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Abstract:

In this study, short-term river flood forecasting models based on wavelet and cross-wavelet constituent components were
developed and evaluated for forecasting daily stream flows with lead times equal to 1, 3, and 7 days. These wavelet and cross-
wavelet models were compared with artificial neural network models and simple perseverance models. This was done using
data from the Skrwa Prawa River watershed in Poland. Numerical analysis was performed on daily maximum stream flow data
from the Parzen station and on meteorological data from the Plock weather station in Poland. Data from 1951 to 1979 was
used to train the models while data from 1980 to 1983 was used to test the models. The study showed that forecasting models
based on wavelet and cross-wavelet constituent components can be used with great accuracy as a stand-alone forecasting
method for 1 and 3 days lead time river flood forecasting, assuming that there are no significant trends in the amplitude for the
same Julian day year-to-year, and that there is a relatively stable phase shift between the flow and meteorological time series.
It was also shown that forecasting models based on wavelet and cross-wavelet constituent components for forecasting river
floods are not accurate for longer lead time forecasting such as 7 days, with the artificial neural network models providing
more accurate results. Copyright  2008 John Wiley & Sons, Ltd.
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INTRODUCTION

The accuracy of models used for any flood forecasting
and warning system is critical since an accurate flood
forecast with sufficient lead time can provide advanced
warning of an impending flood at an early enough stage
such that flood damage can be reduced significantly. The
importance of an accurate flow forecast, especially in
flood-prone areas, has increased significantly over the last
few years as extreme events have become more frequent
and more severe due to climate change and anthropogenic
factors.

Data-based forecasting methods are becoming increas-
ingly popular in flood forecasting applications due to their
rapid development times, minimum information require-
ments, and ease of real-time implementation. In data-
based flood forecasting, statistical models have tradition-
ally been used, such as multiple linear regression, autore-
gressive moving average, and artificial neural network
models. However, a problem with these and other linear
and non-linear methods is that they have limitations with
non-stationary data. In the last decade, wavelet analysis
has been investigated in a number of disciplines outside
of hydrology, and it has been found to be very effective
with non-stationary data. However, the use of wavelet
analysis as a stand-alone flood forecasting method has
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not been explored in great detail in the literature, and
this constituted the main purpose of this research.

PREVIOUS RESEARCH

Many applications of artificial neural networks can be
found in the hydrological literature (Kang et al., 1993;
Hsu et al., 1995; Kim and Barros, 2001; Tawfik, 2003;
Nayak et al., 2005; and Piotrkowski et al., 2006 among
others).

Wavelets, due to their attractive properties, have been
explored for use in time series analysis. Wavelet trans-
forms provide useful decompositions of original time
series, so that wavelet-transformed data improves the
ability of a forecasting model by capturing useful infor-
mation on various resolution levels. In the field of hydrol-
ogy, wavelet analysis has recently been applied to exam-
ine the rainfall–runoff relationship in a Karstic water-
shed (Labat et al., 1999), to characterize daily stream-
flow (Smith et al., 1998; Saco and Kumar, 2000) and
monthly reservoir inflow (Coulibaly et al., 2000), and
to evaluate rainfall–runoff models (Lane, 2007). Sev-
eral studies have been published that developed hybrid
wavelet–ANN models. Wang and Lee (1998) developed
a hybrid wavelet–ANN model to forecast rainfall–runoff
in China, Kim et al. (2003) developed a similar model to
forecast droughts in Mexico, and Cannas et al. (2005)
developed a hybrid model for monthly rainfall–runoff
forecasting in Italy. Each of these studies found that
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the ANNs trained with the pre-processed data had bet-
ter performance than the ANNs trained with unde-
composed time series data, although the differences
were small. Tantanee et al. (2005) developed a coupled
wavelet–autoregressive model for annual rainfall predic-
tion.

STUDY SITE AND DATA

Skrwa Prawa River watershed description

The Skrwa Prawa River is the largest right-bank inflow
to the Vistula River in the north-west region of Mazowsze
in Poland. The Skrwa Prawa River is 114 km in length
and has a watershed area of 1534 km2. Floods in the
Skawa Prawa River are almost always of snowmelt origin
and occur between January and June. As such, wavelet
flood forecasting models were developed for each day
between 1 January and 30 June.

Skrwa Prawa River data description

The daily stream flow data (maximum daily flow in
m3 s�1) was taken for the Skrwa Prawa River in Poland
from the Parzen streamflow gauge station. The daily
streamflow series record starts in 1951 and ends in 1983.
The data was divided into training and testing data sets.
The former set began in 1951 and ended in 1979 while
the testing set began in 1980 and ended in 1983. During
this period, the minimum flow was 0Ð50 m3 s�1, the
maximum flow was 191Ð00 m3 s�1, and the average flow
was 6Ð49 m3 s�1.

The daily meteorological data was taken from the
weather station in Plock, Poland, which is very close to
the Parzen streamflow gauge station. The daily record
of the meteorological series data starts in 1951 and
continues to 1983, including the maximum temperature
(°C) reached at the location for that day, the minimum
temperature (°C) reached at the location for that day,
the total amount of atmospheric precipitation (mm), and
the depth of snow (cm) on the ground. As with the
streamflow data, the meteorological data was divided into
training and testing data sets. The former set began in
1951 and ended in 1979 while the testing set began in
1980 and ended in 1983.

For both the flow (F) and meteorological (precipitation
P, minimum temperature TI, and maximum temperature
TA) data, data from the entire year for each year from
1951 to 1979 was used for the training phase, while data
from only 1 January to 30 June for each year from 1980
to 1983 was used for the testing phase. As such, data
from each day of the entire year for all training years
was used for the training of the models. This was done
in order to assess whether not artificially splitting the data
in the training phase would result in accurate forecasting
models for the 1 January to 30 June testing period. In
wavelet analysis, splitting the data artificially can result
in potentially very significant edge effect errors in terms
of the amplitude and phase discontinuity biases. This
was found to be the case in the preliminary analysis of

the Skrwa Prawa flow and meteorological data. Thus, it
was decided to assess the forecasting ability of models
developed from training data that was not split artificially,
but tested for the January to June period only. Due to
the fact that the wavelet forecasting models are based
on daily constituent components consisting of different
daily values, and because the models take into account the
daily non–stationary nature of the data, it was assumed
that not artificially splitting the data would not pose any
significant problems in terms of the resulting constituent
components.

