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The main purpose of this study is to detect trends in the mean surface air temperature over the
southern parts of Ontario and Quebec, Canada, for the period of 1967–2006. This is accomplished
by determining the most dominant periodic components that affect trends in different
temperature data categories (monthly, seasonally-based, seasonal, and annual), which were
obtained froma total of five stations. The discretewavelet transform(DWT) technique, theMann–
Kendall (MK) trend test, and sequential Mann–Kendall analysis were used in this study —

co-utilizing these techniques in temperature trend studies has not been explored extensively. The
motherwavelet, number of decomposition levels, and boundary conditionweredetermined using
a newly proposed criterion based on the relative error of the MK Z-values between the original
data and the approximation component of the last decomposition level. This study found that all
stations experienced positive trends: significant trends were observed in all of the monthly,
seasonally-based, and annual data. For the different seasons, although the trend values were all
positive, not all stations experienced significant trends. It was found that high-frequency
components ranging from 2 to 12 months were more prominent for trends in the higher
resolution data (i.e. monthly and seasonally based). The positive trends observed for the annual
data are thought to bemostly attributable to warming during winter and summer seasons, which
are manifested in the form of multiyear to decadal events (mostly between 8 and 16 years).

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The impacts of climate variability can be assessed by
analyzing trends in surface air temperature. According to the
latest assessment report by the IPCC (IPCC, 2007), mean global
surface air temperature has experienced an increase of
between 0.56 °C and 0.92 °C for the period from 1906 to
2005. Changes in surface air temperature as a result of
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changing climate have serious ramifications on the hydrolog-
ical cycle (and therefore, on water resources) and the surface
energy budget (Vincent et al., 2007). Examples of these
consequences are: intensification of the hydrological cycle
(Mishra and Singh, 2010), modification of hydrological indica-
tors such as seasonal runoff, precipitation, streamflow, and
potential evapotranspiration (Mimikou et al., 2000; Labat et al.,
2004), more severe flood discharges (Ludwig et al., 2004),
sea-level rise (which has serious implications on the economy
and societies in general) (Nicholls and Tol, 2006), and
increased risks of health-related problems (Karaburun et al.,
2011.), etc.

Since climate change is directly linked to temperature, a
large number of studies have been undertaken globally and
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regionally in order to assess temperature trends and to quantify
the impacts of increasing temperature. Most of these studies
have found the existence of positive trends in different
temperature indices. For example, Shrestha et al. (1999)
found that the temperature patterns in Nepal were increasing
after 1977, with a rate ranging from 0.03 to 0.12 °C per year.
Domroes and El-Tantawi (2005) reported increasing mean
temperature trends in northern Egypt over the period 1941–
2000. Fan andWang (2011) studied climate change by looking
at themonotonic trends in annual and seasonal air temperature
indices across Shanxi province in China, and found that there
have been warming trends in temperature over the period
1959–2008. Karaburun et al. (2011) also analyzed the spatio-
temporal patterns of temperature change in Istanbul, Turkey
for the period of 1975 to 2006, and observed that warmer
temperature trends generally prevailed for seasonal and annual
temperature indices. Although many studies have found that
all seasons showed positive trends, winter usually experiences
the greatest warming (e.g. Lund et al., 2001; Rebetez and
Reinhard, 2007; Fan and Wang, 2011). Fan and Wang (2011)
observed that winter warming in Shanxi province in Chinawas
statistically significant at less than the 0.1% significance level.
Rebetez and Reinhard (2007) also found that the greatest
warming occurred during winter (1975–2004) in Switzerland.

It has been mentioned that the northern hemisphere has
been experiencingmore temperature warming since the 1950s
compared to the southern hemispheres (Jones and Moberg,
2003; IPCC, 2007; Chaouche et al., 2010; Karaburun et al.,
2011). More specifically, North America is expected to
experience a warmer climate, in which the increase in the
mean annual temperature could bemore than that of the global
mean increase (IPCC, 2007). Moberg et al. (2005) reconstructed
long-termproxydata from tree-ring and sediments in lakes and
oceans to analyze the variation in temperature in the northern
hemisphere. They found that there has never been any period
within the past 2000 years that is as warm as post 1990
(Moberg et al., 2005). Lundet al. (2001) andLu et al. (2005) also
found that there were increasing temperature trends during
1922–2000 in the East, West-Coast, and northern Midwest of
the USA. All seasons in the contiguous 48 states experienced
increasing temperature trendswithwinter showing the highest
warming (Lu et al., 2005).

Zhang et al. (2000) mentioned that it may be easier to
assess climate change in countries such as Canada because
according to Nicholls et al. (1996), human-induced climate
change is foreseen to be more severe in high-latitude areas. As
such, numerous studies on trends of Canadian temperature
indices have been conducted both at the national and regional
levels. Zhang et al. (2000) provided comprehensive informa-
tion on Canada's temperature and precipitation trends. At the
national level it was found that the annual mean temperature
has experienced an increase of approximately 1 °C during the
last half of the 20th century (Zhang et al., 2000). For areas
below 60°N, Zhang et al. (2000) showed that although the
trends are not monotonic during 1900–1998 and differed from
region to region, there is a statistically significant increase in
themean annual temperature thatwas caused by the increases
before the 1940s and after the 1970s. Mohsin and Gough
(2010) analyzed the temperature trends in a smaller spatial
scale covering Toronto and the Greater Toronto area for the
period 1970–2000. The trend analysis on the annual minimum
and mean temperature indices showed that urbanization has
contributed to the observed warming trend experienced by
the urban stations (Toronto Pearson exhibited the highest
warming trend). Similarly, Prokoph and Patterson (2004) and
Adamowski and Prokoph (2013) found that the temperature in
urban Ottawa was going up by more than 0.01 °C per year
compared to the nearby rural areas over the past 100 years,
which was associated with the population growth and urban
heat island effects.

Studies investigating trends in temperature commonly
involve the use of the Mann–Kendall (MK) trend test. This
trend test is usually preferred over other statistical tests
because of its robustness and power. The MK test may be
used even if the analyzed data does not follow a Gaussian
normal frequency distribution (Kadioğlu, 1997). Chaouche et
al. (2010) chose to employ the MK test in studying climatic
indices (including temperature) in the context of climate
change because trends are assumed to be slowly changing
phenomena; they also mentioned that even if a break change
occurs, the MK test is still powerful. Having said this, the use
of the original MK test only gives accurate results when the
test is applied on data that are free from serial correlation
(Mohsin and Gough, 2010). Hirsch and Slack (1984) and
Hamed and Rao (1998) proposed modifications to the
original MK test in order to account for seasonality and serial
correlation factors that may be present in a time series.

When analyzing temperature time series, it is important to
examine the behavior of the different low- and high-frequency
components contained in the data, which represent fluctuations
such as inter-annual and decadal events (Baliunas et al., 1997).
Detecting and identifying trends in non-stationary temperature
datasets is complicated due to factors such as changes in climate
that occur in non-monotonic and non-uniform fashions.
Additionally, variability and trends that are observed in a
dataset can be associated with climate noise (Franzke, 2010).
Trends in temperature can also be enhanced or reduced by the
variability in the temperature itself (that may occur in the form
of different time scales) and changes in climate that occur
naturally. Prior to computing a trend assessment, it is important
to define what a trend is. Since many climate data exhibit
nonlinear and non-stationary characteristics, commonly de-
fined trends using a simple straight line fit on to the data are not
suitable (Wu et al., 2007). Analyzing temperature trends that
involves the use of methods such asmoving average, regression
analysis, and Fourier-based techniques may not also be
appropriate because of their assumptions that involve station-
ary and linear inferences (Wu et al., 2007).

A spectral analysis method that has been found to be very
useful for analyzing geophysical time series (which are often
characterized by non-stationarity) is the wavelet transform
(WT) (Lau and Weng, 1995; Lindsay et al., 1996). The WT is
suitable for decomposing one-dimensional non-stationary
time series into its two-dimensional (time-frequency) infor-
mation (Lau and Weng, 1995; Torrence and Compo, 1998;
Pišoft et al., 2004). In this study, the non-linear trends are
assumed to have occurred in a gradual manner and are
contained in the low-frequency components of the data.

Numerous studies have acknowledged that the WT is
superior for use in analyzing non-stationary data compared to
conventional spectral analysis methods, such as the Fourier
transform (FT). The FT decomposes signals into sine wave
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functions, which have unlimited duration, whereas the WT –

having an irregular and non-symmetrical function shape –

decomposes signals into wavelet functions that have limited
duration and zero mean (Drago and Boxall, 2002). The WT was
used to separate the high-frequency components and low-
frequency components of the temperature data used in this
study. The last decomposition level contains the lowest-
frequency component of the analyzed temperature data,
which represents the trend component of the data. The different
decomposition levels – which represent different periodic time
scales – were analyzed for trends. The goal was to then
determine the most important periodic components that affect
the observed temperature trends. This was accomplished by
using the MK test (and its sequential version) to evaluate the
behavior of the different periodic components resulting from
the DWT which range from intra-annual to decadal time scales.
Lower periodic components may be related to factors such as
seasonality, which can be reflected in the form of semi-annual
and annual cycles. Large-scale climate circulations, some of
which tend to occur in a long time-scale and are thus associated
with higher decomposition levels or periodic components. For
example, if 11-year or 22-year periodic oscillations are present
and found to be important in the spectrum of a climate data
analysis, they may be related to the Sun's activity cycles: the
11-year sunspot cycle and the 22-year solar magnetic cycle.

