelations may be
present for more than just one lag in several time series. Therefore,
the TFPW method is not considered in this study.

Hirsch and Slack (1984) proposed a modified MK test that ac-
counts for seasonality and serial dependence factors. This method
separates observations into different seasons, which eliminates the
dependence problem between seasons (Hirsch et al., 1982; Hirsch
and Slack, 1984). This method, however, is not as powerful when
there is long-term persistence (with autoregressive parame-
ter > 0.6) or when there are less than 5 years worth of monthly
data (Hirsch and Slack, 1984).

Hamed and Rao (1998) proposed another modified version of
the MK test in order to deal with the issue of autocorrelation struc-
tures for all lags in a dataset, because autocorrelations may still ex-
ist past the first lag (note: seasonality issues are not taken into
consideration in this modified version of the MK test). Since the
presence of autocorrelation underestimates the variance if calcu-
lated using the MK formula for uncorrelated data, the method by
Hamed and Rao (1998) modifies the calculation for the variance
of the MK test statistics when the data are serially correlated by
using an empirical formula (see Section 2.2.3). When applied to
autocorrelated data with a large sample size, this test was found
to be practically as powerful as when the original MK test is ap-
plied to independent data (Hamed and Rao, 1998).

2.2.2. Modified Mann–Kendall (MK) test to account for seasonality and
autocorrelation by Hirsch and Slack (1984)

Hirsch and Slack (1984) modified the original Mann–Kendall
trend test to account for seasonality and autocorrelation factors
present in a dataset. Let the matrix:

x ¼

x11 x12 x13 . . . x1k

x21 x22 x23 . . . x2k

x31 x32 x33 . . . x3k

..

. ..
. ..

. ..
.

xj1 xj2 xj3 . . . xjk

0
BBBBBBBB@

1
CCCCCCCCA

ð9Þ

where the data in the matrix x represent a series of observations re-
corded over k seasons for j years (without any tied values) (Hirsch
and Slack, 1984). The ranks of the data in matrix x are represented
in the following matrix (Hirsch and Slack, 1984):

r ¼

r11 r12 r13 . . . r1k

r21 r22 r23 . . . r2k

r31 r32 r33 . . . r3k

..

. ..
. ..

. ..
.

rj1 rj2 rj3 . . . rjk

0
BBBBBBB@

1
CCCCCCCA

ð10Þ

Since the values within each season are ranked among themselves,
the calculation of the rank (rdz) becomes (Hirsch and Slack, 1984)
(for c and d notations, see Eq. (5)):
rdz ¼
½jþ 1þ

Pj
c¼1sgn ðxdz � xczÞ�

2
ð11Þ

The test statistic Sz is calculated using (for each season):

Sz ¼
X
c<d

sgnðxdz � xczÞ; where z ¼ 1;2;3; . . . k ð12Þ

The test statistics for the seasonal Kendall is calculated using:

Ss ¼
Xk

z¼1

Sz ð13Þ

with variance of:

Variance Ss ¼
X

z

ðrzÞ2 þ
X

z;w;z–w

rzw ð14Þ

r2
z is the variance of (Sz), rzw denotes the covariance of (Sz,Sw). The

estimator for the covariance r̂zw was developed by Dietz and Killeen
(1981), which is as follows:

r̂zw ¼
Kzw

3
þ ðj3 � jÞ r

�
zw

9
ð15Þ

With no missing values, the estimator of the covariance becomes
(Hirsch and Slack, 1984):

r̂zw

Kzw þ 4
Pj

c¼1rczrcw � jðjþ 1Þ2
� �

3
ð16Þ

where Kzw and r�zw are calculated using:

Kzw ¼
X
c<d

sgnððXdj � XcjÞðXdw � XcwÞÞ ð17Þ

r�zw ¼ 3=ðj3 � jÞ
� �X

c;d;p

sgnðXdj � XcjÞðXdw � XpwÞ ð18Þ

However, in the event that there are no ties and no missing data val-
ues, r�zw is simply the Spearman’s correlation coefficient for seasons
z and w (Hirsch and Slack, 1984). By adopting the estimates of rzw

to calculate the variance Ss, the test no longer needs the assumption
of independence (Hirsch and Slack, 1984).

2.2.3. Modified Mann–Kendall test for autocorrelated data by Hamed
and Rao (1998)

Since using the original MK for autocorrelated data underesti-
mates the variance of the data, the calculation of the variance of
the test statistics S is altered and given by an empirical formula
(Hamed and Rao, 1998):

Variance ðS0Þ ¼ ðnðn� 1Þð2nþ 5Þ=18Þ � n
n�e

� �
ð19Þ

where n� is the effective number of sample size needed in order to
account for the autocorrelation factor in the dataset. The notation
n=n�e is the factor that represents the correction associated with
the autocorrelation of the data. Empirically, the correction is ex-
pressed by Hamed and Rao (1998):

n
n�e
¼ 1þ 2

n3 � 3n2 þ 2n

� �
�
Xn�1

f¼1

ðn� f Þðn� f � 1Þðn� f � 2Þqeðf Þ

ð20Þ

qe(f) symbolizes the autocorrelation function between the ranks of
the observations, computed using the inverse of Eq. (19) (Kendall,
1975; Hamed and Rao, 1998). This transforms the rank autocorrela-
tion into the normalized data autocorrelation, as the estimate of the
normalized autocorrelation structure is needed to evaluate the var-
iance of S for data X whose distribution may not be normal or rather
arbitrary (Hamed and Rao, 1998).
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qðf Þ ¼ 2sin
p
6

qeðf Þ
� �

ð21Þ
3. Study sites and datasets

The monthly, seasonally-based and annual flow and precipita-
tion data from a total of eight Reference Hydrometric Basin Network
(RHBN) stations and seven meteorological stations, respectively,
were analyzed. These stations are located in Ontario and Quebec,
Canada. Six of the RHBN stations used are located in Ontario, and
two are in Quebec. The smallest drainage area of the flow stations
is 181 km2 and the largest one is 22,000 km2. As for the meteorolog-
ical stations, there are three situated in Quebec, and one in Ontario.
The two Quebec RHBN stations – Richelieu River and Eaton River –
are located in the south western corner of the province, on the south
shore portion of the St. Lawrence stream. Four RHBN stations in On-
tario (the Neebing, North Magnetawan, Black, and Sydenham rivers)
are located around the Great Lakes basin. The Missinaibi and Naga-
gami rivers (Ontario) are the most northerly stations. The locations
of the flow and precipitation stations are shown in Fig. 1 and the key
features of the RHBN stations and the meteorological stations are
summarized in Tables 1 and 2, respectively.

Monthly datasets were chosen because it includes the analysis of
short-term monthly variations such as the intra-annual and inter-
annual cycles. Seasonally-based values were examined to allow
the analysis of seasonal cycles (it will be seen later that most time
series – especially flow time series – exhibit strong annual cycles).
Annual datasets were analyzed in order to study the long-term fluc-
tuations (e.g. multi-year, decadal, and multi-decadal events) that are
potentially present in the flow and precipitation time series.

One of the advantages in using monthly datasets compared to
annual datasets in trend detection is that annual data values may
not deal well with the presence of missing records (which causes
the annual summary value to be biased), and the seasonality factor
(Hirsch and Slack, 1984). If both factors (missing data and season-
Fig. 1. A map of the flow and precip
ality) are present in a yearly time series, the trends detected may
simply be caused by the yearly variation in the sampling schedule
(Hirsch and Slack, 1984). Having said this, a monthly time series
has more autocorrelation issues compared to a yearly time series
(Hirsch and Slack, 1984). Therefore, this present study chose to
incorporate monthly and annual data in order to thoroughly ana-
lyze the variations and trends of flow and precipitation within
the study area.
3.1. Selection criteria for the RHBN flow stations and meteorological
stations

The stations used in this study were chosen based on the regu-
lation type (for flow stations), and the completeness and length of
their available records for the period of 1954–2008. The three main
criteria used for this selection are summarized as follows: (1) there
must be an absence of hydrological structural controls upstream of
a RHBN gauging station (for flow stations only). Upstream controls
and regulation, such as reservoir storage or containment struc-
tures, hydropower activities, and water diversions may have con-
siderable impacts on the quality of data (Yue and Pilon, 2005). As
a consequence, less accurate frequency analysis and interpretation
may be obtained. Therefore, this study only considered gauging
stations, which are stated as ‘‘natural’’ according to Environment
Canada. (2) Stations must have a record length of at least 55 years,
starting from 1954 to 2008. In order to obtain a valid mean statistic
in assessing trends in flow associated with climate change, Kahya
and Kalayci (2004) and Burn and Hag Elnur (2002) consider that
at least 31 and 25 years worth of data, respectively, are required.
Furthermore, Partal (2010) considered 40 years’ worth of data ade-
quate for trend analysis studies. Therefore, we concluded that hav-
ing 55 years worth of data would be sufficient for the purpose of
trend detection in our study. The start and end years in this study
were chosen because they would give the highest number of sta-
tions in Quebec and Ontario to be analyzed without any missing
itation stations used this study.