THEORETICAL BACKGROUND

Wavelet transform

The Morlet–Grossmann definition (Grossmann and
Morlet, 1984) of the continuous wavelet transform is:

W�s, n� D 1p
s

∫ C1

�1
xn,  

Ł
(
n0 � n

s

)
dn0 �1�

whereW�s, n� is the wavelet coefficient of the time series
xn0 ,  is the analysing wavelet (which is the Morlet
wavelet in this study), s (>0) is the scale, n is the
translation, and n0 is the location (or time). Scale is the
width of the wavelet: a larger scale means that more of
the time series is included in the calculation and that finer
details are ignored. A wavelet of varying width (scale)
is translated (moved) through the entire time series. The
wavelet transformation is therefore localized in both time
(through the translation) and frequency (through the range
of scales).

There are a variety of wavelet functions that can be
used. In order to be admissible as a wavelet, this function
must have zero mean and be localized in both time
and frequency space. In this study, the complex non-
orthogonal Morlet wavelet function was used, which can
be used for signals with strong wave-like features (which
is the case with streamflow data). The Morlet wavelet is
a sinusoid with wavelength s modulated by a Gaussian
function, and has provided robust results in analyses of
time series records (Appenzeller et al., 1998; Gedalof and
Smith, 2001). The parameter l is used to modify wavelet
transform bandwidth-resolution either in favour of time
or in favour of frequency, and represents the length of
the mother wavelet or analysis window.

The shifted and scaled Morlet mother wavelet can be
defined as (Morlet et al., 1982):

 ls,n0�n� D ��1/4�sl��1/2e�i2�1
s �n�n0�e

� 1
2
� n� n0
sl

�2
�2�

Cross-wavelet transform

When comparing two different variables like temper-
ature or flow, or when analysing tele-connections, one
needs the bivariate extension of wavelet analysis. Cross-
wavelet analysis was introduced by, among others, Hud-
gins et al. (1993). In hydrology, it has been used, for
example, in rainfall–runoff cross-analysis (Labat et al.,
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1999). In this research, cross-wavelet analysis was used
to determine the phase difference �n0,s values between
the flow and meteorological variables, and to develop
cross-wavelet constituent components. The phase differ-
ence (shift) between variables x and y is defined by (Jury
et al., 2002):

�x,y,n0,s D tan�1

∫ s2

s1
Im�Wx,y,n0,s�ds

∫ s2

s1
Re�Wx,y,n0,s�ds

�3�

where Im and Re indicate the imaginary and real part,
respectively. The cross-amplitude of variables x and y is
defined by (Jury et al., 2002):

Wx,y,n0,s D Wx,n0,sWy,n0,s �4�

Equation (4) has the advantage that s is used unambigu-
ously for both variables, resulting in very precise calibra-
tions. For flow components, there is no �n0,s term.

Model performance comparison

The performance of a model can be measured by
the root mean square error (RMSE), the coefficient of
determination (R2), and the efficiency index (EI).

The root mean square error evaluates the variance of
errors independently of the sample size, and is given by:

RMSE D
√
SEE

N
�5�

where SEE is the sum of squared errors, and N is the
number of data points used. SEE is given by:

SEE D
N∑
iD1

�yi � Oyi�2 �6�

where yi is the observed flow, and Oyi is the computed
flow from the model. The smaller the RMSE, the better
the performance of the model.

The coefficient of determination (R2) measures the
degree of correlation among the observed and predicted
values. It is a measure of the strength of the model
in developing a relationship among input and output
variables. The higher the R2 value (with 1 being the
maximum value), the better is the performance of the
model. R2 is given by:

R2 D

N∑
iD1

� Oyi � yi�
2

N∑
iD1

�yi � yi�
2

�7�

and

yi D 1

N

N∑
iD1

yi �8�

where yi is the mean value taken over N, with the other
variables having already been defined.

As a measure of accuracy, one can use the efficiency
index (EI), which measures the agreement between
simulated and actual values of a given parameter as a
proportion of the total range of that parameter in the data.
The value of the EI ranges from a maximum value of one
to a minimum of minus infinity. The higher the value of
the EI, the better is the performance of the model. It is
given by (Nash and Sutcliffe, 1970):

EI D 1 � SE

ST
�9�

where SE is the sum square of errors given by:

SE D
N∑
iD1

�yi � Oyi�2 �10�

and ST is the total variation given by:

ST D
N∑
iD1

�yi � y�2 �11�

MODEL DEVELOPMENT

Artificial neural network analysis

Back propagation feedforward ANNs with the ‘gener-
alized delta rule’ (BP–MLP) as the training algorithm,
were used to develop all the ANN models. The Tiberius
2Ð0Ð0 neural network modeling software package was
used for the ANN analysis. To develop an ANN model,
the primary objective is to arrive at the optimum archi-
tecture of the ANN that captures the relationship between
the input and output variables. In this study, ANN net-
works consisting of an input layer with 1 to 8 input nodes,
one single hidden layer composed of 4 to 7 nodes (1 to 8
were tested), and one output layer consisting of one node
denoting the forecasted stream flow were developed. The
optimum learning coefficients were found to be between
0Ð03 and 0Ð05 for the ANN models.

The inputs of each model consisted of all or some
of the following variables: maximum temperature of the
current day Tmax, minimum temperature of the current
day Tmin, daily total rainfall for the current day Rt, daily
total snowfall for the current day St, daily snow on the
ground depth for the current day SGt, daily snow on the
ground depth for the previous day SGt�1, the current daily
stream flow Ft, and the previous daily stream flow Ft�1.
Twenty models were developed for each lead time. Only
the best model for each lead time is provided in Tables X
to XIII. All of the ANN models were first trained using
the data in the training set (1951 to 1979) to obtain the
optimized set of connection strengths, and then tested
using the testing data set (1980 to 1983), and compared
using the three statistical measures of goodness of fit.

The best model for 1 day lead time, ANN (1)-2, is
a function of daily stream flow for the previous day,
daily snow depth on the ground for the current day, daily
snow depth on the ground for the previous day, daily
total rainfall for the current day, daily total snowfall
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for the current day, and maximum temperature for the
current day. This model had a 6-6-1 architecture and an
optimized learning coefficient of 0Ð05.