The use of WT has been seen in several climatological
applications, including studies of spatiotemporal patterns of
temperature changes. Baliunas et al. (1997) employed the WT
in order to analyze temperature trends and their time-scale
information in central England. The 7.5-year scale was
observed to be the most stable peak within the 2- to 105-year
time-scale range (Baliunas et al., 1997). Pišoft et al. (2004)
were able to demonstrate that the global wavelet spectrum of
the continuous wavelet transform (CWT) had better accuracy
in determining the years of local maxima for the longest time
periods of the studied Czech temperature series compared to
the FT — the wavelet power was able to reveal different
features and activities of each periodic component. Similarly,
Jung et al. (2002) and Prokoph and Patterson (2004) utilized
the CWT to analyze the warming trends in the winter
temperature data in South Korea and Ottawa, respectively.
The results of the WA for the winter temperature over South
Korea revealed that the decadal and inter-decadal events of 16
and 33 years were strongly persistent during 1954–1999 (Jung
et al., 2002). A slightly weaker inter-annual event of 4.9 years
was found to be associated with the El Niño cycle (Jung et al.,
2002). The results of CWT in studying urbanwarming trends in
Ottawa, Ontario revealed thatmulti-decadal and inter-seasonal
periodic modes are thought to contribute to the winter
warming in Ottawa, which is related to the urban heat island
(Prokoph and Patterson, 2004; Adamowski and Prokoph,
2013).

The majority of studies that employed WT in investigating
trends in temperature used the CWT approach (e.g. Baliunas et
al., 1997; Jung et al., 2002; Polyakov et al., 2003; Pišoft et al.,
2004; Prokoph and Patterson, 2004; and Kravchenko et al.,
2011). This is due to the fact that the CWT allows for the
analysis of data at all locations of time and space (Wang and Lu,
2009). However, rather than producing a one-dimensional
time series, CWT produces a two-dimensional scalogram,
which may contain redundant information (Percival, 2008).
Furthermore, edge effects associated with the application of
the CWT complicate signal reconstructions (Adamowski et al.,
2009). If the discrete wavelet transform (DWT) approach is
chosen, the decomposition process is simplified but still
efficient because the computation is based on a dyadic
discretization (integer powers of two) (Chou, 2007). This
generates a compact representation of the analyzed signal
(Wang and Lu, 2009) and thus, the redundancy of the
information is reduced. Achieving perfect signal reconstruc-
tions is also relatively simple when the DWT approach is used.

The main purpose of this study is to analyze trends in four
temperature categories – monthly, seasonally-based, seasonal,
and annual – by combining the use of the DWT approach with
the MK trend test. The DWT is used to decompose the time
series into their different lower-resolution components; the
MK test was applied to each time series resulting from the
decomposition in order to assess their statistical significance.
The dyadic arrangement used in the DWT procedure allowed
us to investigate the contributions of periodic events – ranging
from 2 months to 32 years – to the observed trends over the
40-year study period. Although there are many temperature
trend detection studies that have been conducted in Canada,
these studies have not explored the contribution of the high-
and low-frequency components of the analyzed data to the
observed trends using the DWT and the MK trend test.
Additionally, temperature trend studies that focus on localized
areas in Canada are still relatively rare.

2. Theoretical background

2.1. Time-scale representation of signals by the wavelet
transform (WT)

The wavelet transform is a mathematical tool that uses
wave functions – known as wavelets – similar to sine and
cosine functions. A wavelet must satisfy the admissibility
condition of having a zero mean (Farge, 1992; Torrence and
Compo, 1998). The property of the WT in which it is localized
in time and frequency domains is very useful because it allows
for the extraction of the different modes of variability that
vary in time (Lim and Lye, 2004). The window used in theWT
can be adjusted to the whole time-frequency domain— it can
be dilated and shifted with a resolution that is adjustable in
both time and frequency domains (Lau and Weng, 1995).
The narrow and wide windows are used to capture the high-
frequency and low-frequency components of the signal,
respectively (Lau and Weng, 1995). Therefore, when ana-
lyzing a signal, WT separates the signal's high frequency
(short periodic components) and low frequency (long
periodic components) constituents (Drago and Boxall,
2002). This is one of the main reasons that the WT is more
advantageous when used for decomposing signals with
non-stationary characteristics, compared to the more con-
ventional spectral analysis, such as the Fourier transform
(FT) or windowed Fourier transform (WFT). Fourier Trans-
form uses sine and cosine functions, which do not account
for the time information of the signals being analyzed. It
therefore cannot provide how information has changed from
one time interval to the next (Lau and Weng, 1995). With
the WFT, the window used to analyze a time series is fixed,
so when there are many different frequencies involved in
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the time series, the fixed window picks up more of the
high-frequency information but little low-frequency infor-
mation (Lau and Weng, 1995).

In order to decompose a time series using the WT, the
mother wavelet is translated along the signal in a number of
steps (using high-pass and low-pass filters). This procedure
then produces wavelet coefficients, which measure the
correlation of the wavelet to the original signal at a specific
scale as a function of time — this is the time-scale represen-
tation of the signal, which holds information about the
magnitude and location of different events at difference scales
(Lindsay et al., 1996; Drago and Boxall, 2002). Different scales
are represented by different stretched versions of the mother
wavelet.

The WT can be performed either in continuous or discrete
modes. Signal reconstructions from the wavelet coefficients are
relatively simple to computewhen theDWT approach is used—

this is done by using the inverse filter function of the wavelet
transform (Torrence and Compo, 1998). Signal reconstructions
for the CWT, on the other hand, are somewhat problematic
because of the redundancy in the time-scale information
(Torrence and Compo, 1998). The DWT mode also operates on
dyadic scales separating the analyzed signal scale by scale —

this is another advantage of using the DWT approach (Lindsay
et al., 1996). The signal decomposition using DWT starts out
with the smallest scales and continues to larger scales, doubling
in size for each round of operation.

The decomposition of a time series xt, via the WT is
accomplished using the following function (Lau and Weng,
1995):

Ψa;s tð Þ ¼ 1ffiffiffi
s

p Ψ
t−a
s

� �
ð1Þ

where s (which is greater than zero) represents the scaling
factor, a is the translation factor, and Ψ(t) is the analyzing
wavelet. The wavelet coefficients (C) via the CWT for the
time series xt (with equal time interval, dt), are calculated as
follows (Lau and Weng, 1995):

C a; sð Þ ¼ 1ffiffiffi
s

p ∫Ψ� t−a
s

� �
x tð Þdt ð2Þ

where Ψ* is the complex conjugate number based on the
scaling (s) and translation (a) factors. The wavelet coefficients
(w) via the discrete wavelet approach for the time series (with
dyadic grid arrangement) are calculated as follows (Partal and
Küçük, 2006):

w a; sð Þ ¼ 1
2ð Þs2

XN−1

t¼0

xtΨ
t
2s −a

� �
: ð3Þ

2.2. The original Mann–Kendall (MK) trend test

The original MK test is based on Mann (1945) and Kendall
(1975). It is a rank correlation test for two sets of observations
between the rank order of the recorded values and their
ordered values in time. The null hypothesis of the MK test for
a dataset (Xh, h = 1, 2, 3,…, n) is that the dataset is
independent and identically distributed (Yue et al., 2002).
The alternative hypothesis would state that a monotonic
trend is contained in the dataset. The calculation of the MK
test statistic, which is also known as Kendall's tau, is as
follows (Yue et al., 2002):

Sk ¼ ∑
n−1

h¼1

Pn
i¼hþ1

sign Xi−Xhð Þ ð4Þ

Xi denotes the ordered data values, and n is the length of
observations; the sign test is (Yue et al., 2002):

Sign Xi−Xhð Þ ¼
þ1 if Xi > Xh
0 if Xi ¼ Xh
−1 if Xi < Xh

:

8<
: ð5Þ

When the number of observations is greater than 10, the
Kendall's tau Sk has a distribution that is approximately normal
with zero mean (Hamed and Rao, 1998; Adamowski and
Bougadis, 2003). The variance of the statistic Sk can then be
calculated using the following equation (Kendall, 1975; Yue et
al., 2002):

V Skð Þ ¼ n n−1ð Þ 2nþ 5ð Þ−
Xnh
h¼1

th hð Þ h−1ð Þ 2hþ 5ð Þ
( )

=18 ð6Þ

th represents the number of ties or duplicates of extent h (the
summation in Eq. (6) is used in the presence of tied values in
the time series). nh is the total number of ties in the dataset.
When n ≥ 10 the standardized test statistic for the Mann–
Kendall test can then be calculated using (Yue et al., 2002):

Z ¼

Sk−1ffiffiffiffiffiffiffiffiffiffiffiffiffi
V Skð Þp ; if Sk > 0ð Þ

0; if Sk ¼ 0ð Þ
Sk þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
V Skð Þp ; if Sk < 0ð Þ

:

8>>>>><
>>>>>:

ð7Þ

Positive and negative Z values indicate that the direction
of the trend is upward and downward, respectively. The
calculated Z value is compared to the standard normal variate
at some level of statistical significance (α) (Hamed and Rao,
1998). In a two-sided test, if the calculated |Z| is greater than
Zα/2, it implies that there is a significant trend (i.e. the null
hypothesis is rejected).