Table 1
Unregulated RHBN gauging stations in Ontario and Quebec recording the streamflow data, which were used in this study.

Station Id. Station name Province Latitude (�) Longitude (�) Drainage area (km2)

02AB008 Neebing River near Thunderbay ON 48.38 �89.31 187
02EA005 North Magnetawan River Near Burk’s Falls ON 45.66 �79.37 321
02EC002 Black River Near Washago ON 44.71 �79.28 1521
02FB007 Sydenham River Near Owen Sound ON 44.52 �80.93 181
02OE027 Eaton (Riviere) Pres De La Riviere Saint-Francois-3 QC 45.46 �71.65 642
02OJ007 Richelieu (Riviere) Aux Rapides Fryers QC 45.39 �73.25 22,000
04JC002 Nagagami River At Highway No. 11 ON 49.77 �84.53 2410
04LJ001 Missinaibi River At Mattice ON 49.61 �83.26 8940

Table 2
Meteorological stations in Ontario and Quebec recording the precipitation data, which were used in this study.

Station id. Station name Province Latitude (�) Longitude (�) Joint station Elevation (m)

6022476 Fort Frances A ON 48.7 �93.43 Yes 342
6068150 Sudbury A ON 46.6 �80.8 Yes 348
6085700 North Bay A ON 46.4 �79.4 Yes 370
6105976 Ottawa CDA ON 45.4 �75.7 No 79
6139525 Windsor A ON 42.3 �82.9 Yes 190
7025250 Montreal/Pierre Elliot Trudeau Intl. A QC 45.5 �73.8 Yes 36
7060400 Bagotville A QC 48.33 �71 No 159
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records. (3) Although up to three-percent missing data is consid-
ered acceptable for meteorological studies (Mishra and Singh,
2010), this study chose to include only stations with fully complete
records over the chosen time period. This was done in order to
avoid possible uncertainties associated with the computation of
extrapolation procedures. Criterion number 1 was applied only to
the flow stations; criteria number 2 and 3 were applied to both
flow and precipitation stations. In summary, there are a total of
eight RHBN stations in Ontario and Quebec that meet the three
selection criteria. As for the meteorological stations, there are a to-
tal of seven meteorological stations in Ontario and Quebec that
have a record length of 55 years without missing values.

3.2. Flow data

The monthly, seasonal, and annual average flow data were ob-
tained from the Environment Canada HYDAT database. Only data
from stations that are categorized as RHBN were chosen. First,
the RHBN designation for a station indicates that its data accuracy
is further evaluated qualitatively by local experts by taking into
consideration the hydraulic condition of that particular station
(Coulibaly and Burn, 2004). Secondly, the stage–discharge relation-
ship and channel geometry were considered, and the reliability of
data records influenced by ice conditions was checked (Zhang
et al., 2001). Thirdly, the RHBN stations represent pristine or stable
hydrological conditions, having at least 20 years of good-quality
data (Zhang et al., 2001). In summary, only RHBN gauging stations
were included in this study in order to ensure that good-quality
data are used. In addition to this, many Canadian studies on flow
trend and variability have also used data from selected RHBN sta-
tions because of their record length and reliability (e.g. Burn and
Hag Elnur, 2002; Coulibaly and Burn, 2004; Ehsanzadeh and Ada-
mowski, 2007; Ehsanzadeh et al., 2011, etc.).

The flow data used in this study cover the period from January
1954 to December 2008, except for Eaton River station that has re-
cords ending in September 2008. The data analysis therefore covers
the years 1954–2008 (except for Eaton River which only covers up
to 2007 due to the incomplete 2008 data).

3.3. Precipitation data

The monthly, seasonally-based and annual total precipitation
data were obtained from Environment Canada’s second generation
adjusted and homogenized precipitation data base (with trace cor-
rections to account for trace amounts of both rainfall and snow-
fall). The detailed explanation of the adjustment procedures can
be found in Mekis and Vincent (2011). Daily rainfall and snowfall
measurements were adjusted separately – the adjusted rainfall
and snow-water equivalent make up the daily total precipitation
(Mekis and Vincent, 2011). Mekis and Vincent (2011) also applied
several statistical adjustments to the original daily data (which
were taken from the National Climate Data Archive of Environment
Canada). These procedures address issues regarding changes in
location, modifications to recording instruments, faulty equip-
ment, and alterations to recording procedures. These corrections
were done to ensure that factors such as wind undercatch, evapo-
ration losses, and gauge specific wetting losses for specific types of
rain-measuring instruments, have been taken into account. Other
improvements and revisions that were also implemented by Mekis
and Vincent (2011) in these second generation datasets include:
better rain-gauge adjustment procedures, improved snow-water
equivalent maps, better adjustment procedures to trace records
due to more accurate metadata information, and further tests on
the combined stations. Since the datasets contained in the second
generation adjusted precipitation data have been developed
mainly for climate-related research, their quality is very suitable
for the purpose of this study.

Many precipitation stations included in the second-generation
datasets have long records as a result of data combinations among
nearby stations (Mekis and Vincent, 2011). The procedures and
adjustments involved in joining the data of nearby stations are gi-
ven in detail in Mekis and Vincent (2011). The stations used in this
study were combined stations, except for the Ottawa CDA and
Bagotville A stations (Table 2). All precipitation stations used have
data that extend prior to 1954. Station Sudbury A has incomplete
data for year 2008; therefore the data analysis for this station only
covers up until 2007. To be consistent with the analysis of the flow
trends, it was decided to use the common period of 1954–2008.
Kumar et al. (2009) suggested that the same length of records
should be used when analyzing trends of different variables to
avoid misleading conclusions.
4. Methodology

Three data types were used in the data analysis: monthly, sea-
sonally-based, and annual. Monthly time series allowed for the
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investigation of the short-term fluctuations that affect the flow and
precipitation. Since annual cycles were strongly apparent in most
monthly data, the seasonal average flow and the seasonal total pre-
cipitation were used to assess if these annual cycles may have an
influence on trends in flow and precipitation data – the second
decomposition level in the seasonally-based data represented the
yearly (12-month) cycle. Finally, annual data were used in order
to assess the long-term fluctuations of streamflow and precipita-
tion over the study area.

The procedures for data analysis are organized in the following
order:

1. Autocorrelation tests or analysis were performed for each of the
precipitation and streamflow series in order to check for the
presence of a serial correlation and seasonality patterns.

2. Each time series was decomposed via the Discrete Wavelet
Transform (DWT) using Daubechies wavelets, splitting the sig-
nal into its approximation and detail components.

3. The Mann–Kendall tests were computed on the original data,
the detail time series, as well as on the combinations of each
of the detail components plus their approximations.

4. The sequential Mann–Kendall analysis was applied to every
time series, starting from the original series to the different
detail components, approximations, and the combinations of
the details with their approximations.

5. The periodic component(s) responsible for trends in each data-
set were determined based upon the MK Z-values and the
sequential MK graphs of each periodicity.

The sequential MK graphs of the original annual time series
were analyzed and used to determine the starting point of a trend
increase or decrease. This was done in order to examine whether
these starting times are similar among the different flow and pre-
cipitation stations. The following sections describe each of these
steps in detail.
4.1. Autocorrelation analysis

The presence of significant autocorrelation in a time series can
compromise the interpretation of its trend analysis because it
can alter the dispersion of the data distribution by changing the
variance. This then increases the occurrence of type I error (Yue
et al., 2002), in which a significant trend may be found when in fact
the null hypothesis should be accepted (Hamed and Rao, 1998;
Partal, 2010). It is expected that the monthly and seasonally-based
data would have more autocorrelation issues compared to the an-
nual data. An autocorrelation assessment in the monthly and sea-
sonal datasets was accomplished by using the following equation
(Yue et al., 2002; Mohsin and Gough, 2010):

R ¼ ð1=n� 1Þ
Pn�1

t¼1 xt � �xt½ � xtþ1 � �xt½ �
ð1=nÞ

Pn
t¼1 xt � �xt½ �2

ð22Þ
f�1� 1:645
ffiffiffi
n
p
� 2g

n� 1
6 R 6

f�1þ 1:645
ffiffiffi
n
p
� 1g

n� 1
ð23Þ

R is the lag-1 autocorrelation coefficient of the sample data xt ; �xt is
the sample mean, and n is the number of observations in the data. If
the calculated lag-1 autocorrelation coefficient is within the inter-
val defined by Eq. (23), it can be assumed that the monthly or sea-
sonal dataset does not contain a significant autocorrelation. If, on
the other hand, the calculated R is found to be outside of the range,
the corresponding dataset is assumed to exhibit a significant auto-
correlation at the 5% significance level. For the annual datasets,
their correlograms showing the ACFs of each dataset for several lags
were analyzed and used to determine whether the data are
autocorrelated.