The best model for 3 days lead time, ANN (3)-5,
is a function of daily stream flow for the current day,
daily stream flow for the previous day, daily snow depth
on the ground for the current day, daily snow depth
on the ground for the previous day, daily total rainfall
for the current day, daily total snowfall for the current
day, and maximum temperature for the current day. This
model had a 7-6-1 architecture and an optimized learning
coefficient of 0Ð04.

The best model for 7 days lead time, ANN (7)-3,
is a function of daily stream flow for the current day,
daily stream flow for the previous day, daily snow depth
on the ground for the current day, daily snow depth
on the ground for the previous day, daily total rainfall
for the current day, daily total snowfall for the current
day, and maximum temperature for the current day. This
model had a 7-6-1 architecture and an optimized learning
coefficient of 0Ð04.

Proposed stand-alone wavelet flood forecasting method

The proposed stand-alone flood forecasting method
based on wavelet and cross–wavelet constituent compo-
nents is composed of the following steps:

1. Data editing
In order to reduce the number of variables in wavelet
analysis, the variable ‘precipitation’ (P) was calculated
using:

P D Rain�t�C Snow�t�C [SnowonGround�t � 1�

� SnowonGround�t�] �12�

with P in mm.

2. Overview wavelet analysis
Overview wavelet analysis was conducted using the
CWTA.F software in UNIX. In the overview wavelet
analysis, the scales used ranged from 2 to 21 180 days
and the translation (or shifting interval) used was
10Ð5 days. Overview wavelet analysis was done on the
flow F, precipitation P, minimum temperature TI, and
maximum temperature TA variables. The waveband sub-
titles (i.e. the designation for the individual wavebands
found to be the most significant in the overview wavelet
analysis, and subsequently confirmed through histograms
and spectral analysis) for the results of the wavelet anal-
ysis are shown in Table I.

Table I. Waveband subtitles for wavelet analysis

Waveband
(days)

9–13 22–28 44–52 90–130 330–400

Waveband subtitle 11 25 48 100 365

Table II. Waveband subtitle for cross–wavelet analysis

Waveband (days) 330–400

Waveband subtitle 365x

3. Cross-wavelet analysis
Cross-wavelet analysis was performed with a software
program entitled XCWT.F (Prokoph, 2006), which was
very recently created as a companion software program
for the CWTA.F software. Cross-wavelet analysis (XWA)
was used to check for potential coherency between the
cycles in the flow and meteorological data, to obtain
actual phase differences between flow and meteorological
cycles, and to construct cross-wavelet constituent signals.
The waveband subtitles for the cross-wavelet analysis are
shown in Table II.

4. Calculation of histograms
Histograms were created from the wavelength columns
of the wavelet analysis results from the decomposition
of flow, precipitation, and maximum and minimum
temperature, in order to determine the frequency peaks,
and to determine whether the same signals occur in the
meteorological data as in the flow data so that the former
can be used to effectively forecast the latter. In this
manner, it was determined which wavelengths (periods)
occurred most frequently and should therefore possibly
be used in the construction of the forecasting models.
The choice of signals was confirmed via power spectra.

5. Spectral analysis
Spectral analysis was used to confirm the results of
the overview wavelet analysis (major wavebands) and
histograms (major wavebands) in terms of the choice of
major wavebands (for example 330 to 400 days) to be
used in the reconstruction and forecasting models.

6. Narrowband wavelet analysis
Narrowband wavelet decomposition analysis was used
to decompose the selected wavebands. The software
program detects and extracts the strongest wavelength
within a specific waveband at time t, along with the
corresponding phase at time t, and the amplitude at
time t.

This step was done on the selected wavebands on
all variables (i.e. F, P, TI, and TA). Various scales
were used for narrowband wavelet analysis. Scales of
2 to 200 days were used for TI and TA, while for
the rest of the variables the wavebands in the mod-
els/components for extraction were used for all variables
(e.g. 330–400 days for ¾365 day cycles, 90–130 days
for ¾100 day cycles, 44–52 days for ¾48 day cycles,
22–28 days for ¾25 day cycles, and 9–13 days for
¾11 day cycles). The translation used in the narrowband
wavelet analysis was 1 day.

Copyright  2008 John Wiley & Sons, Ltd. Hydrol. Process. 22, 4877–4891 (2008)
DOI: 10.1002/hyp



RIVER FLOW FORECASTING USING WAVELET AND CROSS-WAVELET TRANSFORM MODELS 4881

7. Calculation of edge effects
The ‘Morlet wavelet edge effect’ is characterized by
decreased wavelet coefficients at the beginning and end of
the data sets (in the case of this research at the beginning
of 1951 and end of 1979) due to the window width of
the Morlet wavelet used. Due to the fact that the longest
wavelength used (¾365 days) is only about 3% of the
entire record (¾12 053 days) only the very beginning and
end of the data sets are influenced by edge effects. The
shorter components (such as 9–13, 22–28, 44–52, and
90–130 days) are even less affected. As such, although
the edge effect is large for long wavelengths (defined as
over one half the entire data record) in other applications,
it is negligible in this application since all cycles are
comparably small (much smaller than half the entire data
record length). However, an edge effect correction factor
was still calculated and applied in the reconstruction
of the constituent signals for the sake of completeness
since minor edge effects do occur in the first and last
years of training (ie 1951 and 1979). The edge effect
correction for the Morlet wavelet edge effect involved
dividing the continuous wavelet transform outputs of
amplitude of a waveband x/amplitude of a cosine wave
with amplitude 1. This is shown by:

Yn0,s D 1/Wcosn0,s �13�

where n0 is time, s is the waveband (e.g. 40–45 days),
Yn0,s is the Morlet wavelet edge effect correction, and
Wcosn0,s is the amplitude of a cosine wave with ampli-
tude 1.

8. Calculation of calibration constants
A calibration constant was developed in this study
which calibrates (or links) meteorological components to
flow components. The calibration constant is the ratio
in amplitude between each specific wavelength, and it

permits forecasting of flow data by meteorological data
by calibrating the meteorological components to the flow
components of the same wavelength (e.g. temperature
cycle to river flow cycle).