2.3. Modified Mann–Kendall (MK) trend tests

It is important to check for the presence of serial correlation
in the time series being analyzed prior to using the original MK
test. It is widely recognized that the original MK trend test
should only be applied to test for a trend in a dataset that does
not exhibit serial correlation (Hamed and Rao, 1998;
Adamowski and Bougadis, 2003; Mohsin and Gough, 2010). If
the original MK test is used on a time series that exhibits
positive serial correlation, the likelihood of finding trends is
enhanced, when in fact, there is no trend; and vice versa
(Hirsch and Slack, 1984; Hamed and Rao, 1998). Hamed and
Rao (1998) tested a time series with an AR(1) of 0.4 using the
original MK test and they were able to demonstrate that the
significant positive trend found (at the 5% significance level)
was merely due to the effect of autocorrelation in the data.
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Modifications to the original MK test have been proposed
by Hirsch and Slack (1984) and Hamed and Rao (1998) in
order to account for seasonality patterns and autocorrelation
factors in the analyzed data, respectively. These modified
versions of the MK tests are summarized in the following
sections.

2.3.1. Modified Mann–Kendall (MK) test by Hirsch and Slack
(1984) for data with seasonality patterns and autocorrelation

For a dataset, x, recorded over v season and for u years,
with no missing or tied values, its matrix can be written as
(Hirsch and Slack, 1984):

x ¼

x11 x12 x13… x1v
x21 x22 x23… x2v
x31 x32 x33… x3v
: : : :
: : : :
: : : :
xu1 xu2 xu3… xuv

0
BBBBBBBB@

1
CCCCCCCCA
: ð8Þ

The ranks of the data in matrix x are represented by
matrix r (Hirsch and Slack, 1984):

r ¼

r11 r12 r13… r1v
r21 r22 r23… r2v
r31 r32 r33… r3v
: : : :
: : : :
: : : :
ru1 ru2 ru3… ruv

0
BBBBBBBB@

1
CCCCCCCCA
: ð9Þ

The seasonal Kendall test statistic, which is asymptotically
normal with a mean of zero, is calculated using the sum of
the Mann–Kendall test statistic for each season. The variance
of the seasonal Kendall test statistic is then calculated by
adding the sum of the variance from each season with the
estimate covariance of two seasons (which was developed by
Dietz and Killeen (1981)). The estimate of covariance of two
seasons relies on the Spearman's correlation coefficient for
cases that have no ties and no missing values. Hirsch and
Slack (1984) demonstrated that by using these consistent
estimators for the covariance in order to calculate the
variance of the seasonal Kendall test statistic, the assumption
of independence in a time series is no longer required. The
details of this modified version of the MK test can be found in
Hirsch and Slack (1984).

2.3.2. Modified Mann–Kendall (MK) test by Hamed and Rao
(1998) for significantly autocorrelated data

The Hamed and Rao (1998) modified version of the MK
test is intended to address the serial correlation structures in
a dataset by looking at their effects on the mean and variance
of the original Mann–Kendall test. An empirical approxima-
tion for the variance for the MK test was developed, which is
considered suitable for autocorrelated data. The calculation of
the variance of the MK test statistic is altered by incorporat-
ing the effective number of samples required to account for
the autocorrelation in the dataset in to the calculation — the
autocorrelation between ranks is used instead of between the
data values. The details of this modified version of the MK
test can be found in Hamed and Rao (1998).
Hamed and Rao (1998) applied their proposed modified
version of the MK test on precipitation and streamflow series
exhibiting autocorrelation and found that the power of the
test is similar when compared to that of the original MK test
(for independent data). The accuracy of this modified MK test
is much higher than the original MK test for data that exhibit
significant autocorrelation. Hamed and Rao (1998) also
showed that the empirical significance level is much closer
to the nominal significance level when the modified MK test
is used in autocorrelated data.
3. Data and study sites

Data from a total of five meteorological stations located in
southern Ontario and Quebec were used in this study. Harrow,
Vineland, Belleville and Peterborough stations are located in
Ontario and Val d'Or station is located in Quebec. For the
purpose of analyzing trends associated with climate change,
Kahya and Kalayci (2004) and Burn and Hag Elnur (2002)
recommended that at least 31 and 25 years worth of data,
respectively, are used in order to obtain a valid mean statistic.
Partal (2010) considered 40 years' worth of data adequate for
trend analysis studies. Additionally, Mishra and Singh (2010)
considered that up to 3% of missing records are acceptable for
trend analysis in meteorological studies. In light of this, the
stations selected in this study have at least 40 years of data
without any missing values. A number of studies looking at
trends in hydroclimatic indices have also used 40 years worth
of data or less (e.g. Domroes and El-Tantawi, 2005; Chaouche et
al., 2010;Makokha and Shisanya, 2010; Karaburun et al., 2011).

The locations of the stations used in the study are shown in
Fig. 1; and the key features of the stations are given in Table 1—

joint stations indicate that records from nearby stations were
combined in order to produce longer time series. The details of
how data from nearby stations were combined can be found in
Mekis and Vincent (2011).

The data used in this study came from the second
generation homogenized temperature data of Environment
Canada. These homogenized temperature data are specially
developed for trend studies in climatic indices. Adjustment
procedures on monthly and daily maximum and daily mini-
mum temperature indices were implemented to create the first
generation homogenized temperature data. The adjustments
were applied in order to account for non-climatic shifts such as
station relocations, changes in recording procedures and
automation (Vincent and Gullett, 1999). These non-climatic
shifts may cause inhomogeneities in the temperature data,
which in turn leads to inaccurate trend estimates if the data
were to be used for trend analysis (Zhang et al., 2000). In the
second generation homogenized sets, the spatial and temporal
coverage of temperature data have been improved. Further-
more, additional adjustment procedures were implemented in
order to solve the bias caused by the redefinition of the end
time of the climatological day, which occurred as of July 1, 1961
(refer to Vincent et al., 2009 for the details of the adjustments).
The adjustment procedures in the second generation homog-
enized datasets involved adjusting the daily minimum temper-
atures, which are based on hourly data for the period 1967–
2006 (40 years)— the adjustment in any one day was between
0.58 and 12.58 °C (Vincent et al., 2009).



Fig. 1. The map of the weather stations used in this study.

380 D. Nalley et al. / Atmospheric Research 132–133 (2013) 375–398
There are four categories of temperature data analyzed in
our study: monthly, seasonally-based, seasonal (i.e. winter,
spring, summer, and autumn), and annual. The data spanned
from 1967 to 2006, with the exception of station Harrow,
whose annual and autumn data end in 2005 due to missing
observations at the end of 2006.

Themonthly data contain observations starting from January
1967 to December 2006 (with the exception of station Harrow
whose monthly time series ends in August 2006). Seasonally-
based data use the average value from each season every year
continuously from winter 1967 to autumn 2006 (with the
exception of station Harrow whose seasonally-based data ends
in summer 2006): December–February (winter), March–May
(spring), June–August (summer), and September–November
(autumn). In the seasonal data analysis, each season (i.e. winter,
spring, summer, and autumn) was analyzed separately.

Monthly data were analyzed in order to investigate the
effects of shorter time scales (e.g. intra-annual and inter-annual
periodicities) on the observed temperature trends. Seasonally-
based time series were analyzed in order to investigate the
effects of the semi-annual and annual seasonality on the
temperature trends. Annual and seasonal time series were
included in the study in order to investigate events occurring in
Table 1
Key features of the meteorological stations used in this study.

Station name Province Station location Elevation
(m)

Joint
station

Latitude
(°)

Longitude
(°)

Harrow ON 42.0 −82.9 182 Yes
Vineland ON 43.2 −79.4 79 Yes
Belleville ON 44.2 −77.4 76 No
Peterborough ON 44.2 −78.4 191 Yes
Val d'Or QC 48.1 −77.8 337 No
longer time scales such as multi-year and decadal events.
Additionally, seasonal data were included because several
studies found that changes in temperature do not only occur in
annual data but also within the different seasons (examples for
Canada: Zhang et al., 2000; Vincent et al., 2007). Karaburun et al.
(2011) also indicated that an overall positive trend in the mean
annual temperature data may not show that trends in some
seasons may actually be negative. Therefore, it is important to
analyze individual seasons separately.

4. Methodology

The wavelet decomposition was applied to each time series
in order to separate their high- and low-frequency components.
After the decomposition, the MK trend test was then applied to
the different detail components (D), approximation components
(A), as well as to the detail components with their respective
approximation added. The data analysis in this studywas carried
out using several procedures, which are summarized as follows:

1. The presence (or lack thereof) of serial correlation was
checked for each dataset.

2. The presence (or lack thereof) of seasonality patterns in
each dataset was determined using their correlograms.

3. Each time series was decomposed via the DWT into its
details (D) and approximation (A) components. The type
of mother wavelet, number of decomposition levels, and
the type border extension used were determined using
the relative error criterion between the MK Z-values of the
original data and the approximation component at the last
decomposition level (see Section 4.2).

4. The MK trend test and the sequential MK analysis were
applied to the original datasets and to the different detail
and approximation series produced by the wavelet
decomposition.
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5. The most important periodicities that affect the observed
trends were determined by examining the sequential MK
graphs and the MK Z-values of the detail (plus approxi-
mation) components, and then comparing them to that of
the original data.

4.1. Serial correlation and seasonality analyses

The serial correlation test was applied in order to check if a
time series exhibited non-random characteristics. If serial
correlation exists in a time series, it increases the likelihood
to reject the null hypothesis of no trend, when in fact the null
hypothesis should be accepted (Yue et al., 2002). This is
because the variance of the MK test statistic is underestimated
(Hamed and Rao, 1998).