4.2. Seasonality factor

The monthly and seasonally-based flow and precipitation time
series were checked for seasonality by examining their correlo-
grams. These correlograms were used to visually determine the
presence (or lack thereof) of seasonality patterns, or of any cyclical
and oscillatory behavior. Looking at the original data, many time
series display the patterns of significant autocorrelation and an-
nual cycles. It is important to note that the detail components of
signal decomposition in WT can be associated with factors such
as seasonal cycles, and other influencing variables that may be
external to the time series (Choi et al., 2011). Therefore, the corre-
lograms of the detail components were used to check whether any
cyclical patterns were still present post-decomposition.

4.3. Time series decomposition via the Discrete Wavelet Transform
(DWT)

The conventional discrete wavelet analysis of signals was per-
formed on each flow and precipitation time series using the multi-
level 1-D wavelet decomposition function in MATLAB (MATLAB
Wavelet Toolbox). This produces the wavelet transform of the in-
put data at all dyadic scales. Rather than relying on an upsampling
procedure, the DWT relies more on downsampling, which is excel-
lent for denoising (Fugal, 2009). The mean flow and total precipita-
tion input signals (data) are all one-dimensional.

Decomposing the signals using specified filters (wavelet and
scaling functions) produces two types of coefficients: the approxi-
mation or residual, and detail vectors (Chou, 2007). These coeffi-
cients resulted from the convolution of the original signal with a
low-pass filter and a high-pass filter. The low-pass filter is the scal-
ing function and the high-pass filter is the wavelet function. The
convolutions of signals with the low-pass filter produced the
approximation coefficients, which represent the large-scale or
low-frequency components of the original signal. Convolutions
with the high-pass filter produced the detail coefficients, which
represent the low-scale or high-frequency components (Bruce
et al., 2002). The process of signal decomposition was repeated
multiple times, decomposing the original signal into several differ-
ent lower-resolution components (Partal, 2010).

The detail and approximation coefficients produced from the
signal decomposition were then reconstructed since they are
merely intermediate coefficients. These have to be re-adjusted to
the entire one-dimensional signal in order to enable the investiga-
tion of their contribution to the original signal (Dong et al., 2008).
This contribution may be reflected in the different time scales such
as intra-annual, inter-annual, decadal, and multi-decadal.

The Daubechies (db) wavelets were used in this study because
they are commonly used mother wavelets for the DWT in hydro-
meteorological wavelet-based studies. Daubechies wavelets pro-
vide compact support (Vonesch et al., 2007), indicating that the
wavelets have non-zero basis functions over a finite interval, as
well as full scaling and translational orthonormality properties
(Popivanov and Miller, 2002; de Artigas et al., 2006). These features
are very important for localizing events in the time-dependent sig-
nals (Popivanov and Miller, 2002).

Relatively large numbers of data points used in this study were
from the monthly and seasonally-based datasets. For the period of
55 years, there were 657 or 660 data points for the monthly sets
and 219 or 220 for the seasonally-based sets, depending on when
the records ended in 2008. In order to avoid unnecessary levels of
data decomposition in these larger datasets, the number of decom-
position levels had to be determined first. This number is based upon
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the number of data points, as well as the mother wavelet used. The
highest decomposition level should correspond to the data point at
which the last subsampling becomes smaller than the filter length
(de Artigas et al., 2006). According to de Artigas et al. (2006), who
analyzed monthly geomagnetic activity indices, if v is the number
of vanishing moments of a db wavelet and n is the number of data
points in a monthly-based time series, the maximum decomposition
level L is calculated using the following equation:

L ¼
Log n

2v�1

� �
Logð2Þ ð24Þ

In MATLAB, the number of vanishing moments for a db wavelet is
half of its starting filter length. For example, db5 in MATLAB refers
to the Daubechies5 wavelet, which has a 10-point filter length. If
one uses db5 to analyze the monthly data, for example, in Eq.
(24), with v equal to 5, the resulting maximum level of decomposi-
tion for the monthly data is 6.20 (the DWT performed in MATLAB
would consider the data up to the next dyadic arrangement, which
is 1024 data points instead of 660).

Smoother db wavelets (db5–db10) were then tried for each
monthly and seasonally-based dataset. Smoother wavelets are pre-
ferred here because the trends are supposed to be gradual and rep-
resent slowly-changing processes. Smoother wavelets should be
better at detecting long-term time-varying behavior (good fre-
quency-localization properties) (Adamowski et al., 2009). In addi-
tion to this, several trend studies used smoother db mother
wavelets (e.g. Kallache et al., 2005 used least asymmetric LA (8);
de Artigas et al., 2006 used db7). With the smoother db wavelets,
the levels of decomposition resulting from the calculations using
Eq. (24) were between 5.8 and 6.8 (for monthly-based data), and
3.8 and 4.8 (for seasonally-based data). Therefore, six and seven
levels; and four and five levels were tried for the monthly and sea-
sonally-based data, respectively.

The border conditions were also taken into consideration when
performing the DWT. This is because for signals with a limited
length, convolution processes cannot proceed at both ends of the
signal since there is no information available outside these bound-
aries (Su et al., 2011). This is referred to as the border effect (Su
et al., 2011). As a result, an extension at both edges is needed. Bor-
der extensions that are commonly used are zero-padding, periodic
extension, and symmetrization – all of which have their draw-
backs, due to the discontinuities introduced at both ends of the sig-
nals (de Artigas et al., 2006; Su et al., 2011). The default extension
method used in MATLAB is symmetrization, which assumes that
signals outside the original support can be recovered by symmetric
boundary replication (de Artigas et al., 2006). Zero-padding pads
the signal with zeros beyond the original support of the wavelet;
periodic padding assumes that signals can be recovered outside
of the original support by periodic extension (de Artigas et al.,
2006). The Inverse Discrete Wavelet Transform (IDWT) was then
computed to ensure perfect signal reconstruction.

For each monthly dataset, six and seven levels of decomposition
were tried for each smooth db wavelet. In order to determine the
smooth mother wavelet and the extension mode to be used in
the data analysis for each data type and dataset, two criteria were
used. The first criterion used was proposed by de Artigas et al.
(2006): all three extension modes for each db wavelet were em-
ployed in order to determine the extension method, and the db
type, that would produce the lowest mean relative error (MRE).
The mean relative error (MRE) was calculated using the following
equation (Popivanov and Miller, 2002; de Artigas et al., 2006):

MRE ¼ 1=n
Xn

j¼1

jaj � xjj
jxjj

ð25Þ

where xj is the original data value of a signal whose number of re-
cords is n, and aj is the approximation value of xj. The second crite-
rion is the one proposed in this study and is based on the relative
error (er). Each of the extension modes for each of the smooth db
wavelets was examined in order to determine the combination (of
border condition and the mother wavelet) that would produce the
lowest approximation Mann–Kendall Z-value relative error (er).
The computation of the relative error was done using the following
proposed equation:

er ¼
jZa � Zoj
jZoj

ð26Þ

where Za is the MK Z-value of the last approximation for the decom-
position level used, and Zo is the MK Z-value of the original data.

For the monthly datasets, the calculated MREs did not differ sig-
nificantly among the different border conditions and the different
db wavelet types used, for the six and seven levels of decomposi-
tion. However, once the er calculations were completed, the lowest
errors were generally obtained for six decomposition levels. There-
fore, for the monthly data analysis, six decomposition levels were
used in their DWT procedures (the db type and border extensions
may vary from one station to another). The er was then used to
determine the db type as well as the border extension to be used
for the data analysis. Using the monthly total precipitation for sta-
tion Montreal/Pierre Elliot Trudeau as an example, the MREs for the
different db types and border extensions were between 0.42 and
0.43 (this applied both for six and seven decomposition levels).
The ranges of the er for six decomposition levels were: 97.35–
341.05, 44.78–421.94, and 17.46–134.65 using zero-padding, peri-
odic extension, and symmetrization borders, respectively. As can
be seen, there were very noticeable differences in the relative er-
rors among the different extensions. For this station, the lowest
er produced was by using the symmetrization border with db9
(er: 17.46, MRE: 0.42).

For the seasonally-based data analysis, similar procedures to
that of the monthly data analysis were used, in order to find the
levels of decomposition, db type, and border extension that would
produce the lowest MRE and er. Four and five levels of decomposi-
tion were tried with different border conditions for the different
smooth db wavelets. The lowest MRE and er were obtained when
four levels of decomposition were used. Therefore, four levels of
decompositions were used for the seasonally-based data analysis,
but the extensions and db types may vary for the different stations.