Calculation of calibration constants was done for the
selected wavebands for P, TI, and TA. Each single day
(i.e. 10 593 days) of training data was used to calculate
the calibration constants. The calibration constant Zn0,s
for each meteorological variable for each component was
calculated by dividing the amplitude of the meteorolog-
ical cycle from the corresponding amplitude of the flow
cycle, and is shown by:

Zn0,s D [Wn0,s�flowdata�]/[Wn0,s�meteorologicaldata�] �14�

9. Reconstruction of constitutive series
From the above steps, the following was derived:
(1) amplitude (i.e. wavelet coefficient) for each Julian
day, for each constituent component, for each variable
(flow and meteorological); (2) wavelength for each Julian
day, for each constitutive component, for each variable
(flow and meteorological); (3) phase difference and phase
for each constitutive component of each variable for each
Julian day; (4) edge effect correction for each variable
for each Julian day; and (5) calibration constant for each
constitutive component of each meteorological variable.
The average values of the above are shown in Tables III
to VIII.

All of the above information was used to reconstruct
two types of constitutive components: wavelet constitu-
tive components and cross wavelet constitutive compo-
nents.

The wavelet constitutive components were recon-
structed through the inverse Fourier transform multiplied
by a calibration constant and an edge effect correction,
along with a phase difference. For reconstruction, the

Table III. Average amplitude for each wavelet component

Waveband Average amplitude (m3 s�1)

9–13 22–28 44–52 90–130 330–400 330–400x

Component 11 25 48 100 365 365x
Flow (F) 1Ð0215 1Ð5194 2Ð0955 2Ð8105 3Ð7699 3Ð3948
Tmin (TI ) 1Ð8259 1Ð7211 1Ð6741 1Ð3451 8Ð5925 7Ð9344
Tmax (TA) 2Ð0387 1Ð9837 1Ð8228 1Ð4322 11Ð618 10Ð767
Precipitation (P) 1Ð3954 0Ð9504 0Ð8066 0Ð6391 0Ð6631 0Ð5951

Table IV. Average wavelength for each wavelet component

Waveband Average Wavelength (days)

9–13 22–28 44–52 90–130 330–400 330–400x

Component 11 25 48 100 365 365x
Flow (F) 11Ð57 24Ð239 49Ð979 111Ð04 362Ð9 365Ð25
Tmin (TI ) 10Ð888 23Ð887 46Ð952 108Ð25 364Ð88 365Ð25
Tmax (TA) 10Ð994 23Ð968 47Ð26 106Ð08 364Ð67 365Ð25
Precipitation (P) 10Ð792 23Ð79 45Ð898 101Ð85 360Ð74 365Ð25
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Table V. Phase difference for flow F�t� at t D 1: 1 January 1951

Waveband Phase difference for t D 1

9–13 22–28 44–52 90–130 330–400 330–400x

Component 11 25 48 100 365 365x
Tmin (TI ) 0 C0Ð3 �0Ð3 C0Ð7 �2Ð2 C2Ð2
Tmax (TA) 0 C0Ð3 �1Ð7 �2Ð5 �2Ð4 C2Ð4
Precipitation (P) C0Ð8 C0Ð8 C0Ð8 C0Ð1 �2Ð45 C2Ð45

Table VI. Phase for each wavelet component at t D 1: 1 January 1951

Waveband Phase for t D 1

9–13 22–28 44–52 90–130 330–400 330–400x

Component 11 25 48 100 365 365x
Flow (F) �0Ð819 1Ð3252 2Ð8683 �2Ð211 1Ð305 1Ð0939
Tmin (TI) 2Ð6342 �0Ð93 �1Ð22 �1Ð601 �2Ð84 �2Ð758
Tmax (TA) �2Ð778 �0Ð307 �1Ð547 �1Ð625 �2Ð914 �2Ð833
Precipitation (P) 1Ð6577 �1Ð687 1Ð4621 �2Ð08 �2Ð392 �2Ð904

Table VII. Average edge effect correction for each waveband

Edge effect correction for
long meteorological cycles

365 days 1Ð087
100 days 1Ð0707
48 days 1Ð0675
25 days 1Ð0658
11 days 1Ð0651

Table VIII. Average calibration constants

Unit (days) Average attenuation/Calibration constant

Tmin Tmax Precipitation

m3 s�1/C m3 s�1/C m3 s�1/mm

365days 0Ð427854 0Ð315280 5Ð704420
100days 2Ð089395 1Ð962316 4Ð397705
48 day 1Ð251725 1Ð149576 2Ð597769
25 days 0Ð882832 0Ð765953 1Ð598703
11 days 0Ð559468 0Ð501059 0Ð732061

wavelet coefficients (ie amplitude) were assumed to be
equal to the Fourier amplitudes, and the Morlet wavelet
scales were assumed to be equal to the Fourier period.
An assumption that was made was that there is a linear
relationship between changes in amplitude of meteoro-
logical signals (e.g. temperature, precipitation cycles) and
streamflow cycles, with particular calibration constants
and differences in phase. Including the calibration con-
stant Zn0,s, the edge effect correction Yn0,s, the phase
difference �n0,s between a meteorological component
and its corresponding flow component, and noting that s
defines the individual waveband (e.g. 40–45 days), while
sn0 defines the strongest wavelength inside the waveband
s at location (or time) n0, each wavelet constitutive com-
ponent was reconstructed for each Julian day by:

xn0,s D Zn0,sYn0,sWn0,s�cos 2�
n0

sn0

C �n0,s C�n0,s� �15�

The parameters in the above equations vary through
the year for each day, and as such explicitly take
into account the daily non-stationarities in the data. In
other words, there are separate constitutive series (and
therefore forecasting models) for each specific day from
1 January to 30 June (the testing period the models were
developed for). This is how the models should be used
in an operational context. Only average values of the
parameters are presented in the tables for the sake of
succinctness.

The cross-wavelet components (designated by x in
the series such as TI 365x) were calculated from the
cross–wavelet analysis of each variable with a 365-
day cosine wave to avoid phase-averaging between ��
and C�, which sometimes resulted in short-time jumps
in the reconstructed constituent component. The cross-
wavelet transform of each variable (for example F) and
a continuous cosine wave with the mean wavelength
of the band (¾365 days) and fixed amplitude of 1,
was performed. From (4) and (15), the cross-wavelet
constituent components can be described as:

xyn0,s D Yn,0s,x,yWn0,s,x,y�cos2 2�n0/sn0

C�n0,s,x,y� �16�

By using a cosine wave with amplitude D 1 as variable
y and �n0,s,y continuously changing in time, the only
variables are Wn0,s,x and �n0,s,x and as such, Wn0,s,x,y and
�n0,s,x,y are solely related to the non–cosine variable.
Another advantage is that � may vary little, because it
is related to the continuous phase changes in the cosine
wave. As such, unwanted numerical artifacts in the phase
transition from � to �� may be replaced by a fixed �
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Table IX. Average values for cross-wavelet constituent components

Cosine cycle vs 365 days F TA TI P

Mean wavelength 363Ð5718 364Ð1383 364Ð0621 364Ð3678
Phase shift 1Ð11809 �2Ð86943 �2Ð76666 �1Ð9322
Cross amplitude 4Ð039346 12Ð62865 9Ð301946 0Ð693421

and a variable time n0. It was found that this replacement
worked well for the annual (i.e. 365 day) components
in the Skrwa Prawa River case but not for components
of shorter wavelength with more variable phase values.
The average values for the cross wavelet constituent
components are shown in Table IX.