In this study, each time series' correlograms and autocor-
relation coefficients (ACFs) at lag-1 were used to determine
the presence (or lack thereof) of a significant autocorrelation.
Lag-1 ACF is commonly used to determine whether a time
series exhibit non-random characteristics (e.g. Partal and
Kahya, 2006; Mohsin and Gough, 2010). Lag-1 ACFs were
computed using (Yue et al., 2002; Mohsin and Gough, 2010):

R ¼
1
.
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h i
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R represents the autocorrelation coefficient at lag-1 of the
time series xt, xt represents the mean of the data. If the
calculated lag-1 ACF is found to be within the interval defined
by Eq. (11), it can be concluded that the time series does not
exhibit a significant autocorrelation. On the contrary, if the
calculated lag-1 ACF is outside of the interval, it can be said
Fig. 2. Examples of the monthly data correlograms: stations Harrow (left) and Vinel
semi-annual and annual seasonality patterns. The upper and lower confidence limi
that the time series exhibits a significant autocorrelation at
the 5% significance level.

The correlograms depicting the ACFs of the analyzed time
series at different lags were obtained using IBM SPSS Statistics
19. If an ACF value crosses the upper or lower confidence limits,
it indicates that the autocorrelation at that specific lag is
significant (an example is given in Fig. 2). The correlograms
were also used to identify whether a particular time series
exhibits some form of seasonality. If repeated oscillating
patterns that continued for many lags were observed in a
correlogram, it indicates that the analyzed time series exhibited
seasonality patterns (as exemplified in Figs. 2 and 3).

4.2. Discrete wavelet transform (DWT) applications on different
temperature time series

Time series decomposition via the DWT was computed
using the multilevel one-dimensional wavelet analysis function
in MATLAB. The signal (i.e. time series) is convolved with low-
pass and high-pass filters, followed by a dyadic discretization
or downsampling procedure, in order to produce the approx-
imation (A) and detail (D) coefficients. The signal is then
reconstructed using the multilevel one-dimensional wavelet
reconstruction function using the same band-pass filters. The
original signal is decomposed into scales by powers of 2: the
signal is broken down in halves, then in quarters, and it
continues onward (Dong et al., 2008). The first decomposition
results in detail (D1) and approximation (A1), the next
iteration decomposes A1 into detail (D2) and approximation
(A2); the process repeats until the desired number of
decomposition levels is reached. The lower the level of the
detail (D) component, the higher the frequency of information
it represents. The lowest frequency information of the data is
contained in the approximation (A) component of the last
decomposition level. A perfect reconstruction of the original
signal can then be achieved by working the calculation
and (right). High coefficient values at every sixth lag indicate the presence of
ts are shown by the straight lines.

image of Fig.�2


Fig. 3. Examples of the seasonally-based data correlograms: stations Harrow (left) and Vineland (right). High coefficient values at every second lag indicate the
presence of semi-annual and annual seasonality patterns. The upper and lower confidence limits are shown by the straight lines.
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upwards from the approximation (A) component of the last
decomposition level.

Daubechies (db) wavelets were used as the mother wavelet
in the time series decomposition. The Daubechies (db) wavelets
were used in this study because of their ease of use, compact
support, andorthogonality (Maet al., 2003;Vonesch et al., 2007),
which implies that the wavelets have non-zero basis functions
over a finite interval, and also full scaling and translational
orthonormality properties (Popivanov and Miller, 2002; de
Artigas et al., 2006). These properties are very important for
localizing events when analyzing signals that are characterized
by time dependency — this localizing property also implies that
wavelets can be adjusted to accommodate both high and low
frequencies of the analyzed signals (Wang et al., 1998;
Popivanov andMiller, 2002). Furthermore, the compact support
provided by Daubechies (db) wavelets has fewer degrees of
freedom (associated with the wavelet coefficients), which is
ideal for analyzing signals with complex structures (Ma et al.,
2003). The scaling function of a Daubechies (db) wavelet also
effectively represents polynomials with order up to Φ/2–1,
where Φ is an even integer (Ma et al., 2003). In order to
determine the type of Daubechies (db) wavelet to be used in the
time-series decomposition, this present study tried out different
wavelets from db1 to db10.

Border extensions were also considered important because
when performing the DWT decomposition on signals with finite
length, the issue of border distortion effects is introduced. This
happens because convolution processes cannot occur outside the
ends of signals having limited length as there is no available
information outside the ends (Su et al., 2011). Extending the
ends of the signal produces several extra coefficients during the
decomposition process, which are needed to ensure a perfect
signal reconstruction. There are three types of border extensions
that are normally used in the DWT: zero padding, periodic
extension, and boundary value replication (symmetrization).
Zero padding uses zeros outside of the original support of the
mother wavelet, to pad the signal being analyzed; periodic
padding recovers the signal beyond the original support by
periodic extension; and symmetrization – which is the default
mode in MATLAB – assumes that signals outside the original
support canbe recovered by symmetric boundary replication (de
Artigas et al., 2006). The inverse discrete wavelet transform
(IDWT) was then run in MATLAB to ensure perfect signal
reconstructions.

In this study, two criteriawere tried out in order to calculate
the number of decomposition levels and to determine the
border extension and the type of Daubechies (db) mother
wavelet to be used in the DWT procedure. The first criterion
involved the use of themean relative error (MRE) between the
approximation (A) time series and original time series. The
second criterion used the relative error (RE) between the MK
Z-values of the approximation (A) of the last decomposition
level and the original data. The lowestMRE and RE values were
sought. The MRE was calculated using (Popivanov and Miller,
2002; de Artigas et al., 2006):

MRE ¼ 1=n∑
n

j¼1

aj−xj
��� ���

xj
��� ��� ð12Þ

where xj is the original data value of a signal whose number of
records is n, and aj is the approximation value of xj. The RE
criterion was proposed by Nalley et al. (2012) and calculated
using:

RE ¼
Zap−Zor

��� ���
Zorj j ð13Þ

Zor represents the MK Z-value of the original time series; and Zap
is the MK Z-value of the approximation component of the last
decomposition level of the DWT.
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The following equation was proposed by de Artigas et al.
(2006), who conducted a study on monthly geomagnetic
activity indices, to calculate the number of decomposition
levels:

L ¼ Log n
2v−1


 �
Log 2ð Þ ð14Þ

where v represents the number of vanishing moments of a
Daubechies (db) wavelet, n is the number of records in a
monthly-based time series, and L is the maximum decompo-
sition levels. InMATLAB, the number of vanishingmoments for
a Daubechies (db) wavelet is half of the length of its starting
filter. For example, if one is using the db3 mother wavelet in
MATLAB, it implies that the wavelet is Daubechies3, which has
a 6-point filter length. It should also be noted that if the number
of data points in a time series is not exactly in a dyadic format
(as is the case in this study), the DWT computation in MATLAB
is performed using the next dyadic arrangement. For example,
in our study there were 480 data points in monthly datasets.
The value of n in Eq. (14) would be represented by 29 = 512
(which is the next dyadic format from 480). Therefore, the
number of n used in the DWT procedure would be 512. If, for
example, the db3 wavelet is used on the monthly data, the
number of decomposition levels, L, would be 6.68 (seven levels
would then be used). Similarly, for the seasonally-based time
series (having 160 data points), the computation of the DWT in
MATLABwould use 256 (28) asn. If db3was used in Eq. (14) for
the seasonally-based data, the calculated L would be 5.68 (six
levels would then be used).

The use of the newly proposed RE criterion by Nalley et al.
(2012) illustrated that using the RE was more precise in
determining the most appropriate type of Daubechies (db)
mother wavelet and border extension, and the number of
decomposition levels. This provides a justification to use this
criterion for the DWT computation in our study. When the
MRE criterion was used to determine the number of de-
composition levels (using different db types and border
extensions), the differences in the MRE between different
decomposition levels were not noticeable. For example, for
station Vineland's annual data, the MRE for four decomposi-
tion levels using different Daubechies (db) wavelets ranged
from: 0.06 to 0.07, 0.055 to 0.059, and 0.11 to 0.22 using
periodic extension, symmetrization, and zero padding, re-
spectively. The MRE for five decomposition levels for the
same station ranged from: 0.06 to 0.08, 0.06 to 0.07, and 0.19
to 0.24 using periodic extension, symmetrization, and Zero
padding, respectively. On the contrary, when the RE criterion
was used, noticeable differences were observed. For example,
for Vineland's annual data, the relative errors obtained from
using four decomposition levels were: 0.01–1.58, 1.00–3.40,
and 0.03–1.84 using periodic extension, symmetrization, and
zero padding, respectively. For the same data, the relative
errors obtained from using five decomposition levels were:
0.02–2.16, 0.58–7.66, and 0.04–2.60 using periodic extension,
symmetrization, and zero padding, respectively. Therefore,
for Vinaland's annual data, four decomposition levels were
used (the lowest RE of 0.01 was obtained from using db6
wavelet). This is an example of how the number of decom-
position levels was determined on a case-by-case basis in this
study. The noticeable differences in the REwere not only seen
for Vineland station, but also for all the other stations.

In our study, we observed that in most cases, using db
wavelets or border extensions, other than the ones determined
using the RE criterion, led to a different number of decompo-
sition levels. Generally the number of decomposition levels
was different by one (the analysis is not presented here). Even
so, the most dominant periodicities (based on the MK Z-values
of the detail components and their sequential MK graphs) may
not be the same as those resulting from when the RE criterion
was used. In addition to that, if data decomposition is done
using Daubechies (db) wavelets and border extensions other
than the ones determined using the RE criterion, the sequential
MK graphs of the detail components (even for thosewhoseMK
Z-values are closest to that of the original data) are out of
harmony compared to the sequential MK of the original data.