For the annual data, similar observations were seen where the
MREs of the different border conditions did not show substantial
differences. The differences in the relative errors were also more
noticeable among the different border extensions and the different
db wavelets. Since the annual datasets have 55 years worth of re-
cords, they could be decomposed up to five levels, which corre-
spond to 32 years. Even so, four decomposition levels – which
have a maximum of 16 years in fluctuation – were also explored.
The er and MRE of four decomposition levels were then compared
to those of five decomposition levels. So, four and five levels of
decompositions were assessed for the annual data. The MREs be-
tween the two levels did not produce significant differences, but
lower relative errors were observed for four decomposition levels.
For example, for the North Magnetawan River station, the MREs for
levels four and five were 0.17–0.22 and 0.17–0.25, respectively.
The lowest relative errors for this station were observed when
the periodic border extension was used at four decomposition lev-
els with different db types (er = 0.98–4.97). Therefore, for this sta-
tion, four decomposition levels were used in the DWTs, with the
periodic extension border and db10 wavelet – this produced the
lowest relative error (i.e. 0.98). The same procedures were applied
to the rest of the annual datasets – four decomposition levels were
used, but the extension condition and db wavelet types may vary
from one station to another.
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4.4. Applying the Mann–Kendall (MK) trend tests

For each study location, the MK test S-statistic and its variance
were calculated in order to obtain the test’s Z standard normal va-
lue. The absolute value of this Z-value was then compared to the
critical two-tailed Z-value (area under the normal curve) corre-
sponding to the significant level of a/2 (this study used a = 5%).
The Z values in a two-tailed test for a of 5% are ±1.96. If the Z-value
obtained from the MK calculation is found outside the boundary of
�1.96 and +1.96, then that indicates that the trends detected are
significant.

For the monthly and seasonally-based datasets, the modified
MK test by Hirsch and Slack (1984) was used because all of these
time series showed seasonality patterns and most of them exhib-
ited significant lag-1 autocorrelations. For the annual datasets,
the original MK test was applied to datasets that did not exhibit
significant autocorrelation. The modified MK test by Hamed and
Rao (1998) was applied to two annual datasets (Richelieu River
and Montreal/Pierre Elliot Trudeau) because they possessed signif-
icant autocorrelations. These corresponding MK tests for the differ-
ent data types were computed on the original time series, the time
series resulting from the wavelet decomposition (details and
approximations), and on a set of combinations of the details plus
their respective approximations.

4.5. Sequential Mann–Kendall (MK) analysis

The progressive MK values were calculated for the data used
ranging from the beginning of the study period to the end (e.g. Par-
tal, 2010). These MK values were obtained using the different MK
tests for the different data characteristics (mentioned in Sec-
tion 4.4). The MK values were portrayed as line graphs and when
the line crosses the upper or lower confidence limits, it is an indi-
cation that there is a significant trend because the calculated MK
value is greater than the absolute value of the normal standard Z
value (at the 5% significance level). By using this significance level,
it is implied that the upper confidence limits in a sequential MK
graph represent the Z-value of +1.96, whereas the lower confidence
limits represent the Z-value of �1.96. The purpose of conducting
the sequential MK tests and graphing the results is to see how
the trends fluctuated over the study period. Sequential MK analysis
also allowed the depiction of a combination of a set of significant
upward and downward trends in a time series that may cancel
each other, resulting in a non-significant final MK Z-value for that
specific dataset.

It is important to note that the normal approximation may be
used on the MK test to obtain the Z-value only when the number
of data points is greater than 10. Additionally, the power of the
modified MK test by Hirsch and Slack (1984) is considered accept-
able when seasonal datasets have at least 10 years worth of
monthly values. In light of this, the present study considered the
MK values to be accurate starting from the 10th year since the
beginning of the data record, which is 1963. Although all of the
sequential MK graphs presented in this paper cover the entire
study period from 1954 to 2008, the portions covering the first
10 years of the graphs may be overlooked. The sequential MK anal-
ysis/graphs on the original annual flow and precipitation series
were also used to examine and determine the possible starting
time point (years) in which the apparent trends started to appear.
The results obtained from the different stations can be compared in
order to see whether the starting times shared any similarity.

4.6. Determining the most dominant periodic components for trends

The procedures for determining the periodic component(s) that
are most dominant for trends in a time series consisted of two
parts. Firstly, the sequential MK graphs of each detail components
(with its approximation added) were examined with respect to
their original data. These comparisons were done in order to find
the detail components (with approximation added) whose pro-
gressive trend lines behave in the most similar manner with re-
spect to their original data. Secondly, the MK Z-value for each of
the detail components was compared to the MK Z-value of the ori-
ginal data to see if they are close (even if the values were not sta-
tistically significant). The periodic component(s) that satisfied
these two requirements were considered the most dominant peri-
odicities affecting the production of trends. In determining the
most influential periodic component for trends, different combina-
tions of detail components were also tried and tested. For example,
if a time series was decomposed into four decomposition levels, we
also tested several combinations of detail components (with the
approximation added) such as D1 + D2 + A4, etc. We found that
the results of using these combinations were not always conclu-
sive. For example, the most dominant periodicity for station Riche-
lieu River is the D4 component (with approximation) (Table 9; see
Section 5.4) but in a combination of D3 + D4 (with approximation),
the MK Z-value increased very significantly to +8.05. This is not
close to the MK Z-value of the original data, and its sequential
MK graph was not harmonious with the original data. Hence, we
chose to only present the results using individual detail compo-
nents (with its approximation added). This provides clearer infor-
mation about the most dominant periodicities responsible for
trends because of the closeness of the MK Z-values (between the
individual most dominant periodic mode and the original data)
and the sequential MK graph (which showed a harmonious trend
line between the individual most dominant periodic mode and
the original data). This was not always observed when the different
detail components were combined.
5. Results and discussions

5.1. Preliminary data analysis

Flow and total precipitation time series (from the beginning of
1954 to the end of 2008) from eight flow stations and seven mete-
orological stations in Quebec and Ontario were analyzed for trends.
First, the autocorrelation analysis was applied to each of the
monthly, seasonally-based, and annual data flow and precipitation
series in order to determine the significance of the lag-1 autocorre-
lation and to assess seasonality patterns. The summaries of flow
and precipitation ACF values for their monthly, seasonally-based,
and annual data are presented in Tables 3 and 4, respectively.

As can be seen, the serial correlation in the flow series is more
pronounced compared to that of the precipitation series. This is
perhaps due to the nature of Nordic rivers, which have flows that
may lag by many months (Anctil and Coulibaly, 2004). The season-
ality patterns were then visually determined based also on these
correlograms. All monthly and seasonally-based data for both
streamflow and precipitation show patterns of seasonality; the cy-
cles are much clearer in flow data. The presence of strong annual
cycles – especially in the flow data – is seen and indicated by the
high ACF values that repeat at about every 12th lag (for monthly
data) and every 4th lag (for seasonally-based data) – see Figs. 2
and 3 for examples. The influence of this yearly cycle on trends
is looked into in more detail in the seasonally-based data analysis,
where the second level of decomposition represents the 12-month
periodic mode.

Three MK tests were employed to examine the presence of
trends in the original time series and those resulting from the
wavelet decomposition. Ideally, the modified MK test by Hirsch
and Slack (1984) should be used when a time series shows a sea-



Table 3
Lag-1 Autocorrelation Functions (ACFs) of the original monthly, seasonally-based, and
annual flow series.

Flow station Monthly
data

Seasonally-based
data

Annual
data

Neebing River 0.34* (S) �0.20* (S) 0.25
North Magnetawan

River
0.27* (S) �0.25* (S) 0.08

Black River 0.42* (S) �0.13* (S) 0.09
Sydenham River 0.43* (S) �0.07 (S) 0.21
Nagagami River 0.41* (S) �0.07 (S) 0.05
Missinaibi River 0.32* (S) �0.26* (S) 0.13
Eaton River 0.19* (S) �0.31* (S) 0.07
Richelieu River 0.69* (S) 0.10* (S) 0.34*

(S) Indicates the presence of seasonality cycles.
* Indicates significant lag-1 serial correlations at a = 5%.

Table 4
Lag-1 Autocorrelation Functions (ACFs) of the original monthly, seasonally-based, and
annual precipitation series.

Precipitation station Monthly
data

Seasonally-based
data

Annual
data

Fort Frances A 0.30* (S) �0.03 (S) �0.02
Sudbury A 0.09* (S) �0.02 (S) 0.03
North Bay A 0.12* (S) 0.02 (S) 0.21
Ottawa CDA 0.02 (S) �0.02 (S) 0.19
Windsor A 0.06* (S) 0.03 (S) �0.22
Montreal/Pierre Elliot

Trudeau
0.08* (S) �0.04 (S) 0.28*

Bagotville A 0.02 (S) 0.05 (S) 0.06

(S) Indicates the presence of seasonality cycles.
* Indicates significant lag-1 serial correlations at a = 5%.
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sonality pattern (with or without a significant autocorrelation). If a
time series only exhibits a significant autocorrelation without the
seasonality effect, the modified MK by Hamed and Rao (1998)
should be used. The original MK test should be used when a time
series exhibits neither a seasonality pattern nor significant lag-1
ACFs.