10. Calculation of averaged reconstructed constituent
components
The reconstructed daily constituent components (i.e.
Equations (15) and (16)) were averaged for the same
Julian day year-to-year for each day of the training
period for the 1 January to 30 June period, and not
the phase, amplitude, and wavelengths for each model.
These averaged daily reconstructed components were
then used in the construction of the forecasting models.
This averaging assumed that there was no significant
trend in the amplitudes, and that a relatively stable phase
shift (i.e. phase difference) existed between F and the
meteorological signals for the same Julian day year-to-
year. No significant trends in the amplitudes was found,
and the cross-wavelet scalogram and phase difference
spectrum (shown in Figure 2) indicated a relatively stable
phase shift between F and the meteorological signals.

11. Construction of forecasting models
The best constructed wavelet forecasting models for 1,
3, and 7 days lead time are shown in Tables X, XI,
and XII, respectively. An assumption that was made in
the construction of the wavelet based models was that,
in an operational context, one would have access to data
for the flow F�t� up to and including the F�t� day. The
wavelet-based forecasting models for the Skrwa Prawa
River were constructed from:

(a) the flow data of the previous day (or 3 days ago or
7 days ago) plus

(b) the difference between the current day cyclical output
from a 365 day cross-wavelet constitutive series-y
and the previous day cyclical output from the same
365 day cross-wavelet constitutive series-y (or 3 days
ago or 7 days ago) and, in some cases, plus

(c) the difference between the current day cyclical output
from a regular constitutive series-y and the previous
day cyclical output from the same constitutive series-
y (or 3 days ago or 7 days ago), or more cycles of
this type.

As shown in Tables I andII, the waveband subtitles
365x, 365, 100, 48, 25, and 11 for F, P, TA, and TI

used in the forecasting models are simply ‘designations’
since the actual wavelength values (in addition to all other
values) vary on a day to day basis. On a day–to–day
basis, the ¾365 day ‘wavelengths’ can vary from 330
to 400 days, the ¾100 day ‘wavelengths’ from 90 to
130 days, the ¾48 day ‘wavelengths’ from 44 to 52 days,
the ¾25 day ‘wavelengths’ from 22 to 28 days, and
the ¾11 day ‘wavelengths’ from 9 to 13 days. As an
example, TA100 is the designation within which can be
found, for a specific day, the most significant wavelength
within the 90 to 130 day waveband (designated as
100) for the maximum temperature (designated as TA)
for that specific day. As mentioned earlier, the most
significant wavelength for each day within each of the
five wavebands for each of the variables F, P, TA, and
TI was found through wavelet analysis and confirmed
through the use of histograms and spectral analysis.

The high number of components allows for a very large
number of possible combinations for models. In order to
obtain the best possible overall wavelet model, stepwise
correlation was used for optimization. The best wavelet
model was constructed by assessing the correlation (R2)
of each component with the training F�t�, and taking the
best correlating components as the basis and adding the
other components successively to the model depending
on whether the forecast improved or not.

The best overall wavelet model for 1 day lead time,
WT (1)—M23, is shown in Table X and can be written
as

F�t � 1�C [P365x�t�� P365x�t � 1�]

C [TA100�t�� TA100�t � 1�] C [P48�t�� P48�t � 1�]

C [P25�t�� P25�t � 1�] C [TI11�t�� TI11�t � 1�]

This model was developed based on the flow from
the day before, the difference between the current day
output from the 365 day cross-wavelet constitutive cycle
of the precipitation and the previous day output of the
same cross-wavelet constitutive cycle, and the difference
between the current day output from each constitutive
cycle of a variety of components, and the previous
day output from each constitutive cycle of a variety of
components.

The best overall wavelet model for 3 days lead time,
WT (3)—M23, is shown in Table XI and can be written
as

F�t � 3�C [P365x�t�� P365x�t � 3�]

C [TA100�t�� TA100�t � 3�] C [P48�t�� P48�t � 3�]

C [P25�t�� P25�t � 3�] C [TI11�t�� TI11�t � 3�]
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Table X. Components for best 1 day lead time WT model and ANN model

Model Constituent components for best 1 day lead time forecasting model

WT (1)–M23 F�t � 1�C P365x�t�� P365x�t � 1�C TA100�t�� TA100�t� 1�C P48�t�� P48�t� 1�C P25�t��
P25�t� 1�C TI11�t�� TI11�t � 1�

ANN (1)–2 Tmax, Rt, St, SGt, SGt-1, Ft-1 (learning coefficient 0Ð05)

Table XI. Components for best 3 days lead time WT model and ANN model

Model Constituent components for best 3 days lead time forecasting model

WT (3)–M23 F�t � 3�C P365x�t�� P365x�t � 3�C TA100�t�� TA100�t� 3�C P48�t�� P48�t� 3�C P25�t��
P25�t� 3�C TI11�t�� TI11�t � 3�

ANN (3)–5 Tmax, Rt, St, SGt, SGt-1, Ft, Ft-1 (learning coefficient 0Ð04)

Table XII. Components for best 7 days lead time WT model and ANN model

Model Constituent components for best 7 days lead time forecasting model

WT (7)–M23 F�t � 7�C P365x�t�� P365x�t � 7�C TA100�t�� TA100�t� 7�C P48�t�� P48�t� 7�C P25�t��
P25�t� 7�C TI11�t�� TI11�t � 7�

ANN (7)–3 Tmax, Rt, St, SGt, SGt-1, Ft, Ft-1 (learning coefficient 0Ð04)

The best overall wavelet model for 7 days lead time,
WT (7)—M23, is shown in Table XII and can be written
as

F�t � 7�C [P365x�t�� P365x�t � 7�]