4.3. The Mann–Kendall (MK) trend test

TheMK test statistic S and the variancewere calculated (see
Eqs. (4) and (6), respectively) for eachdataset in order to obtain
the standard normal value, Z score (see Eq. (7)). In the data
analysis of this study, the significant level used was α = 5% (or
95% confidence level) for a two-sided probability. The absolute
value of this Z-score was then compared to the critical
two-tailed Z-value (area under the normal curve) of α/2. The
Z values in a two-tailed test for α = 5% are ±1.96. If the
calculatedMK Z-score is outside the range of−1.96 and+1.96,
the trends are statistically significant. The MK test tests the null
hypothesis of no trend (independent observations and ordered
randomly) against the alternative hypothesis of positive or
negative monotonic trends over time that are present in the
dataset being analyzed (Hirsch and Slack, 1984; Mohsin and
Gough, 2010; Karaburun et al., 2011).

4.3.1. Applications of the original and modified versions of the
Mann–Kendall (MK) trend test

The modified MK test by Hirsch and Slack (1984) was
used on time series that exhibited seasonality patterns. The
modified MK test by Hamed and Rao (1998) was used on
time series that exhibited only significant autocorrelations at
lag-1. The original MK test was applied to time series that
exhibited neither significant autocorrelations at lag-1 nor
seasonality patterns.

4.3.2. Sequential Mann–Kendall (MK) analysis
The sequential MK test was used in order to examine the

progressive trend lines in each time series from the beginning to
the end of the study period. This is useful because positive and
negative trends, which may or may not be significant, can be
observed in the sequential MK graphs (Makokha and Shisanya,
2010). Additionally, with sequential MK analysis, we could also
observe if a series of significant positive andnegative trendsmay
cancel each other out and thus, produce an MK Z-value that is
not significant at the end of the study period. The sequential MK
analysis in this study was also used to determine the periodic
modes that are considered the most influential in affecting the
temperature trends over the study area.

The sequential MK values were calculated using the
appropriate MK test (i.e. the original or the modified versions)
for each dataset, from the start to the end of the study period.



Table 3
Mann–Kendall Z-values of the original time series for the different
temperature data types.

Harrow Vineland Belleville Peterborough Val
d'Or

Monthly data 3.25a 3.39a 3.33a 2.45a 2.80a

Seasonally-based
data

3.09a 3.25a 3.26a 2.48a 2.57a

Annual data 2.88a 3.15a 3.58a 2.49a 2.18a

Winter data 1.97a 1.97a 2.60a 2.37a 1.80
Spring data 1.67 2.15a 1.59 1.09 1.03
Summer data 2.87a 2.81a 2.59a 1.87 1.98a

Autumn data 1.21 1.73 1.69 0.91 1.38

a Indicates a significant trend value at α = 5%.
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The sequential MK values were then graphed. In the sequential
MK graph, the upper and lower lines correspond to the
confidence limits of the standard normal Z values at α = 5%.
The upper and lower confidence limits therefore, correspond to
+1.96 and−1.96, respectively.When the sequentialMK value
crosses either one of the confidence limit lines it indicates a
significant trend at the 5%-significance level — crossing the
upper line implies a significant positive trend,whereas crossing
the lower line implies a significant negative trend.

It is important to recall that the standard normal Z-score
can be used in the MK test only when the number of
observations in a dataset is more than 10. With this in mind,
the accuracy of the first 10 sequential MK values (i.e. up to
year 1976) in the sequential MK graphs may be overlooked.

5. Results and discussions

5.1. Preliminary data analysis

5.1.1. Serial correlation and seasonality factors
All the monthly data showed significant lag-1 autocorrela-

tion coefficients (Table 2). For all other data categories,
significant lag-1 autocorrelation coefficients were only ob-
served for station Vineland's annual data (R = 0.35) (Table 2).
It is commonly expected that amonthly time serieswould have
a stronger autocorrelation compared to its annual counterparts
(Hirsch and Slack, 1984). The correlograms of all the monthly
data also showed strong seasonality patterns as there are
repeated patterns of cycles. Semi-annual and annual seasonal-
ity patterns are strongly apparent in all the monthly data as
there are high coefficients at every 6th lag (Fig. 2). This is again
confirmed by the correlograms of the seasonally-based data,
where the autocorrelation functions are much higher at every
2nd lag (Fig. 3). The 2nd and 4th lags in the seasonally-based
data correspond to 6 and 12 month cycles, respectively.

5.1.2. The Mann–Kendall (MK) test on original data
Due to the presence of seasonality patterns in the monthly

and seasonally-based data, the modified version of theMK test
by Hirsch and Slack (1984) was used on these data sets. The
original MK test was used on the seasonal and annual datasets
that showed an absence of serial correlations. ThemodifiedMK
version byHamed and Rao (1998)was used on the annual data
for Vineland station because it is the only dataset that exhibits a
significant lag-1 autocorrelation.

As shown in Table 3, all of the trend values show positive
signs, which indicate that all temperature indices analyzed in
this study have positive trends. For the monthly, seasonally-
Table 2
Lag-1 autocorrelation functions (ACFs) of the different temperature data types.

Harrow Vineland

Monthly data 0.84a (S) 0.84a (S)
Seasonally-based data 0.004 (S) 0.008 (S)
Winter data 0.14 0.12
Spring data 0.05 0.14
Summer data 0.03 0.03
Autumn data −0.05 0.12
Annual data 0.29 0.35a

(S) indicates the presence of seasonality.
a Indicates a significant trend value at α = 5%.
based, and annual data analysis, all stations are experiencing
statistically significant positive trends (at the 5%-level). For the
seasonal data,most stations are experiencing significant positive
trends for thewinter season (except for station Val d'Or) and for
the summer season (except for station Peterborough) — it
should benoted however, that theMK Z-value of Val d'Orwinter
and Peterborough summer are +1.80 and +1.87, respectively,
which are just slightly below +1.96. Only station Vineland
showed a significant trend value for the spring season; and there
was no station with significant trend values for autumn.

5.1.3. The number of decomposition levels for the different time
series

The number of decomposition levels for each time series
(Tables 4–10) was determined using the MK Z-value RE
criterion. As explained in Section 4.2, the lowest relative error
of the MK Z-value produced from using the combination of a
specific db wavelet and a border extension was sought. As a
result, different number of decomposition levels for the same
temperature data category may be observed.

Since data decomposition was achieved using the DWT
approach, the scales are arranged in a dyadic format (integer
powers of two) from the lowest scale. Therefore, D1 represents
the 2-unit periodic component, D2 represents the 4-unit
periodic component, D3 represents the 8-unit periodic com-
ponent, and so on. An example of time series decomposition via
the DWT is given in Fig. 4. It should be noted that the MK
Z-values discussed in the Results and discussions section are of
the detail components (D)with their respective approximation
component (A) added. The approximation (A) used was the
approximation from the last decomposition level. Since the
approximation components are representative of the low-
frequency component (including trends) (Craigmile et al.,
Belleville Peterborough Val d'Or

0.84a (S) 0.84a (S) 0.84a (S)
0.006 (S) 0.003 (S) 0.001 (S)
0.19 0.05 −0.10
0.07 −0.01 −0.02

−0.06 0.01 −0.10
0.09 0.02 −0.04
0.28 0.12 −0.004



Table 4
Mann–Kendall Z-values of the monthly temperature series: original data,
details components, approximations, and a set of combinations of the details
and their respective approximations. The most effective periodic compo-
nents for trends are indicated in bold format.

Harrow Vineleand Belleville Peterborough Val d'Or

Original 3.25a 3.39a 3.33a 2.45a Original:
2.80a

D1 −0.37 −0.36 0.31 0.00 D1: 0.75
D2 1.49 0.90 0.53 0.71 D2: −0.02
D3 −0.35 −0.67 −0.48 −0.50 D3: 0.41
D4 0.03 0.43 0.46 0.52 D4: 0.04
D5 −0.38 0.59 0.63 0.68 D5: 0.16
D6 1.06 2.03a 1.45 1.63 A5: 2.83a

A6 3.32a 3.55a 3.24a 2.43a D1 + A5:
3.20a

D1 + A6 3.30a 3.53a 3.63a 2.56a D2 + A5:
3.27a

D2 + A6 3.15a 3.91a 3.62a 2.55a D3 + A5:
2.18a

D3 + A6 1.30 1.68 1.69 0.73 D4 + A5:
1.43

D4 + A6 1.17 1.74 1.57 1.15 D5 + A5:
2.10a

D5 + A6 1.56 2.59a 2.40a 1.65
D6 + A6 3.63a 4.19a 4.19a 3.71a

a Indicates a significant trend value at α = 5%.
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2004; Kallache et al., 2005), it makes sense to add them to their
detail components prior to testing their trends.

