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Abstract:

The detection and estimation of trends in the presence of noise, periodicities, or discontinuous patterns is important in hydrology
and climate research studies. The basic idea of currently available trend estimation techniques (tests) is that the trends should
be smooth and monotonic; however, hydro-climatologic variables contain multiple signals, and have segments of increasing
and decreasing trends. As a result, estimating trends in time series is an essential but arcane art and it is therefore important
to continue developing the theory and practice of trend analysis.

In this paper, a new technique is proposed based on the continuous wavelet transform (CWT). CWT permits the
transformation of observed time series into wavelet coefficients according to time and scale simultaneously. These coefficients
can be used to detect and estimate trends or to reconstruct signals that are of interest. The proposed CWT method was first tested
on computer-generated data exhibiting both periodic and noise components. It was then applied to observed monthly minimum
streamflow observations extracted from the Reference Hydrometric Basin Network (RHBN) for five different eco-zones in
Canada.

It was concluded that the proposed wavelet transform (WT) based method provides a very flexible and accurate tool for
detecting and estimating complicated signals. The results from monthly minimum observations indicate that short period
fluctuations are decreasing, while multi-annual variability is increasing in Canada. And finally, a persistent ¾55-year signal
is well correlated with the Pacific Decadal Oscillation in all records, which indicates that trends are not controlled by a single
factor. Copyright  2009 John Wiley & Sons, Ltd.
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INTRODUCTION

The Earth’s climate change is controlled by many fac-
tors in addition to greenhouse gases, and there are many
different scientific opinions regarding which of these fac-
tors is the most significant (Veizer, 2005; Jansen et al.,
2007). There are also established linkages between atmo-
spheric circulation, climate and streamflow (Kingston
et al., 2006). The climate in general, and climate change
in particular, will no doubt remain very difficult to pre-
cisely model. There is evidence of past climate variability
at various time scales (such as interannual and inter-
decadal) at the regional and continental scale (Battarbee
et al., 2004), and future changes in variability are highly
uncertain.

Many studies indicate that extreme events (such as
floods and droughts) are increasing in frequency and/or
magnitude (Jansen et al., 2007), but the actual pattern
is ambiguous. For example, Kundzewicz et al. (2004)
analyzed 195 streamflow records for stations all over
the world, and found no trends in maximum annual
floods. Similar findings of no trends were reported by
Zhang et al. (2001) for Canadian rivers. Spatial statistical
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analysis of the RHBN database indicated that the annual
minimum flow had an increasing significant trend for
Western Quebec/Southern Ontario, the Mountain-North
and Pacific regions, and a decreasing trend for the
Central/East region (Adamowski and Bocci, 2001).

For rivers in the United States, Lettenmaier et al.
(1994) concluded that an increasing trend in streamflows
exists for most parts of the USA. However, Douglas et al.
(2000) found no trends in flood flows, but increasing
trends in low flows. Thus different findings have been
reported which suggests a large diversity in regional and
global climate change interpretations. A prevailing view
is that there is an increasing risk of floods and droughts
at local or regional scales, and increasing or decreasing
water availability at the continental scale (Zhang et al.,
2001).

Statistical analysis of observed temperature records
worldwide revealed a global increase of 0Ð3–0Ð6 °C over
the last century (Jansen et al., 2007). Projections of
future long-term climate scenarios for Canada estimated
a 0Ð5–1Ð5 °C temperature increase in southern Canada for
the 21st century (Zhang et al., 2000; Bonsal et al., 2001).
Almost synchronous with the warming trend, the anthro-
pogenic CO2 greenhouse gas output increased (Jansen
et al., 2007), the population size increased [in particular
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in urban centers in North America (Karl et al., 1988), and
the cosmic ray intensity decreased (Carslaw et al., 2002).