C [TA100�t�� TA100�t � 7�] C [P48�t�� P48�t � 7�]

C [P25�t�� P25�t � 7�] C [TI11�t�� TI11�t � 7�]

In an operational context, the above models would
be used with the component parameter values from the
specific day to be forecasted and component parameter
values from the current day needed to forecast the flow
for that specific day. The flow value for the current day
would also be used. For example, in the case of 7 days
lead time forecasting, model WT (7)—M23 would be
used as follows in an operational context

F�t C 7� D F�t�C [P365x�t C 7�� P365x�t�]

C [TA100�t C 7�� TA100�t�] C [P48�t C 7�� P48�t�]

C [P25�t C 7�� P25�t�] C [TI11�t C 7�� TI11�t�]

where the only ‘external’ value needed is the F�t� value,
which would be obtained from the flow station for that
current day, and with all other values having already been
calculated for that specific day in the development of the
forecasting models.
12. Testing of constructed forecasting models

The wavelet (WT) models were tested on data from
1980 to 1983 by comparing the original F(t) or observed
flow with the forecasted output of the models. Models
were compared using the coefficient of determination
(R2), the efficiency index (EI), and the root mean square
error (RMSE). A simple perseverance model for flow was
also tested for comparative purposes.

RESULTS

Overview wavelet analysis

All wavebands were found using the continuous
wavelet transform and confirmed with the use of his-
tograms and power spectra. In total, five major wave-
bands were identified: a dominant and stationary 365 day
cycle, and weaker, non–stationary cycles of approxi-
mately 11, 25, 48, and 100 day cycles. These are shown
in Table I. No significant multiyear signals were found.

Overview wavelet scalograms and phase spectrum
figures

From the overview wavelet scalogram of the flow data
in Figure 1, one can visually see the stationarity of the
365 day cycle (a horizontal line indicates stationarity).
However, it is more difficult to visually see the <365 day
wavebands. The reason for this is that the colour scale
is linear between 0 and the maximum, and because the
maximum waveband (¾365 days) is strong, it suppressed
the other wavelengths.

Cross–wavelet analysis

Cross–wavelet analysis was first used to assess the
correlation in phase (i.e. whether there is a relatively
stable phase shift) between the meteorological and flow
data series for the same Julian day year-to-year since
otherwise, averaging in the forecasting/modeling stage
would cause problems with the phase information. It was
found that the correlation in phase was relatively stable.
This indicated that the meteorological parameters could
be used to forecast flow. As such, cross-wavelet analysis
was used to determine the specific phase difference
values between F and meteorological variables. The
phase differences at t D 1 can be found in Table V.
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Figure 1. Overview of wavelet analysis of Skrwa-Prawa traning flow data

In order to overcome a �� to C� averaging prob-
lem that occurred occasionally with the Skrwa Prawa
data, cross-wavelet constituent components were devel-
oped. Based on exploratory analysis, it was found that
developing cross-wavelet constituent components worked
well for the annual (i.e. 365 day) components, but not
for the shorter components that changed to a more
significant degree with time. Thus, only cross-wavelet
constituent 365 day components of all variables were
used in the development of the forecasting models.
Table II shows the waveband subtitle for the cross-
wavelet constituent component. Table IX shows the aver-
age cross–wavelet constituent component analysis results
for the 365 day cycles of each variable in terms of mean
wavelength, phase shift and edge effect corrected cross-
amplitude.

Cross-wavelet scalogram and phase difference spectrum
figures

From the cross-wavelet scalograms (the top figures) of
the logarithmically spaced flow data with the precipita-
tion, minimum temperature, and maximum temperature
data shown in Figure 2, one can visually see the dom-
inance of the relatively stationary 365 day cycle (the
horizontal band). A horizontal line indicates stationar-
ity.

An observation that can be made from the cross-
wavelet analysis figures is that the TI and TA 365 day
cycles stand out much stronger than the P365 cycle,
yet the P365 cycle turned out to be more useful than

the TI and TA 365 day cycles in the forecasting mod-
els. This demonstrates that it is not the strength (ampli-
tude/magnitude) by itself that is important, but the con-
sistency of the link between F�t� and the variable which
is decisive.

Histograms

The histograms of the frequency of signal occur-
rences from the wavelet analysis of the flow data
and the meteorological data indicated that strong peaks
occur at approximately 330–400 days, 90–130 days,
44–52 days, 22–28 days, and 9–13 days for the flow
and meteorological data. The histogram for flow data is
shown in Figure 3.

Power spectra

The results of the power spectra confirmed the results
of the overview wavelet analysis and histograms in
terms of the choice of the five major wavebands (i.e.
approximately 11, 25, 48, 100, and 365 day cycles). The
power spectra for flow data is shown in Figure 4.

Results of best wavelet and ANN model for 1 day lead
time forecasting

The calculated performance statistics for the best
wavelet and ANN model are shown in Table XIII for
the training and testing stages. The performance statistics
for the perseverance ‘model’ PM (1) is also shown in
Table XIII. It was found that the best wavelet model for
1 day lead time forecasting is WT (1)—M23. Model WT
(1)—M23 had the lowest testing RMSE, and the highest
testing R2 and EI values:
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Figure 2. Cross-wavelet analysis of Skrwa-Prawa River training data

Table XIII. Performance statistics for best WT model, persever-
ance model, and ANN model for 1 day lead time

Wavelet
Model

RMSE
Training

RMSE
Testing

R2

Training
R2

Testing
EI

Testing

WT(1)–M23 2Ð2653 2Ð4325 0Ð9453 0Ð9405 0Ð9366
PM (1) 3Ð0894 0Ð9151 0Ð9132
ANN(1)–2 2Ð4583 2Ð6271 0Ð9235 0Ð9205 0Ð9211

ž The root mean square error was 2Ð2653 and 2Ð4325
for training and testing respectively.

ž The coefficient of determination was 0Ð9453 and
0Ð9405 for training and testing respectively.

ž The efficiency index was 0Ð9366 for testing.