In order to examine how the trends have progressed over time,
the sequential MK tests were applied to the original data and to the
time series of the different periodic components obtained from the
Fig. 2. Examples of annual cycles in the monthly series (left: Richelieu River; right: Mo
values at every 12th lag. The upper and lower solid lines represent the confidence inter
discrete wavelet decomposition. It is important to examine the
sequential MK values because a mix of positive and negative trends
may be present in the same time series. The sequential MK analysis
can also help to determine how the trend of a detail component
may explain the trends found in the original data. Indeed, in this
study, the behavior of the trend lines of the detail components
(plus approximation) is important. Therefore, not only the MK Z-
values of these details are considered when determining the most
influential periodic component(s) on the trend, but also how sim-
ilarly their trend lines fluctuate with respect to trend line of the
original data.

5.2. Monthly data analysis

Each monthly average flow and total precipitation dataset was
decomposed into six lower resolution levels via the DWT approach.
The detail components represent the 2-month periodicity (D1), 4-
month periodicity (D2), 8-month periodicity (D3), 16-month peri-
odicity (D4), 32-month periodicity (D5), and 64-month periodicity
(D6). The A6 represents the approximation component at the sixth
level of decomposition. Examples of the application of the discrete
wavelet transform on monthly flow and precipitation series are
shown in Figs. 4 and 5, respectively. These figures show the results
when the DWT technique is used to decompose a time series. As
can be seen, the lower detail levels have higher frequencies, which
represent the rapidly changing component of the dataset, whereas
the higher detail levels have lower frequencies, which represent
the slowly changing component of the dataset. The approximation
components (A6) in Figs. 4 and 5 represent the slowest changing
component of the dataset (including the trend). It should be noted
that due to space limitation, the results of every station are not
presented graphically. The authors of this paper chose to only in-
clude the results of several stations, which were chosen with the
purpose of illustrating the application of the DWT technique in
conjunction with the MK trend test.

5.2.1. Monthly average flow data
The application of the MK test on the eight original flow series

over the study period showed a mix of positive and negative
trends. Increasing trends are seen as being more dominant since
five out of the eight flow stations show positive trend values. Three
ntreal/Pierre Elliot Trudeau) are seen in these correlograms as there are higher ACF
vals.



Fig. 3. Annual cycles are also seen in the seasonally-based series (left: Richelieu River; right: Montreal/Pierre Elliot Trudeau), where the values of ACFs at every 4th lag are
higher compared to the other lags. The upper and lower solid lines represent the confidence intervals.
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stations experience significant trend values, two being positive
(Sydenham River and Richelieu River) and one negative (Missinaibi
River). Table 5 shows the MK values for the original series, their de-
tail components (Ds), approximations (A6), and the combination of
the Ds with the approximation added to them. It can be seen in Ta-
ble 5 that except for the D1 components of Black River (Z = 2.00)
and Eaton River (Z = 1.96), none of the MK values of the different
individual details (D1–D6) is statistically significant, even for sta-
tions whose original series showed significant MK values. For
Sydenham River, Richelieu River, and Missinaibi River – whose ori-
ginal MK Z-values are significant, their approximation (A6) trend
values are also significant.

A very interesting finding is that after the approximation com-
ponents (A6) were added to the different details, many of the trend
values became statistically significant. This is not only observed for
stations with significant original trend values (i.e. Sydenham River,
Missinaibi River, and Richelieu River), but also North Magnetawan
River, which did not have a significant original trend value
(Z = +1.09). This is perhaps due to MK Z-value of the A6 component
being relatively high (Z = 1.85). Higher MK Z-values were also ob-
tained in most cases, after the addition of the A6, compared to
the MK values of the corresponding detail (D) alone (Table 5). In
addition, the trend directions after the addition of A6 are also al-
ways in agreement with those of the corresponding original data
(except for the D1 component for station Eaton River). It is clear
that the approximation components have an effect on the original
data because these approximations should carry most of the trend
component. Furthermore, as supported by the information in Ta-
ble 5, the results of the MK trend analysis on the detail components
can be better interpreted after the addition of their respective
approximation components. In light of these observations, graphs
presented in this study are of the detail components with their
respective approximations added. Discussions concerning the de-
tail components also refer to the details plus their approximations.
This is also applied to the seasonally-based and the annual data
analysis, for both flow and precipitation variables.

Since all of the monthly flow data exhibit significant lag-1 ACFs
and clearly portray seasonality patterns, the MK values presented
in Table 5 were obtained by using the modified MK test by Hirsch
and Slack (1984), which accounts for seasonality and autocorrela-
tion factors. The detail components (with A6) that are considered
to be the most representative of the trend in the original data are
indicated in Table 5. The dominant periodic components vary from
one station to another, which could be due to their different loca-
tions and sizes of drainage area. Generally speaking, the most influ-
ential periodicities over the study area are between D3 and D5.
This indicates that the events between 8 and 32 months are the
main drivers behind the observed trends. An example of how
sequential MK graphs of the different periodic components portray
their trend lines with respect to those of the original data is shown
in Fig. 6 (station used: Sydenham River). As for the D1 components
of the Black River and Eaton River stations, it is seen that they are
not the best representative periodic mode and after the addition of
the A6 components, the MK Z-values became insignificant. This
suggests that the 2-month periodicity is not contributing to the
trend for the Black River and Eaton River stations. It also makes
sense that the D1 periodicity for these stations is not the most
dominant mode, because even though their MK Z-values are signif-
icant, the trend values of the original data are not significant.

5.2.2. Monthly total precipitation data
For the monthly precipitation data, all the MK values for the ori-

ginal data were positive, except for station Montreal/Pierre Elliot
Trudeau, which has a very weak negative trend value
(Z = �0.0049). Three stations – North Bay A, Ottawa CDA, and
Windsor A – had statistically significant upward trend directions
with Z = +3.67, +2.39, and +2.38, respectively. After applying the
MK test separately to the detail (D1–D6) and approximation (A6)
components of each of the precipitation series, relatively similar
findings were encountered to those of the flow results. None of
the individual detail components alone showed significant MK val-
ues, even for the precipitation stations whose original series exhib-
ited significant trends (Table 6). Only after the addition of the A6
component did several MK values become statistically significant.

Due to the presence of seasonality cycles, and in some, autocorre-
lation, the MK test by Hirsch and Slack (1984) was used in the
monthly total precipitation data analysis. The results of the monthly
precipitation data analysis show how the approximation compo-
nents of the decomposition affect the detail components by increas-
ing their trend values (in most cases) as reflected by the higher MK
values (Table 6). This shows that the trend component is indeed con-
tained within the approximation part of the wavelet transform,
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Fig. 4. Sydenham River’s original monthly flow series and its transforms via the DWT using db9 wavelet, into six decomposition levels (D1–D6) and one approximation (A6).
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implying that the trends are changing slowly and gradually (see the
A6 graphs in Figs. 4 and 5); and are perhaps long-term. Some of the
long-term trend values are statistically significant, as shown by the Z
values of the approximation components in Table 6. The abrupt fluc-
tuations can be considered noise and are reflected in the lower de-
tails (Ds) – these alone are not significant. Table 6 also shows that
for most of the stations higher periodic modes (especially D5) are
more prominent in affecting the trend structures found in the
monthly total precipitation data. As with the flow monthly data
analysis, the trends are mostly affected by higher periodicities
(low-frequency events). Here, the importance of decomposing a
dataset prior to analyzing its trends using the wavelet transform is
highlighted. Although the application of the MK test on the original
data did not necessarily show the presence of significant trends, the
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results of the application of the MK test on the decomposed data may
reveal some significant values.

5.3. Seasonally-based data analysis

The presence of annual cycles in the monthly-based time series
analysis led us to incorporate the seasonally-based data in our
trend analysis. Again, the seasonally-based data also confirms the
presence of annual cycles in some datasets as the ACFs show high
values at every 4th lag (examples are given in Fig. 3). Each season-
ally-based time series was decomposed into four detail compo-
nents (D1–D4) and one approximation (A4). D1, D2, D3, and D4
represent the 6-month, 12-month, 24-month, and 48-month fluc-
tuations, respectively. The A4 component corresponds to the



Table 5
Mann–Kendall values of the monthly flow series: original data, details components (D1–D6), approximations (A6), and a set of combination of the details and their respective
approximations. The most effective periodic components for trends are indicated in bold format.