5.1.4. Determining the most dominant periodic components that
affect temperature trends

Since the main goal of this study was to determine the
dominant periodic mode(s) for trend using the DWT ap-
proach, it is necessary to select the detail component(s) that
best represent the trend in the analyzed data. The coefficients
produced from the DWT decomposition are intermediate
coefficients and thus, they need to be re-adjusted to the entire
signal to determine the contribution of each frequency band
to the original signal (Dong et al., 2008). The identity of the
signal is contained in the approximation component (Partal,
2010). Therefore, prior to testing the trend of the detail
Table 5
Mann–Kendall Z-values of the seasonally-based temperature series: original data, d
and their respective approximations. The most effective periodic components for tr

Harrow Vineland Belleville

Original 3.09a Original 3.25a Original
D1 0.50 D1 −0.26 D1
D2 0.19 D2 0.31 D2
D3 −0.29 D3 0.25 D3
D4 0.08 D4 0.51 D4
D5 0.40 D5 −0.27 D5
D6 1.95 D6 2.01a D6
A6 2.69a A6 3.11a A6
D1 + A6 4.14a D1 + A6 4.06a D1 + A6
D2 + A6 2.99a D2 + A6 3.16a D2 + A6
D3 + A6 2.90a D3 + A6 3.36a D3 + A6
D4 + A6 3.14a D4 + A6 3.70a D4 + A6
D5 + A6 3.88a D5 + A6 3.02a D5 + A6
D6 + A6 4.39a D6 + A6 4.97a D6 + A6

a Indicates a significant trend value at α = 5%.
components, the approximation component should be added
to them first – this study used the approximation component
of the last decomposition level because it represents the
lowest-frequency component of the signal. After doing so, the
most dominant periodic components that affect the temper-
ature trends over the study area were determined. Measuring
the energy of the components resulting from the DWT
decomposition has been used as a way to assess the
contribution of certain wavebands in a dataset (examples
are seen in Dong et al., 2008; Partal, 2010). In this study, the
dominant periodic components for trends were determined
in two steps. First, the MK Z-values of each detail component
(with its approximation added) were compared to the MK
Z-value of their respective original data. Second, the sequen-
tial MK values of each detail component (with its approxi-
mation added) were graphed along with the sequential MK
values of the original data. The periodic component(s)
considered the most dominant in affecting the temperature
trends are the ones whoseMK Z-values were closest to that of
the original data and whose sequential MK graphs were the
most harmonious with the sequential MK of the original data.

We also tested a number of combinations of detail com-
ponents with approximation series (e.g. D1 + D2 + A) but
the results produced were not conclusive (based on the
observations of the MK Z-values and the sequential MK
graphs). For example, station Harrow's spring temperature
data has an MK Z-value of +1.67; based on the nearest MK
Z-value and the sequential MK graphs (see Fig. 10), the D3
component (plus A5) is considered the most dominant
periodicity for trend in mean spring temperature data (see
Section 5.6 for more detail). When we combine different detail
components (with approximation), even when the D3 compo-
nent is part of the combination set, it does not always produce
MK Z-values that are close to the MK Z-value of the original
data nor does it produce good sequential MK graphs. For
example, D1 + D3 + A5 only gives an MK Z-value of +0.62;
D2 +D3 + A5 had an MK Z-value of only +0.57. However,
D2 + D5 + A5 produced a relatively close MK Z-value of
+1.48, which is close to the MK Z-value of the original data
(+1.67), although neither D2 nor D5 was considered impor-
tant for trends. Therefore, in this studywe only chose to include
etails components, approximations, and a set of combinations of the details
ends are indicated in bold format.

Peterborough Val d'or

3.26a Original 2.48a Original 2.57a

0.31 D1 0.43 D1 0.17
0.53 D2 −0.13 D2 0.10

−0.48 D3 0.15 D3 0.50
0.46 D4 0.50 D4 0.53
0.63 A4 2.62a A4 2.58a

1.45 D1 + A4 2.84a D1 + A4 2.97a

3.24a D2 + A4 2.36a D2 + A4 2.96a

3.63a D3 + A4 2.13a D3 + A4 2.46a

3.62a D4 + A4 3.15a D4 + A4 2.55a

1.69
1.57
2.40a

4.19a



Table 6
Mann–Kendall Z-values of the annual temperature series: original data, details components, approximations, and a set of combinations of the details and their
respective approximations. The most effective periodic components for trends are indicated in bold format.

Harrow Vineland Belleville Peterborough Val d'Or

Original 2.88a Original 3.15a Original 3.58a Original 2.49a Original 2.18a

D1 −0.15 D1 0.55 D1 0.36 D1 0.22 D1 −0.01
D2 0.31 D2 0.59 D2 0.48 D2 0.80 D2 1.04
D3 0.51 D3 1.25 D3 0.69 D3 0.52 D3 −0.13
D4 0.68 D4 2.92a D4 3.23a D4 0.85 D4 1.78
D5 3.70a A4 3.11a D5 3.32a D5 2.37a D5 2.50a

A5 2.85a D1 + A4 2.37a A5 3.72a A5 2.37a A5 2.37a

D1 + A5 1.62 D2 + A4 2.27a D1 + A5 1.29 D1 + A5 0.66 D1 + A5 0.17
D2 + A5 1.98a D3 + A4 2.90a D2 + A5 2.02a D2 + A5 2.78a D2 + A5 1.32
D3 + A5 2.71a D4 + A4 4.93a D3 + A5 1.92 D3 + A5 1.41 D3 + A5 0.41
D4 + A5 3.80a D4 + A5 4.42a D4 + A5 2.16a D4 + A5 2.25a

D5 + A5 4.94a D5 + A5 3.23a D5 + A5 5.28a D5 + A5 3.88a

a Indicates a significant trend value at α = 5%.

Table 7
Mann–Kendall Z-values of the winter temperature series: original data, details components, approximations, and a set of combinations of the details and their
respective approximations. The most effective periodic components for trends are indicated in bold format.

Harrow Vineland Belleville Peterborough Val d'Or

Original 1.97a Original 1.97a Original 2.60a Original 2.37a Original 1.80
D1 −0.10 D1 0.06 D1 0.24 D1 0.01 D1 0.22
D2 0.29 D2 −0.13 D2 0.41 D2 0.15 D2 −0.06
D3 −0.20 D3 0.90 D3 0.06 D3 0.38 D3 −0.38
A3 2.09a D4 0.41 D4 2.69a D4 0.83 D4 0.85
D1 + A3 1.88a D5 2.37a D5 3.95a D5 2.34a D5 2.39a

D2 + A3 2.69a A5 2.37a A5 2.74a A5 2.37a A5 2.37a

D3 + A3 2.23a D1 + A5 1.08 D1 + A5 1.08 D1 + A5 1.13 D1 + A5 0.52
D2 + A5 1.11 D2 + A5 1.55 D2 + A5 1.34 D2 + A5 0.80
D3 + A5 1.41 D3 + A5 1.64 D3 + A5 1.60 D3 + A5 0.71
D4 + A5 1.76 D4 + A5 5.04a D4 + A5 2.39a D4 + A5 2.27a

D5 + A5 5.28 D5 + A5 4.91a D5 + A5 5.21a D5 + A5 5.28a

a Indicates a significant trend value at α = 5%.
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analysis on individual detail components (with their respective
approximation components added).

5.2. Monthly temperature data analysis

As shown in Table 4, all stations are experiencing
significant positive trends. The results of the MK test showed
that none of the individual detail components showed
significant MK Z-values, except for the D6 component of
Table 8
Mann–Kendall Z-values of the spring temperature series: original data, details com
respective approximations. The most effective periodic components for trends are

Harrow Vineland Belleville

Original 1.67 Original 2.15a Original
D1 0.69 D1 0.22 D1
D2 −0.08 D2 0.43 D2
D3 0.78 D3 1.13 D3
D4 7.38a A3 2.19a D4
D5 6.47a D1 + A3 2.53a D5
A5 1.67 D2 + A3 1.99a A5
D1 + A5 0.73 D3 + A3 3.25a D1 + A5
D2 + A5 0.15 D2 + A5
D3 + A5 0.87 D3 + A5
D4 + A5 7.10a D4 + A5
D5 + A5 6.05a D5 + A5

a Indicates a significant trend value at α = 5%.
station Vineland (Z = +2.03) (Table 4). After the addition of
the approximation components to their respective details, it
is observed that most of the trend values became significant
(α = 5%). By examining the sequential MK graphs, and by
comparing the MK Z-values of the detail components and the
original data, it is found that the periodic components that
are effective for trends are relatively similar for all stations.
Fig. 5 is an example illustrating how the most dominant
periodic component(s) were chosen. Although graphically as
ponents, approximations, and a set of combinations of the details and their
indicated in bold format.

Peterborough Val d'Or

1.59 Original 1.09 Original 1.03
0.83 D1 0.10 D1 0.48

−0.10 D2 0.08 D2 1.11
−0.15 D3 0.41 D3 −0.85

3.58a A3 1.25 D4 1.97
0.24 D1 + A3 0.55 A4 0.92
1.67 D2 + A3 0.31 D1 + A4 0.52
0.92 D3 + A3 0.71 D2 + A4 1.88
0.36 D3 + A4 0.00
0.08 D4 + A4 2.69
3.97a

0.80



Table 9
Mann–Kendall Z-values of the summer temperature series: original data, details components, approximations, and a set of combinations of the details and their
respective approximations. The most effective periodic components for trends are indicated in bold format.