Most reported findings on trends are based on statistical
tests for trends. Although many methods have been
used for trend detection and testing, none have emerged
as standard. Perhaps the most common test for trends
is the rank-based nonparametric Mann–Kendall (MK)
method. It accepts or rejects the null hypothesis of
randomness against the alternative of a monotonic trend.
Nonparametric methods do not rely on the estimation of
parameters (such as the mean or the standard deviation)
describing the distribution of the variable of interest in
the population. Mann–Kendall tests are widely used in
environmental science because they are simple, robust
and can cope with missing values and values below a
detection limit. Since the first proposals of the test by
Mann (1945) and Kendall (1975), the test was extended in
order to include seasonality (Hirsch et al., 1982), multiple
monitoring sites (Lettenmaier, 1988), and covariates
representing natural fluctuations (Libiseller and Grimvall,
2002). In addition to the studies mentioned earlier, the
nonparametric Mann–Kendall test has been used in a
variety of climate and streamflow studies in Canada (e.g.
Gan, 1995, 1998; Gobena and Gan, 2006). It is, however,
well recognized that the MK test is not robust against
autocorrelation and cross correlation, and also depends
on the sample size as well as magnitude of the trend to
be identified. As such, there remains a need for new types
of methods in order to detect and test for trends.

In this study a continuous wavelet transform (CWT)
based methodology is proposed to extract and recon-
struct long-term trends in hydrological data reliably from
relatively short records with strong superimposed high
frequency (e.g. annual) fluctuations. Wavelet analysis has
recently been used to detect interruptions in trends and
cycles, as well as to trace rainfall variability (Nakken,
1999), solar irradiance, and interdecadal climate oscil-
lations through time (Lucero and Rodriguez, 2000; Oh
et al., 2003). Wavelets are a new class of basic functions
that can be very useful for analyzing and interpreting time
series data including trends. Kallache et al. (2005) used
a Discrete Wavelet Transform (DWT) to assess trends
in flood data, Partal and Kucuk (2006) used a DWT to
assess trends in precipitation data, de Artigas et al. (2006)
used a DWT to assess trends in geomagnetic activity,
and Almasri et al. (2008) used a DWT to assess trends
in temperature.

The objective of this study was to develop a new test
based on the CWT for the detection and identification of

trends in hydrological data at different time-scales and
for different climatologic regions.

DATA AND METHODS

Data

The data used in this study are from the Refer-
ence Hydrometric Basin Network (RHBN) established by
Environment Canada (1999) for detection, monitoring,
and assessment of climate change in Canada. These
data provide an extraordinary wealth of scientific infor-
mation for reconstruction and modeling of previous
hydrological conditions and their connections to natural
and human-caused climate variability. Statistical tests of
independence, homogeneity and trends based on the rec-
ommendations of Shiau and Condie (1980) have been
carried out to verify the quality of the data (Environment
Canada, 1999). Canada has been divided into 18 eco-
zones based on vegetation, wildlife, latitude, altitude,
proximity to oceans, terrain, and other criteria (Environ-
ment Canada, 1999).

For this study a computer-simulated hydrological time-
series was used as well as the longest and most complete
monthly minimum observed flow records representing
each of the five southernmost eco-zones in Canada
(Pacific Maritime, Montaine Cordillera, Boreal Plain,
Mixedwood Plain, and Atlantic Maritime). Minimum
monthly flow records were used because the superpo-
sition of signals from intra-annual to multi-decadal pro-
vided a good opportunity to demonstrate the capability
of the trend-extraction method used in this study. In
addition these records contain important information on
the recurrence pattern of droughts in relation to clima-
tologic forces. The stations from which the data were
extracted (Table I) form ¾5000 km east-west transect
through southern Canada (46–50 °N). The rivers that
were used in this study are: (1) the Capilano River in
British Columbia, (2) the Belly River in Alberta, (3) the
Turtle River in Ontario, (4) the Beaurivage River in Que-
bec, and (5) the Northeast Margaree River in Nova Sco-
tia. These rivers are considered to have remained pristine
during the entire recording period.

Signal decomposition using continuous wavelet
transform

Time series can be considered as being composed
of two different unobserved parts, namely a trend and
stochastic component. The detection and estimation of

Table I. River stations used in research

Station Station Name Data Interval Latitude
(North)

Longitude
(West)

Ecozone

S165 Capilano River above intake 1/1914–12/1996 49Ð40 123Ð14 Pacific Maritime
S4 Belly River near Mountain view 10/1911–12/1997 49Ð10 113Ð70 Montaine Cordillera
S29 Turtle River near Mine center 7/1914–12/1995 48Ð85 92Ð73 Boreal Plain
S244 Beaurivage River at Sainte-Etienne 8/1925–9/1995 46Ð66 71Ð29 Mixedwood Plain
S127 NE Margaree River at Margaree Valley 5/1916–12/1996 46Ð37 60Ð98 Atlantic Maritime
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trend in the presence of stochastic components can be
accomplished by wavelet analysis.