Data Neebing River N. Magnetawan River Black River Sydenham River Nagagami River Missinaibi River Eaton River Richelieu River

Original �0.26 1.09 1.26 3.10* 1.19 �2.05* �0.42 3.18*

D1 �0.64 0.68 2.00* �0.95 0.52 �1.25 1.96* �0.39
D2 �0.37 �0.20 0.38 �0.46 �1.09 0.85 �0.12 �0.38
D3 0.50 0.22 0.77 0.87 �0.32 �0.10 0.00 0.73
D4 0.00 �0.36 �0.10 0.06 0.06 �0.28 �0.21 0.12
D5 �0.06 �0.28 �0.20 �0.02 0.06 �0.06 0.03 �0.18
D6 �0.18 �0.30 0.23 0.15 0.22 0.01 0.50 0.35
A6 �1.17 1.85 1.17 3.08* 1.20 �3.69* �0.38 3.37*

D1 + A6 �1.01 2.47* 1.56 3.47* 1.26 �3.05* 0.14 3.54*

D2 + A6 �0.81 2.50* 1.44 3.66* 0.51 �2.53* �0.15 3.66*

D3 + A6 �1.00 2.60* 1.11 3.07* 1.05 �2.73* �0.10 3.44*

D4 + A6 �0.92 2.34* 1.17 2.95⁄ 1.22 �2.70* �0.49 3.23*

D5 + A6 �0.76 1.90 1.13 2.61⁄ 1.17 �2.68⁄ �0.37 2.91⁄

D6 + A6 �1.62 2.25* 0.99 3.69* 1.15 �2.94* �0.38 3.64*

* Indicates significant trend values at a = 5%.
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approximation of the fourth decomposition level. As can be seen,
the D2 component in the seasonally-based data decomposition
represents the annual (12-month) periodicity. This is very useful
in determining whether or not the annual cycles can explain the
trends found in the flow and precipitation data.

Most of the first level of decomposition (D1) of the seasonally-
based series – and sometimes the D2 component as well – portray
a strong yearly cycle because the corresponding ACF values are
high at every 4th lag (illustrated in Fig. 7). The repeating cycles
do not dampen over time. Oscillating patterns may also be ob-
served at higher decomposition levels, but they dampen as the
number of lags increases (see Fig. 8 for example). Similar behavior
was also seen in the components resulting from the addition of
each detail to its approximation (D + A4). The oscillations observed
in the correlograms of the lower decomposition levels are actually
expected because they should capture the oscillating properties
(such as the seasonality) of the time series, thus filtering the sto-
chastic components of the time series (Popoola, 2007). On the
other hand, the ACFs of the approximation component should
not have any oscillating behavior or behave in the manner of sea-
sonal fluctuations, even if the original time series shows seasonal-
Table 6
Mann–Kendall values of the monthly precipitation series: original data, details compone
respective approximation. The most effective periodic components for trend are indicated

Data Fort Frances A Sudbury A North Bay A Ottawa C

Original 0.71 1.85 3.67* 2.39*

D1 �0.23 �0.68 �0.83 �1.09
D2 0.34 �0.68 0.18 �0.03
D3 �0.70 �0.32 �0.60 0.23
D4 0.18 �0.13 �0.03 0.15
D5 0.02 0.27 0.14 �0.17
D6 �0.33 0.12 0.15 0.16
A6 0.63 2.04* 4.18* 2.41*

D1 + A6 1.20 2.59* 3.43* 1.98*

D2 + A6 1.79 2.72* 3.85* 2.01*

D3 + A6 1.28 2.62* 3.78* 2.12*

D4 + A6 1.01 2.06* 3.45* 1.85
D5 + A6 0.76 1.79 3.64⁄ 2.00*

D6 + A6 1.03 2.98* 4.15* 2.68⁄

* Indicates significant trend values at a = 5%.

Fig. 7. Examples of correlograms of the D1 periodic components (left: Neebing River; righ
as seen in their repeated high values at every 4th lag. Note that the cycles do not damp
ity patterns (Popoola, 2007). Fig. 9 displays the ACFs of several
approximation components (A4 in this case); as can be seen, there
is an absence of oscillatory patterns.

5.3.1. Seasonally-based average flow data
As with the monthly flow data analysis, there is also a mix of

positive and negative trends observed in the seasonally-based flow
data. In fact, the directions of trend of the seasonally-based data-
sets are in agreement with the directions of their monthly data
counterparts. For example, Neebing River, Missinaibi River and Ea-
ton River stations experience negative trends in their monthly
data, and also in their seasonally-based data. Only two out of the
eight flow stations showed statistically significant trends: Syden-
ham River (Z = +3.13) and Richelieu River (Z = +3.06) (Table 7).

Table 7 shows that none of the individual detail components
alone (including D2) showed statistically significant MK Z-values.
Again, after the addition of the A4s to their respective details, many
of the MK Z-values became higher and statistically significant,
emphasizing that the approximations carry most of the trend com-
ponent. An example of the sequential MK analysis is shown in
Fig. 10 (station used: Sydenham River).
nts (D1–D6), approximations (A6), and a set of combination of the details and their
in bold format.

DA Windsor A Montreal/Pierre Elliot Trudeau Bagotville A

2.38* �0.0049 0.75
0.01 0.01 �0.10
�0.05 0.65 0.39
�0.30 �0.27 �0.93
�0.04 �0.16 0.34

0.50 0.28 0.02
1.00 0.53 0.43
3.47* 0.08 0.77
2.87* 0.07 1.58
3.05* 0.73 1.03
3.43* �0.23 0.92
1.87 �0.08 1.08
2.84⁄ 0.22 0.73
2.93* 0.61 1.29

t: Missinaibi River) of the seasonally-based data, which display strong annual cycles
en over time.
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As shown in Table 7, none of the most dominant periodicities
were represented by the D1 component, indicating that the 6-
month fluctuation is not responsible for the observed trend. There
are four stations for which the D2 components represent one of the
most dominant periodicities affecting the observed trends. These
stations are: Black River, Nagagami River, Missinaibi River, and Ea-
ton River. Therefore, for these stations, their trends are affected by
the annual periodicities (the MK sequential graphs for these D2
components are given in Fig. 11). The D3 and D4 components,
which represent the 24- and 48-month time modes, are also seen
to be important in affecting the trends.

It can be seen that the seasonally-based data are important vari-
ables to be included to assess the flow and precipitation trends in
this study. This is because the monthly-based data analysis
skipped the 12-month time scale as the third and fourth dyadic
scales in the monthly data decomposition correspond to 8 and
16 months, respectively.

5.3.2. Seasonally-based total precipitation data
All the MK Z-values for the original seasonally-based total pre-

cipitation data showed positive trends (Table 8); three stations
Fig. 8. The correlograms of the D1–D4 components of Nagagami River’s seasonally-bas
indicates the presence of 12-month cycles. D3 and D4 show some patterns of oscillation
experienced statistically significant trends: North Bay A
(Z = 2.81), Ottawa CDA (Z = 2.31), and Windsor A (Z = 2.39), which
is in agreement with the results of the monthly total precipitation
data. Again, it is seen that none of the individual detail components
show significant trend values. Significant trends that were ob-
served for A4 components belong to the three stations that have
significant original trend values. The MK values of the detail com-
ponents for the stations whose A4 components were not signifi-
cant (Fort Frances, Sudbury A, Montreal/Pierre Elliot Trudeau,
and Bagotville A) remain insignificant even after the addition of
their respective approximations. This may indicate that the long-
term trends for these stations are not statistically significant as
shown by their A4 components of the annual data, which were in-
deed insignificant and have the lowest absolute MK Z-values (see
the following subsections).

Table 8 also shows the periodic components that are the most
influential in affecting the trends in the seasonally-based total pre-
cipitation data. It is seen that the annual periodicity (D2) does not
contribute to the trend production in the total precipitation data.
This insignificant contribution can also be partly explained by
the weaker annual cycles observed in the precipitation data, in
ed data. The D1 and D2 components have high ACF values at every 4th lag, which
s that may dampen over time, which are not considered annual cycles.
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Fig. 9. The correlograms of several approximation components (A4) of the seasonally-based data showing a lack of constant oscillations.

Table 7
Mann–Kendall values of the seasonally-based flow series: original data, details components (D1–D4), approximations (A4), and a set of combination of the details and their
respective approximations. The most dominant periodic components for trend are indicated in bold format.

Data Neebing River N. Magnetawan River Black River Sydenham River Nagagami River Missinaibi River Eaton River Richelieu River

Original �0.27 1.43 1.36 3.13* 1.31 �1.78 �0.22 3.06*

D1 �0.43 �0.20 0.89 �0.85 0.60 �0.43 �0.06 �0.45
D2 �0.05 0.44 �0.46 0.61 �0.07 0.14 0.01 0.00
D3 0.21 �0.59 0.16 �0.29 0.01 0.18 0.05 0.05
D4 0.10 0.52 0.38 �0.27 0.00 0.14 �0.11 �0.04
A4 �1.10 1.43 1.24 2.99* 1.53 �3.59* �0.77 3.52*

D1 + A4 �0.82 2.36* 0.91 3.75* 1.76 �3.19* �0.72 3.70*

D2 + A4 �0.99 2.09* 1.52 3.73* 1.14 �2.32⁄ �0.53 3.76*

D3 + A4 �0.45 1.64 0.92 2.54* 1.80 �2.48⁄ �0.54 2.97⁄

D4 + A4 �1.05 1.83 0.81 3.47⁄ 1.36 �2.81* �1.17 3.51⁄

* Indicates significant trend values at a = 5%.
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comparison to the flow data. Most of the precipitation trends are
affected by the D3 and D4 components, except for station North
Bay A, where D1 is considered the most dominant periodic compo-
nent. We can suggest that the periodic components that mainly af-
fect trends in the seasonally-based total precipitation are the 24- to
48-month time scales (2–4 years). An example of the sequential
MK graphs for the different periodic components portraying their
trend lines with respect to their original data is given in Fig. 12
(station used: Ottawa CDA).