This model can be written as

WT �1�� M23 D F�t � 1�C [P365x�t�

� P365x�t � 1�] C [TA100�t�� TA100�t � 1�]

C [P48�t�� P48�t � 1�] C [P25�t�� P25�t � 1�]

C [TI11�t�� TI11�t � 1�]

In terms of the testing RMSE, WT (1)—M23 was 27%
more accurate than the 1 day perseverance model PM (1),
and 0Ð8% more accurate than the best 1 day ANN model
ANN (1)-2. In terms of the testing R2, WT (1)—M23
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Figure 3. Histogram of signal occurrences in Skrwa-Prawa River training flow data

Figure 4. Power spectra of Skrwa Prawa River flow data

was 2Ð7% more accurate than the 1 day perseverance
model, and 2Ð1% more accurate than ANN (1)-2. And in
terms of the testing EI, WT (1)—M23 was 2Ð5% more
accurate than the 1 day perseverance model, and 1Ð7%
more accurate than ANN (1)-2.

Figure 5 compares the observed and forecasted flow
from model WT (1)—M23. It can be seen that low,
medium, and high flows were very accurately forecasted.

Results of best wavelet and ANN model for 3 days lead
time forecasting

The calculated performance statistics for the best
wavelet and ANN model are shown in Table XIV for the
training and testing stages. The best wavelet model for
3 days lead time forecasting was WT (3)—M23. Model
WT (3)—M23 had the lowest testing RMSE, the highest
testing EI value, and the highest testing R2 value:

ž The root mean square error was 4Ð9563 and 5Ð6348 for
training and testing respectively.

ž The coefficient of determination was 0Ð7654 and 0Ð6598
for training and testing respectively.

Table XIV. Performance statistics for best WT model, persever-
ance model, and ANN model for 3 days lead time

Wavelet
Model

RMSE
Training

RMSE
Testing

R2

Training
R2

Testing
EI

Testing

WT(3)–M23 4Ð9563 5Ð6348 0Ð7654 0Ð6598 0Ð6218
PM (3) 7Ð2689 0Ð5791 �0Ð5211
ANN(3)–5 5Ð2818 5Ð9618 0Ð7423 0Ð6428 0Ð6088

ž The efficiency index was 0Ð6218 for testing.

This model can be written as

WT �3�� M23 D F�t � 3�C [P365x�t�

� P365x�t � 3�] C [TA100�t�� TA100�t � 3�]

C [P48�t�� P48�t � 3�] C [P25�t�� P25�t � 3�]

C [TI11�t�� TI11�t � 3�]

In terms of the testing RMSE, WT (3)—M23 was 29%
more accurate than the 3 day perseverance model PM (3),
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Figure 5. Best WT model for 1 day lead time (WT(1)–M23)

Figure 6. Best WT model for 3 days lead time(WT(3)–M23)

and 0Ð58% more accurate than the best 3 day ANN model
ANN (3)-5. In terms of the testing R2, WT (3)—M23
was 12Ð2% more accurate than the 3 day perseverance
model, and 2Ð51% more accurate than ANN (3)-5. And
in terms of the testing EI, WT (3)—M23 was 16Ð2%
more accurate than the 3 day perseverance model, and
2Ð1% more accurate than ANN (3)-5.

Figure 6 compares the observed and forecasted flow
using model WT (3)—M23. The forecasted stream flow
does not match the observed flow as well as in case of the
1 day lead time forecast. For the WT (3)—M23 model,
a slight shift to the right in the forecasted flow can be
observed.

Results of best wavelet model for 7 days lead time
forecasting

The calculated performance statistics for the best
wavelet and ANN model are shown in Table XV for the
training and testing stages. The best wavelet model for
7 days lead time forecasting was WT (7)—M23. Model
WT (7)—M23 had the lowest testing RMSE, the highest
testing EI, and the highest testing R2:

ž The root mean square error was 6Ð6869 and 8Ð7671 for
training and testing respectively.

ž The coefficient of determination was 0Ð5721 and 0Ð2552
for training and testing respectively.

ž The efficiency index was �0Ð0398 for testing.

Table XV. Performance statistics for best WT model, persever-
ance model, and ANN model for 7 days lead time

Wavelet
Model

RMSE
Training

RMSE
Testing

R2

Training
R2

Testing
EI

Testing

WT(7)–M23 6Ð6869 8Ð7671 0Ð5729 0Ð2552 �0Ð0398
PM (7) 11Ð5550 0Ð1608 �0Ð2036
ANN(7)–3 5Ð1179 7Ð4297 0Ð6913 0Ð3190 �0Ð0283

This model can be written as

WT �7�� M23 D F�t � 7�C [P365x�t�

� P365x�t � 7�] C [TA100�t�� TA100�t � 7�]

C [P48�t�� P48�t � 7�] C [P25�t�� P25�t � 7�]

C [TI11�t�� TI11�t � 7�]

In terms of the testing RMSE, WT (7)—M23 was
31Ð8% more accurate than the 7 day perseverance model
PM (7), but 18% less accurate than the best 7 day
ANN model ANN (7)-3. In terms of the testing R2,
WT (7)—M23 was 37% more accurate than the 7 day
perseverance model, but 33Ð2% less accurate than ANN
(7) 3. And in terms of the testing EI, WT (7)—M23 was
81% more accurate than the 7 day perseverance model,
but 41% less accurate than ANN (7)-3.

Figure 7 compares the observed and forecasted flow
using model WT (7)—M23. It can be seen that in the
case of a 7 day lead time forecast, the forecasted stream
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Figure 7. Best WT model for 7 days lead time (WT(7)–M23)

flow does not match the observed flow very well. For the
WT (7)—M23 model, a significant shift to the right in
the forecasted flow can be observed.

DISCUSSION AND CONCLUSION

Best wavelet model

The best wavelet model for 1, 3, and 7 days lead–time
forecasting was ‘model M23’ which can be described, for
example in the case of 3 days lead time forecasting, by

F�t � 3�C [P365x�t�� P365x�t � 3�] C [TA100�t�

� TA100�t � 3�] C [P48�t�� P48�t � 3�]

C [P25�t�� P25�t � 3�] C [TI11�t�� TI11�t � 3�]

This is a ‘mixed’ variable and signal model. It can
be seen that in the case of the Skrwa Prawa River,
the changes in cyclical outputs of the variables P, TI,
and TA with varying wavelengths (i.e. 365, 100, 48,
25, and 11 days) provided the most accurate forecasting
model. More specifically, it was found that the ¾365 day
precipitation cycles (P365x), the ¾100 day maximum
temperature cycles (TA100), the ¾48 day precipitation
cycles (P48), the ¾25 day precipitation cycles (P25),
and the ¾11 day minimum temperature cycles (TI 11),
provided the most accurate forecasting models for 1, 3,
and 7 days flood forecasting. Aside from this, any further
physical insight regarding the composition of the wavelet
models is difficult to provide.