Harrow Vineland Belleville Peterborough Val d'or

Original 2.87a Original 2.81a Original 2.59a Original 1.87 Original 1.98a

D1 0.66 D1 0.85 D1 −0.29 D1 0.78 D1 −0.50
D2 0.55 D2 0.45 D2 0.59 D2 −0.24 D2 0.38
D3 2.23a D3 2.53a D3 1.39 D3 1.69 D3 1.15
D4 2.25a D4 −0.38 D4 5.35a D4 −0.78 D4 4.53a

D5 3.62a D5 3.32a A4 2.35a A4 1.90 A4 1.85
A5 2.74a A5 2.74a D1 + A4 0.48 D1 + A4 1.39 D1 + A4 −0.08
D1 + A5 1.50 D1 + A5 1.53 D2 + A4 1.67 D2 + A4 0.57 D2 + A4 0.92
D2 + A5 1.92 D2 + A5 1.62 D3 + A4 2.25a D3 + A4 2.57a D3 + A4 2.09a

D3 + A5 3.97a D3 + A5 4.09a D4 + A4 5.23a D4 + A4 1.74 D4 + A4 2.88a

D4 + A5 4.70a D4 + A5 3.41a

D5 + A5 5.00a D5 + A5 4.58a

a Indicates a significant trend value at α = 5%.

387D. Nalley et al. / Atmospheric Research 132–133 (2013) 375–398
shown in Fig. 5, all detail components show harmonious
trend lines, details that have the closest MK Z-values to that
of the original data are D1 and D2. The 2-month and 4-month
periodic components are the most dominant components for
trends in the monthly temperature for stations Harrow,
Belleville, Peterborough, and Val d'Or; station Vineland's
most dominant component for trends is the 2-month peri-
odicity (Table 4).

As shown in Table 4, the trends for the monthly data in all
stations seem to be affected by high-frequency components
ranging from 2 to 4 months. Since the data are based on daily
measurements, there could be many daily (high-frequency)
variations that contribute to the trends in these higher
resolution data. Examples of these daily variations are: variation
in solar radiation (which can be associated with seasonality),
cloud cover, albedo, air moisture content, soil heat capacity, and
atmospheric wind movements that can have significant effects
on the diurnal temperature (Gough, 2008). Gough (2008) also
emphasized that in mid-latitude regions, mid-latitude cyclones
may produce temperature clusters whose effects may last for a
month. These daily variations may be very strong, and thus,
conceal the effects of low-frequency periodicities (i.e. the higher
detail components of the DWT).

Although none of the most dominant periodic compo-
nents for any of the stations are between 6 and 12 months, it
is still worthwhile to investigate their seasonally-based data,
in order to investigate whether the semi-annual and annual
Table 10
Mann–Kendall Z-values of the autumn temperature series: original data, details com
respective approximations. The most effective periodic components for trends are i

Harrow Vineland Belleville

Original 1.21 Original 1.73 Original
D1 0.15 D1 0.43 D1
D2 −0.05 D2 0.76 D2
D3 −0.07 D3 −1.50 D3
D4 0.8 A3 1.88 D4
A4 1.16 D1 + A3 2.16a A4
D1 + A4 1.81 D2 + A3 2.06a D1 + A4
D2 + A4 1.31 D3 + A3 1.76 D2 + A4
D3 + A4 2.69a D3 + A4
D4 + A4 1.86 D4 + A4

a Indicates a significant trend value at α = 5%.
seasonality may be contributing to the observed warming
trends in temperature over the study area.

5.3. Seasonally-based temperature data analysis

In this section, particular attention is given to the D1 and D2
detail components because they represent the 6-month and
12-monthperiodicities,which are assumed to be associatedwith
the seasonality factor observed in the monthly and seasonally-
based data. As shown in Table 5, the D2 component is the most
frequently observed as the most dominant periodic component
affecting trends— except for Val d'Or, all stations have D2 as one
of the most dominant periodic components. Fig. 6 illustrates the
use of the sequential MK analysis in determining the most
harmonious detail component (with the approximation added)
for the seasonally-based temperature data. As can be seen in
Table 5 and Fig. 6, the yearly fluctuations, which are represented
by the D2 component, are contributing in affecting the warming
trends in temperature over the study area.

5.4. Annual temperature data analysis

Analysis on Canada's annual mean temperature has shown
that warming trends are apparent nation-wide. Zhang et al.
(2000) reported an increase of 0.5–1.5 °C over the 20th
century. Vincent et al. (2007) found that the annual mean
temperature in Canada increased by 1.2 °C over the period
ponents, approximations, and a set of combinations of the details and their
ndicated in bold format.

Peterborough Val d'Or

1.69 Original 0.91 Original 1.38
0.03 D1 −0.03 D1 −0.03
0.01 D2 0.27 D2 −0.08
0.48 D3 −0.15 D3 0.18
0.66 D4 −0.27 A3 1.51
1.88 A4 0.85 D1 + A3 1.53
1.48 D1 + A4 1.11 D2 + A3 1.72
1.90 D2 + A4 1.01 D3 + A3 1.68
1.90 D3 + A4 0.76
2.46a D4 + A4 −0.48



Fig. 4. Station Harrow's monthly temperature series and its decomposition via the DWT using db3 wavelet, into six levels (D1–D6 and A6).
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Fig. 5. Sequential Mann–Kendall graphs of station Harrow's monthly temperature data. The progressive trend lines of the original data are represented by the
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1955–2005. A more recent assessment by Statistics Canada
(2011) also showed that over the period of 1948 to 2009 there
was an increase of 1.4 °C in the mean annual temperature in
Canada. More pertinent to our study, the Great Lakes and
St. Lawrence and the Northeastern Forest (which covers most
of Ontario and Quebec) regions experienced an increasing
trend in the mean temperature departure from 1961 to 1990
normal — the mean temperature trend increased up to 0.9 °C
over the period 1948–2009 (Statistics Canada, 2011).

In our study, we also discovered that all the MK Z-values
of the annual data are greater than +1.96, which imply that
there are significant positive trends. The annual temperature
data were decomposed into either 4 or 5 levels. For stations
Harrow and Vineland, the D3 components – which corre-
spond to the 8-year periodicity – were considered the most
dominant periodic modes that affect the temperature trends
in the annual data (Table 6). The MK Z-values of the D3
components for these stations are the closest to the MK
Z-values of their corresponding original data. Furthermore,
the sequential MK graphs of the D3 components are also
harmonious with those of the original data (see Fig. 7 for
example). For station Belleville, the 32-year periodic mode is
the most dominant one, and for stations Peterborough and
Val d'Or, it is the 16-year mode. To summarize, the increasing
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trends in the annual mean temperature during 1954–2008
over southern parts of Quebec and Ontario are affected by
periodicities between 8 and 32 years.

Since all annual temperature data in this study showed
significant trend values, each season was analyzed separately
in order to investigate the seasons that contribute to the
warming trend over the study area to a greater extent com-
pared to the other seasons.

5.5. Winter temperature data analysis

Several studies have mentioned that winter experiences
significant warming trends in the northern hemisphere and in
countries such as Canada and the USA (e.g. Jones and Briffa,
1992; Lu et al., 2005; Vincent et al., 2007; Mohsin and Gough,
2010; Bukovsky, 2012). In this study, it is also observed that
winter warming is very apparent because, apart from station
Val d'Or, all stations show significant positive trends with MK
Z-values that are relatively high. Even for Val d'Or, the winter
MK Z-value (+1.80) is also just slightly below +1.96.

The winter time series for station Harrow was decomposed
into three levels, and the remaining time series were de-
composed into five levels (Table 7). Table 7 summarizes theMK
Z-values for the winter temperature data decompositions, as
well as the periodic modes that are considered most dominant
for winter temperature trends. The winter temperature trends
for station Harrow aremostly affected by the 2-year and 8-year
periodicities (i.e. D1 and D3 detail components) (Fig. 8).
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Peterborough station's most dominant periodicity is the
16-year periodic mode (i.e. D4 component with approxima-
tion). For station Vineland, D3 and D4 (with approximation)
have MK Z-values that are closest to that of the original data
(Z = +1.97); as well, graphically, D3 and D4 have good
sequential harmonywith the original data compared to the rest
(Fig. 9). Therefore, it can be said that for station Vineland, the
8-year and 16-year periodic components are considered the
most dominant for trends in winter temperature data.
Similarly, for station Belleville, the D3 component (8-year
periodicmode) has the closestMK Z-value (Z = +1.64) to that
of the original data (Z = +2.60) with better sequential MK
compared to other detail components.

Similar to the results of the annual data analysis, the trends
in winter temperature warming are also mostly affected by
periodic events of 8 years or greater (up to 16 years). These
important periodicities may be related to the variability of the
large-scale atmospheric circulations such as the North Atlantic
Oscillation (NAO), El-Niño Southern Oscillation (ENSO), and
Pacific North American (PNA) oscillation. The NAO is a very
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important large-scale climatic phenomenon in the northern
hemisphere (Anctil and Coulibaly, 2004), especially in central
and eastern Canada (Damyanov et al., 2012) and is known to
strongly exhibit inter-annual to decadal variability with some
of its major peaks centered around 2.1, 8 and 24 years (Cook et
al., 1998; Anctil and Coulibaly, 2004). Many studies have also
found a strong relationship between the NAO and temperature
trends (e.g. for Canada: Wettstein and Mearns, 2002; Bonsal et
al., 2006; Damyanov et al., 2012). Positive phases of the NAO
cycles tend to cause above normal temperatures. The NAO has
been in its positive phase since 1970 (Anctil and Coulibaly,
2004), which could contribute to the significant positive trends
observed in this study. Hasanean (2001) also mentioned that
the NAO variability is strongest during winter, and that the
winter NAO cycle is very effective in affecting temperature
variability in mid-latitude areas. Other important large-scale
climate circulations such as the ENSO and the PNA oscillation
also affect the temperature trends (e.g. Bonsal and Shabbar,
2011). One of the causes of the variability of these large-scale
climate circulations is related to solar activities, which are
frequently manifested as the 11-year solar period (Prokoph
et al., 2012). It has been indicated that there are similar
variabilities between surface temperatures and the 11-year
solar cycle, which may contribute to the observed global
warming to some extent (e.g. Lassen, 1991; Erlykin et al., 2009;
de Jager et al., 2010; Solheim et al., 2011). The 11-year solar
period could also be applicable in our study since the periodicity
is in between 8- and 16-year modes, which are the most
commonly observed as the dominant periodicities affecting the
temperature trends.
5.6. Spring temperature data analysis

All stations showed positive MK Z-values with only
Vineland experiencing a significant trend. The number of
decomposition levels via the DWT for each spring temperature
data can be seen in Table 8. As shown in Table 8, the D3 (8-year
periodicity) component is the one considered most influential
for the spring temperature trend in stations Harrow and
Peterborough. For stations Vineland, it is the D2 (4-year
periodicity), and for stations Belleville and Val d'Or, the D1
(2-year periodicity) is the most dominant for trend.