5.4. Annual data analysis

The trend analysis of the monthly and seasonally-based data
suggests that there is a possibility of longer time-periodicity than
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just 48 and 64 months (which are the last periodic modes in the
seasonally-based and monthly data decompositions, respectively).
Many of the trends in the monthly and seasonally-based data are
influenced by the higher time periodic components (i.e. lower-fre-
quency events). The argument that there may be higher time peri-
odicities affecting the trend in streamflow and precipitation is also
reflected in the approximation components of the DWTs, which
should carry the trend element (slowest-changing events) of the
time series: (1) many approximation components in the data anal-
ysis showed significant MK Z-values; and (2) higher MK Z-values of
the detail components were observed after the addition of their
respective approximations. Annual time series were then analyzed
in order to obtain a more thorough trend analysis. Each annual
time series was decomposed into four levels, which correspond
to the 2-year, 4-year, 8-year and 16-year variations.

Although there is a mixture of positive and negative trends in
the annual flow, most of the stations exhibit positive trends. Three
streamflow stations have experienced significant trend: Sydenham
River (Z = 2.37), Missinaibi River (Z = �2.23), and Richelieu River
(Z = 2.92) (Table 9). Indeed, most studies focusing on streamflow
trends in Canada have generally found that the flow trends in
Canadian rivers are not uniform. There are areas that experience
positive trends while others are experiencing negative trends
(due to factors such as temperature, amount of precipitation, and
evapotranspiration).

For the annual total precipitation, only stations North Bay A
(Z = +3.57) and Ottawa CDA (Z = +2.50) experienced significant
trend values (Table 10). It is worth mentioning that all of the origi-
nal annual precipitation data (as well as most of the monthly and
seasonally-based precipitation data) show positive trend values –
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Fig. 10. Illustration of the sequential Mann–Kendall graphs of the D1–D4 components
dominant periodic component for trend (Sydenham River’s data were used in this exam
solid and dashed progressive lines are the original and detail component sequential MK
this prevalent increase in trends in the total precipitation seen in
this study are in agreement with findings from several other pre-
cipitation studies. For example: Mekis and Hogg (1999) found that
total annual precipitation in many parts of Canada is on the rise;
Stone et al. (2000) reported that total annual precipitation in the
south of Canada experienced an increase (from 1895 to 1996);
Zhang et al. (2000) found that the total annual precipitation has in-
creased across Canada by 5%-35%. Groleau et al. (2007) also found
that 30% of the weather stations in southern Quebec and New
Brunswick, Canada, experienced significant positive trends during
winter rainfall.

The periodic component(s) considered the most influential in
affecting trends in flow and precipitation data are indicated in Ta-
bles 9 and 10, respectively. Examples of determining the most
dominant periodic components that affect the production of trends
in annual flow and precipitation series are given in Figs. 13 and 14,
respectively. There are a few individual detail components (with-
out approximation) that showed significant trend values (Tables
9 and 10). However, these components do not end up being consid-
ered the most influential time periodicities to affect the trends. For
example, in Table 9, the MK Z-value of the D4 component of Black
River station is 2.38, but it is not found to be the most dominant
periodic component for trend. It is also seen that the difference
in MK Z-value between the D4 (with approximation) and the origi-
nal data is high. It is therefore not expected that the D4 detail com-
ponent in Black River station would be the most influential
component to affect the trend. This illustrates that when analyzing
trends in a dataset via the wavelet transform, not only should the
final MK value for the different components be considered, but also
their sequential MK values in comparison to the original data.
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(with approximation) of the seasonally-based data in order to determine the most
ple). The upper and lower dashed lines represent the confidence limits (a = 5%); the

lines, respectively.
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Tables 9 and 10 show that the dominant periodic components
playing major roles in affecting the trends in the annual data are
not uniform. The most common dominant periodicities are D1
and D2 (both with approximations added). This is an indication
that the trends in the annual data over the study area are mainly
characterized by 2- to 4-year periodic events (inter-annual
fluctuations).

The progressive MK graphs of the annual data give indications
that most of the trends – positive or negative – visibly started dur-
ing the period from 1965 to early 1970s (Figs. 15 and 16). This tim-
ing is important as it has been noticed in several Canadian studies
that 1970 serves as a point of change in streamflow and precipita-
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Fig. 11. Sequential Mann–Kendall graphs of the D2 components, which represent the 12
lines show good matches with respect their original trend lines. The upper and lower das
lines are the original and detail component sequential MK lines, respectively.

Table 8
Mann–Kendall values of the seasonally-based precipitation series: original data, details co
their respective approximation. The most dominant periodic components for trends are in

Data Fort Frances A Sudbury A North Bay A Ottawa C

Original 0.72 1.32 2.81* 2.31*

D1 0.29 �0.66 �0.51 0.47
D2 0.00 0.04 �0.23 �0.45
D3 0.15 0.16 �0.02 0.41
D4 0.59 0.00 0.93 0.22
A4 0.81 1.76 5.09* 2.31*

D1 + A4 1.45 1.55 3.39⁄ 2.94*

D2 + A4 0.21 1.53 4.13* 2.17*

D3 + A4 0.64 1.55 4.01* 2.35⁄

D4 + A4 1.12 1.17 4.12* 2.59⁄

* Indicates significant trend values at a = 5%.
tion activities in relation to the atmospheric variability affecting
Canadian climate, such as the Pacific/North America teleconnec-
tion (PNA) and the North Atlantic Oscillation (NAO). Indeed, these
periodic modes may also be associated with the North Atlantic
Oscillation (NAO), which has one of its main peaks centered at
2 years (Cook et al., 1998; Anctil and Coulibaly, 2004). Fu et al.
(2012), who studied the influence of solar activities and El Niño
on streamflow in southern Canada, indicated that there is a corre-
lation between streamflow activities and solar activities at 11 and
22 years. The correlation between streamflow activities in south-
ern Canada and the El Niño cycles is at the 2–7 year periodicities
(Fu et al., 2012). The combined effect of solar activities and El
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-month periodic components from several seasonally-based flow data. These trend
hed lines represent the confidence limits (a = 5%); the solid and dashed progressive

mponents (D1–D4), approximations (A4), and a set of combination of the details and
dicated in bold format.

DA Windsor A Montreal/Pierre Elliot Trudeau Bagotville A

2.39* 0.15 0.77
�0.11 �1.70 �0.96

0.31 0.43 0.22
�0.41 �0.25 0.06
�0.20 �0.19 0.21

2.41* 0.19 0.62
2.09* �0.17 0.64
2.23* 0.03 0.63
1.21 �0.40 0.33
2.36⁄ 0.02 0.72



Table 9
Mann–Kendall values of the annual flow series: original data, details components (D1–D4), approximations (A4), and a set of combination of the details and their respective
approximation. The most influential periodic components for trends are indicated in bold format.

Data Neebing River N. Magnetawan River Black River Sydenham River Nagagami River Missinaibi River Eaton River Richelieu River

Original �0.50 0.91 0.73 2.37* 1.12 �2.23* �0.46 2.92*

D1 �0.13 0.00 �0.19 �0.01 0.15 �0.16 0.22 0.19
D2 �0.04 0.30 0.10 �0.15 0.17 �0.15 0.27 0.12
D3 0.57 �0.13 0.06 0.51 0.25 �0.30 �0.28 0.46
D4 �1.63 3.66* 2.38* 2.15* 1.22 �0.41 �0.55 0.15
A4 �0.48 1.80 1.15 2.66* 1.96* �2.12* �0.79 3.09*

D1 + A4 �0.57 1.39 0.55 1.42 0.49 �1.73 �0.60 2.61*

D2 + A4 �0.73 1.55 0.68 1.47 0.96 �2.12⁄ �0.87 2.98*

D3 + A4 �0.19 0.94 0.80 2.51⁄ 0.94 �2.47* �0.97 1.99*

D4 + A4 �3.03* 3.95* 4.33* 3.17* 3.44* �4.57* �1.16 3.09⁄

* Indicates significant trend values at a = 5%.
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Fig. 12. Sequential Mann–Kendall graphs of the components of the seasonally-based precipitation data from Ottawa CDA station. The upper and lower dashed lines represent
the confidence limits (a = 5%); the solid and dashed progressive lines are the original and detail sequential MK lines, respectively. Based on the MK values and the sequential
MK graphs, D3 and D4 (with approximations) were determined to be the most effective periodic components contributing to the trend production.

Table 10
Mann–Kendall values of the annual precipitation series: original data, details components (D1–D4), approximations (A4), and a set of combination of the details and their
respective approximation. The most influential periodic components for trends are indicated in bold format.