Low accuracy of 7 days lead–time forecasting
with wavelet model

The wavelet model for 7 days lead time forecasting
was not accurate, with the ANN model providing more
accurate results. It was difficult to find any ‘technical’
reason as to why the 7 days lead time wavelet forecasting
model was not very accurate. Most likely, the averaging
that is necessary for the wavelet forecasting models
affects the longer forecasts to a greater degree.

Artificially splitting the training data

To obtain the best possible wavelet forecasting mod-
els, one must carefully consider the following two issues:

(a) split the data artificially so that the constituent com-
ponents only deal with the period of interest for forecast-
ing, but have potentially significant edge effect problems
and possibly phase problems; or (b) not split the data
artificially so that the constituent components deal with
the entire year and as such not have potentially signifi-
cant edge effect or phase problems, but have unwanted
remains of influences of cycles from the period of the
year not being forecasted.

It is very difficult to decide a priori (before analy-
sis/modeling starts) if the artificial splitting of the data
would have a large or small effect on particular wave-
bands and variables. To determine whether it is advisable
to artificially split the data, it would be necessary to anal-
yse the cut data in great detail. For example, if the causes
of floods are completely different at certain points of
the year (which is often the case), artificially splitting
the data for those specific periods should be considered.
Wavelet-based forecasting models could then be devel-
oped specifically for those periods.

Based on the results of this study, the ¾365 day
cycle (or whatever ‘annual’ cycle results from the split
data) would improve if the data was split, but the other
cycles would deteriorate. For the Skrwa Prawa River,
hydrologists have observed that it is difficult to decide
when the ‘winter-influence’ on floods begin, since it can
be seen from the data that some ‘winter-floods’ occur as
early as the end of December. It is difficult to ascertain
whether it would be advisable to artificially cut the data
in the future for other applications (including the Skrwa
Prawa River) to obtain more accurate forecasting models.

Based on the results of this study, the author recom-
mends the use of unsplit data for training in any future
applications with other watersheds, even if there will be
unwanted remains of influences of cycles from the period
of the year not used for forecasting (for example the
July–December period in the Skrwa Prawa River case).
On a related note, the author recommends the use of
approximately ten years of daily data to develop wavelet
and cross–wavelet transform models such as those pro-
posed in this research.

Cross-wavelet constituent components

The cross-wavelet constituent components developed
in this study were calculated from the cross-wavelet
analysis of each variable with a 365-day cosine wave
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to avoid phase averaging between the �� and C�
transition, which occasionally results in short-time jumps
in the reconstructed components. If it is necessary to
develop cross-wavelet constituent signals for the flood
forecasting models due to problems with averaging of the
transition between �� and C�, then this should be done
since it provides more accurate results. The reason why
the 365 day cross wavelet constituent components (i.e.
365x) were superior to the ‘regular’ 365 day constituent
components is that the 365x components did not have the
occasional problematic phase error that appeared in the
transition between �� and C� in the �lix alone.

Summary

There are a number of issues with respect to the use of
wavelet and cross-wavelet analysis for flood forecasting
within the area of hydrology that were explored in this
study that, to the best knowledge of the author, have not
been explored in any great detail in the literature. The
main conclusions of this research are:

1. The use of wavelet analysis in the development of
a stand-alone wavelet-based short-term river flood
forecasting method was shown to be useful for 1 and
3 day lead time forecasting, assuming that there are
no significant trends in the amplitude for the same
Julian day year-to-year. The use of wavelet derived
daily constituent components for flood forecasting that
take into account the day-to-day non-stationarity of
flow and meteorological time series allowed for the
exploitation of one of the strengths of wavelet analysis,
which is its ability to handle non-stationary data.

2. The use of cross-wavelet analysis in the development
of short-term river flood forecasting models was shown
to be useful, assuming there is a relatively stable
phase shift between the flow and meteorological time
series. Cross-wavelet analysis was used to find phase
differences between flow and meteorological data and
to develop cross-wavelet constituent components, both
of which improved the forecasting ability of the
wavelet based flood forecasting models.

3. The use of wavelet decomposed meteorological data, in
addition to wavelet decomposed flow data, was shown
to be useful in the development of models for short-
term river flood forecasting. In order to be able to use
the wavelet decomposed meteorological data for flood
forecasting, a calibration constant was developed in
this study and its usefulness was demonstrated in link-
ing specific wavelengths of flow and meteorological
cycles.

4. The use of a modified version of the inverse Fourier
transform with a calibration constant and an edge effect
correction for short-term river flood forecasting was
shown to be useful for the reconstruction of wavelet
and cross-wavelet derived constituent components. In
order to reconstruct wavelet decomposed signals, the
inverse Fourier transform can be used. However, in
order to allow for a more precise reconstruction,

an edge effect correction and a calibration constant
for meteorological signals was applied to the inverse
Fourier transform in this study.

The development of a stand-alone data-based flood
forecasting method based on wavelet and cross-wavelet
constituent components, with the above mentioned origi-
nal contributions not found in the literature, was the main
contribution of this research.

For future studies, it would be worthwhile to explore
the issue of uncertainty. The two main sources of uncer-
tainty affecting the wavelet method are measurement
uncertainty and model uncertainty. For measurement
uncertainty, it would be useful to explore combining
gauge, satellite, and radar precipitation measurements
via Bayesian model averaging. For model uncertainty, it
would be useful to explore ways to improve the calibra-
tion of the models (to decrease parameter uncertainty),
and ways to improve the actual structure of the model
itself (to decrease structural uncertainty). Also, in order
to decrease overall uncertainty with the use of wavelet
models, it would be useful to explore: (i) combining the
wavelet model forecasts and physically based model fore-
casts via simple averaging of the model forecasts; (ii)
real-time updating; and iii) post-processing of the model
flood forecast via bias correction, Bayesian model aver-
aging, or Bayesian processor of ensemble (BPE).

To summarize, two main conclusions can be derived
from the results of this study:

1. It was found that flood forecasting models based on
wavelet and cross-wavelet constituent components can
be successfully used for short-term 1 and 3 days lead
time flood forecasting.

2. In the case of 7 days lead time flood forecasting,
models based on wavelet and cross-wavelet constituent
components were found to be less accurate, with ANN
models providing more accurate results.
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