An example of spring temperature analysis using the DWT
and sequential MK analysis is shown in Fig. 10. It is noted that
for station Harrow, the dominant 8-year periodicity is consis-
tent with the observations in the winter and annual data. Even
thoughmost of the trend values for spring temperature are not
significant, all of the trend values are positive. It is also possible
that positive and negative trends may cancel each other out at
some point over the study period. Determining the most
dominant periodic modes for trends is still deemed important
because it helps to understand the periodicities that character-
ize the trends in spring temperature.
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Fig. 9. A comparison of the sequential Mann–Kendall graphs among D3, D4, and D5 (all with approximation added) of station Vineland's winter temperature data.
The progressive trend lines of the original data are represented by the solid lines and the trend lines of the detail components are represented by the dashed lines.
The upper and lower dashed lines represent the confidence limits (α = 5%).
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The finding in our study showing that most stations did not
experience a significant temperature increase for the spring
season is somewhat inconsistent with the findings from several
studies that analyzed seasonal temperatures in mid-latitude
areas (including Canada). Zhang et al. (2000) found that spring
experienced the greatest warming in southern Canada. Vincent
et al. (2007) also emphasized a significant warming in the spring
in southern Canada during the period 1953–2005. This disagree-
ment could be caused by the differences in the geographical
locations of the stations used and the time period chosen. The
stations included in our study are only concentrated around the
most south-westerly parts of Ontario and Quebec. Even so, these
differences suggest that it is important to conduct a more
localized assessment on trends in temperature.

5.7. Summer temperature data analysis

In addition to winter, it has also been pointed out by other
Canadian studies that summer also experiences significant
warming, although sometimes to a lesser extent compared to
winter warming (e.g. Vincent et al., 2007; Mohsin and Gough,
2010). In this study, all stations are experiencing significant
positive summer temperature trends, except for Peterborough
station (Table 9). Table 9 summarizes the decomposition of the
summer temperature time series and the MK Z-values of the
different detail components, and the details plus their respective
approximations. As can be seen in Table 9, the most dominant
periodicities for trends are the D3 and D4 components,
which represent the 8-year and 16-year time periodicities,
respectively.

Fig. 11 shows an example of the sequential MK analysis on
Harrow's summer temperature series, and how the D2 and D3
components (with approximation) show themost harmonious
trend lines as compared to that of the original data. It is
interesting to note that the most dominant periodicities in
stations Harrow and Peterborough are again consistent with
the results from their annual and winter data analysis: D3 for
Harrow and D4 for Peterborough. It is again seen that in the
summer data analysis, themost influential periodic modes that
affect the trends are made up of multi-year and decadal events
(between 8 and 16 years). The agreement found in annual,
winter, and summer temperature trends could suggest that the
positive trends in the annual temperature over the study area
may be contributed mostly by the increase in winter and
summer temperatures. Several causes of winter and summer
warming trends in Canada have been investigated in past
studies. For example, Vincent et al. (2007) concluded that
winter warming in Canada is due to an increase in dewpoint
and specific humidity.More specifically, Prokoph and Patterson
(2004) and Adamowski and Prokoph (2013) associated winter
warming in urban settings in eastern Ontario with the heat
island effect. Summer warming is also associated with the
increase in air moisture, especially around the Great Lakes and
St. Lawrence areas (Vincent et al., 2007).
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Fig. 10. Sequential Mann–Kendall graphs of station Harrow's spring temperature data. The progressive trend lines of the original data are represented by the solid
line and the trend lines of the detail components (with their approximation added) are represented by the dashed lines. The upper and lower dashed lines
represent the confidence limits (α = 5%). For this station, the D3 component was considered the most dominant periodicity for trends.
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5.8. Autumn temperature data analysis

Although it is noted that all the MK Z-values for autumn
temperatures are positive, autumn is the only season in which
none of the stations explored in this study experience sig-
nificant trends (Table 10). This observation is not surprising as
it is in agreement with several studies where autumn has the
least number of stations with significant warming (see for
example: Vincent et al., 2007). It can be seen in Table 10 that
the dominant periodic components affecting the trends in
autumn temperature are slightly different from station to
station. For stations Harrow and Peterborough, it is the D2
(4-yearmode); for station Vineland, it is theD3 (8-yearmode);
and for stations Belleville and Val d'Or, it is the D1 (2-year
mode). Again, these important periodic modes may have
coincided with some of the major peaks of the NAO cycle (i.e.
2 and 8 years). Although the NAO is not the only factor that
influences the temperature variability over the study area, it
can be considered an important factor.

An example of autumn temperature data decomposition
and sequential MK analysis is given in Fig. 12. Generally, the
trends in autumn temperatures are characterized by 2- to
8-year periodicities (Table 10), which are inconsistent with the
results obtained from annual, winter, and summer data
analyses where most trends are influenced by periodicities
that are greater than eight years. This observation could suggest
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Fig. 11. Sequential Mann–Kendall graphs of station Harrow's summer temperature data. The progressive trend lines of the original data are represented by the
solid lines and the trend lines of the detail components (with their approximation added) are represented by the dashed lines. The upper and lower dashed lines
represent the confidence limits (α = 5%). For this station, D2 and D3 components were chosen to be the most dominant periodicities for trends.
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that autumn has minimal contribution towards the warming
trends observed in the annual temperature data over the study
area.

6. Conclusions and recommendations

Surface air temperature trends from a total of five stations
located in Ontario and Quebec were analyzed using the WT
and the MK trend test. The use of the DWT prior to applying
the MK test in analyzing temperature trends was found to be
very useful in this study. The original data were decomposed
into a series of their detail and approximation components
and then they were tested with the MK test. By doing so, we
were able to obtain information about the periodic mode(s)
considered important in affecting the observed trends of a
specific dataset.

The observations and findings of this study reveal that
southern parts of Ontario andQuebec are experiencingwarming
trends in temperature. The use of monthly and seasonally based
data in our study was found to be useful in determining the
influence of higher-frequency events (short-term periodic
modes) on the observed trends.Warming trends in themonthly
data are affected by high-frequency periodicities ranging from 2
to 4 months, which may have masked the effect of the longer-
time scales (lower frequency components). Annual periodicities
are found to affect the trends in seasonally-based data.

The analysis of the lower-resolution data (i.e. annual,
winter, spring, summer, and autumn) revealed that low-
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frequency periodicities were more dominant in affecting the
temperature trends. For annual data, the most important
periodic modes that affect their trends are made up of
multi-year and decadal events. Wu et al. (2007) demonstrated
the superior performance of the multi-decadal trend model in
capturing the variability and change in the annual global
surface air temperature anomaly (GSTA) for the period 1961–
1990. The rate of change in temperature using the multi-
decadal trendmodelwas higher compared to the othermodels,
but the longer time scales were found to bemore reliable when
assessing trends of GSTA. Similarly, the results of the annual
data analysis in the present study also revealed that the trends
were affected by the higher time-scale components mostly
between 8 and 16 years. These time scales explain the
variability associated with the annual surface air temperature
over southern Quebec and Ontario.

From the seasonal point of analysis, winter and summer
are experiencing the most uniform trends in temperature,
where all the sites are experiencing significant positive trends
(except for Val d'Or's winter data). The results of the winter
and summer analysis are also the most consistent with those
of the annual data, in which most of the dominant periodic
components affecting the trends are also between 8 and
16 years. Based on the findings of this study, it can be
suggested that long-term trends in the temperature data over
southern Quebec and Ontario may be due to winter and
summer warming. Some possible causes of winter and
summer warming that have been identified in previous
studies are: increases in dewpoint, air moisture, and humidity
(Vincent et al., 2007), and the influence of urban heat island
effects (Prokoph and Patterson, 2004).

The relationships between the temperature trends over
the study area and large-scale climate circulations impor-
tant for Canadian climate (e.g. the NAO, ENSO) can be
quantified in future studies using correlation analysis. The
findings of the present study have established the baseline
information about the important periodicities that affect
the temperature trends; this can then be incorporated in
the future when analyzing the linkages between tempera-
ture trends in southern Ontario and Quebec, and different
climatic phenomena.

Finally, it would also be very useful to includemore stations
(perhaps with longer data records) in future studies to obtain
more representative results for the whole provinces. However,
suitable interpolationmethods to fill themissing records found
in many stations have to be carefully determined in order to
minimize the errors associated with interpolations. In this
study, only five stations were included because they are the
only ones in our study area that have complete records (with
no missing values) for 40 years.
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