Data Fort Frances A Sudbury A North Bay A Ottawa CDA Windsor A Montreal/Pierre Elliot Trudeau Bagotville A

Original 0.68 1.24 3.57* 2.50* 1.70 0.33 0.95
D1 0.54 �0.16 �0.13 �0.41 0.04 0.06 �0.33
D2 0.12 �0.28 0.39 0.19 0.33 0.25 �0.55
D3 0.00 �0.18 0.70 0.49 0.96 0.58 0.99
D4 1.32 2.51* 1.87 3.21* 2.31* �0.70 1.09
A4 1.22 1.45 4.91* 2.45* 2.15* �0.02 1.28
D1 + A4 0.68 1.34 2.35* 0.00 1.05 �0.31 �0.29
D2 + A4 1.06 1.39 3.51⁄ 0.51 1.93 0.00 �0.12
D3 + A4 0.65 2.45* 4.27* 1.84 3.27* 0.25 0.90
D4 + A4 2.89* 3.82* 5.31* 3.14* 5.26* �0.91 1.63

* Indicates significant trend values at a = 5%.
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Fig. 13. Examples of sequential Mann–Kendall graphs of the detail components of the annual flow data in order to determine the most dominant periodicity for trends
(Sydenham River’s data were used in this example). The upper and lower dashed lines represent the confidence limits (a = 5%); the solid and dashed progressive lines are the
original and detail sequential MK lines, respectively.

D. Nalley et al. / Journal of Hydrology 475 (2012) 204–228 225
Niño is found at 18–32 years (Fu et al., 2012). Here, as can be ob-
served in Table 9, the most common dominant periodicities are
2–4 years, which could also be related to the El Niño effect. The
Richelieu River’s most dominant periodicity is the 16-year mode,
which may be a result of the combined effect of solar activities
and the El Niño cycle. Prokoph et al. (2012) also found that the
maximum annual streamflow activities in southern Canada have
strong 11-year cycles, which match the 11-year solar radiation
activities. It is also suggested that the effects of ENSO and NAO
on precipitation, which in turn affect the streamflow activities in
southern Canada, are also evident (Prokoph et al., 2012). It is very
likely that multiple factors are affecting the precipitation and
streamflow trends over the study area.

In Fig. 15 it is observed that at six out of the eight flow stations,
there were upward trends that started between 1965 and 1970. In
four out of these six stations, the trends stopped between 1980 and
1985, followed by either downward trends or no trends. Fig. 16
shows that positive trends started around 1965 at five out of the
seven meteorological stations. Anctil and Coulibaly (2004), who
analyzed the inter-annual variability of Quebec streamflow, also
placed an importance on the year 1970 because there was a posi-
tive correlation between the streamflow activity (especially at the
2–3 year band) and the PNA index since around 1970. Similarly,
Coulibaly and Burn (2004), who analyzed annual Canadian stream-
flow, also found 1970 as the change point in flow activity. They
found that the PNA and the NAO are the main dominant telecon-
nection patterns for the period of 1950–1999 and after 1970,
respectively (Coulibaly and Burn, 2004). Stone et al. (2000) studied
the variability in Canadian precipitation and its intensity and re-
lated them to the PNA and NAO. Different seasons and regions re-
sponded differently to the atmospheric variation, but both the NAO
and the PNA were found to have a statistical significance in affect-
ing precipitation intensity over Canada. For example, the NAO (po-
sitive phase) has a significant impact, which affected the
precipitation intensity during a few 3-month seasons in eastern
Canada (Stone et al., 2000). The NAO has been in a positive phase
since around 1970 (Anctil and Coulibaly, 2004). The PNA also sig-
nificantly affected the precipitation increase during autumn and
winter seasons in Ontario and southern Quebec, during the second
half of the 20th century (Stone et al., 2000). Therefore, the trends
observed in this study, both in flow and precipitation data, could
be related to the activity of these influential hydro-climatic indices.
6. Conclusions and recommendations

The DWT and the MK tests were applied on the mean flow and
total precipitation datasets, over southern parts of Quebec and On-
tario, in order to analyze their trends. The results of the trend anal-
ysis showed that there are positive and negative trends; however,
they were dominated mostly by positive trends. In order to deter-
mine the most appropriate Daubechies (db) wavelet type and bor-
der condition in the DWT procedure, not only were the MREs
considered, but also the MK Z-value relative errors. This additional
criterion proposed in this study was found to be very useful be-
cause the differences in the er were much more noticeable com-
pared to the differences in the MREs. In this study, the proposed
relative error criterion served as a better indicator in determining
the number of decomposition levels, the mother wavelet, as well
as the extension border to be used in the data analysis – these is-
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Fig. 14. Examples of sequential Mann–Kendall graphs of the detail components of the annual precipitation data in order to determine the most dominant periodicity for
trends (Ottawa CDA’s data were used in this example). The upper and lower dashed lines represent the confidence limits (a = 5%); the solid and dashed progressive lines are
the original and detail sequential MK lines, respectively.

Fig. 15. Progressive Mann–Kendall graphs of all the original annual flow data used in the study. The upper and lower dashed lines represent the confidence limits (a = 5%).
These graphs were used to determine the possible starting time of the observed trends for the different stations.
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sues have not been addressed properly or in any detail in the exist-
ing literature.

Although the periodic components that affect the trends are not
all the same for all stations, a generalization can be made. For the
monthly, seasonally-based, and annual flow data analysis, the most
common periodic components that were found to be the most
effective in producing the observed trends are 8–32 months, 12–
48 months (1–4 years), and 2–4 years, respectively. For the
monthly, seasonally-based, and annual precipitation analysis, the
periodicities most commonly seen as the most important compo-
nents are 32-months, 24–48 months (2–4 years), and 2–4 years,
respectively. This may be correlated to the NAO cycle because
one of the main peaks of the NAO cycles is centered around
2.1 years (Cook et al., 1998; Anctil and Coulibaly, 2004), which
seem to coincide with many of the main periodic components of
the lower resolution data found in this study. As can be seen, the
different data types produced relatively similar conclusions in
terms of the most influential periodicities for trends. It may be con-
cluded that for the mean flow and total precipitation over the
study area, the trends are influenced by fluctuations of up to
4 years. Although there is a total of 13 stations used in this study,
similar conclusions were obtained – this could be attributed by the



Fig. 16. Progressive Mann–Kendall graphs of all the original precipitation data used in the study. The upper and lower dashed lines represent the confidence limits (a = 5%).
These graphs were used to determine the possible starting time of the observed trends for the different stations.
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fact that the stations are located in relatively close proximity to
each other. Therefore, similar climatic factors are affecting the re-
gions in which these stations are located.

The use of the DWT in this study clearly demonstrated how
time-scale information can be extracted from a dataset – this infor-
mation can then be applied to studying how the trends observed in
the data were affected by certain time scales. Even for stations that
did not exhibit significant trend values for their original data, the
decomposition of these data via the DWT was able to identify
the time scales that are considered important in affecting the
trends. This was accomplished by applying the MK trend tests on
the different time modes (detail components). With the sequential
MK tests, we were also able to identify the possible starting time in
which the trend in a dataset started to appear. In the datasets used
in this study, an importance is placed at the time between 1965
and 1970 because most of the trends appeared to start around that
time. Anctil and Coulibaly (2004) and Coulibaly and Burn (2004)
showed the positive correlation between streamflow/precipitation
activities with the PNA cycles since 1970. In this study, most of the
flow and precipitation trends started between 1965 and 1970. Fu
et al. (2012) also indicated the existence of positive correlations
between streamflow in southern Canada and solar activities and
El Niño cycles. As can be seen, a number of long-term changes in
climate are also factors that may affect the streamflow and precip-
itation trends over the study area – there is no single factor that
acts as the driver for the observed trends over the study area. This
is reflected by the different large tele-connection patterns whose
cycles seem to coincide with the dominant periodicities. Future
studies could incorporate some quantitative linkages between
the most dominant periodicities that affect trends (both in flow
and precipitation) and the climatic descriptor cycles (or how the
combined effects of these climatic descriptors influence the
streamflow and precipitation over the study area). This may poten-
tially explain the time–frequency characteristics that affect the
trends in streamflow and precipitation over Quebec and Ontario.
It would also be beneficial to include more stations from different
hydrographic regions within Ontario and Quebec, as well as in
other Canadian provinces in order to compare the periodic compo-
nents that affect the trends in these other areas. Additionally, the
implications of these time–frequency characteristics of trends on
regional water resources can be looked at in more detail.

Finally, the results obtained from this present study presented
some baseline information about the important periodicities that
affect the flow and precipitation trends over southern Ontario
and Quebec. This information can be integrated into the meth-
ods/models aiming to investigate how natural fluctuations (e.g.
changes in climate, fluctuations of climate indices, etc.) can affect
flow and precipitation trends over southern Ontario and Quebec.
Furthermore, the analysis obtained from this study can serve as
grounds for basing the water resources design and planning within
the watershed covered by the study area, as it involves making rea-
sonable predictions or assumptions about future hydro-climatic
conditions.
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