Wavelet analysis emerged as a filtering and data
compression method in the 1980s (e.g. Morlet et al.,
1982). Wavelet analysis transforms a time-series simul-
taneously in the depth or time domain and scale or
frequency domain by using various shapes and sizes
of short filtering functions called wavelets. Wavelet
transforms (WTs) allow for the automatic localization
of periodic-signals, gradual shifts and abrupt interrup-
tions, trends and onsets of trends in time series (Rioul
and Vetterli, 1991). WT uses narrow band analysis
windows at high frequencies, and wide analysis win-
dows at low frequencies, in contrast to the Sliding-
Window Fourier transform that uses shifting analy-
sis windows of constant width. Thus, trend analysis
using the proposed CWT method involves separating
the trend and stochastic component using wavelet coef-
ficients.

There are two types of WTs, namely discrete (DWT)
and continuous (CWT). CWT has the advantage over
DWT that all potential scales or frequencies can be ana-
lyzed, detected and extracted, while DWT is restricted
to a discrete number of scales to be analyzed, mostly
multiples of the power of two of the average sampling
interval (Rioul and Vetterli, 1991). The advantage of
DWT over CWT is that for the scales available, the
transform and reconstruction of the signals is perfect
while CWT suffers from edge effects. The ability of the
CWT to detect, extract, and reconstruct nonlinear long-
term trends (e.g. trends with wavelength >1/2 of the
length of the time-series being analyzed) is pertinent for
trend detection in hydrology and climate research, and
this was one of the reasons the CWT was chosen for this
research.

There are a variety of ‘mother wavelet functions’
that can be used for CWT analysis (e.g. the Morlet
wavelet shown in Equation 2), and a variety of ‘mother
wavelet functions’ that can be used for DWT analy-
sis (e.g. the Haar wavelet). The mother wavelet func-
tion should reflect the type of features present in the
time series. For time series with ‘steps’, one would
choose a boxcar-like mother wavelet function such as
the Haar wavelet (which must be used in conjunc-
tion with DWT), while for more smoothly varying time
series one would choose a smoother mother wavelet
function such as the Morlet wavelet. In this study, the
CWT was used with the Morlet wavelet (which can
only be used with the CWT) as the mother wavelet
function (Morlet et al., 1982) since the Morlet wavelet
has been shown to provide robust results in analyses
of climate related records (Prokoph and Barthelmes,
1996; Gedalof and Smith, 2001). As well, the influ-
ence of edge effects is well defined for the Mor-
let wavelet, which is useful. (Torrence and Compo,
1998).

The wavelet coefficients W are defined as the power of
a signal according to the location (or time) and the scale
(or frequency) (Rioul and Vetterli, 1991). The wavelet

coefficients W of a time series x�s� are calculated by a
simple convolution

W �a, b� D
(

1p
a

) ∫
x�s� 

(
s� b

a

)
ds �1�

where,  is the mother wavelet; W are the wavelet
coefficients using the mother wavelet; the variable a is the
scale factor that determines the characteristic frequency
or wavelength; and b represents the translation of the
wavelet over x�s� (Chao and Naito, 1995). The bandwidth
resolution for a WT varies with a D f D p

2/4�al,
and a location resolution b D al/

p
2. Parameter l is

used to modify WT bandwidth resolution either in favor
of time or in favor of frequency. Note that due to
Heisenberg’s uncertainty principle fb D 1/4�, the
magnitude of both b and f cannot be arbitrarly small.

The wavelet coefficientsW are normalized to represent
the amplitude of Fourier frequencies by replacing

p
a

with a, which allows for a simplified reconstruction of
frequency dependent signals. The parameter l D 6 for the
CWT was chosen, because it has been shown in climate
related studies (Ware and Thomson, 2000) to provide a
useful compromise between precise resolution in time and
frequency for signal analysis. The choice of l depends
on the smoothness of the underlying signal. Smooth
signals without local discontinuities can be efficiently
extracted by using l D 10, which retains high scale (or
frequency) resolution. For time series that are likely to be
characterized by nonstationary and less smooth (i.e. sine-
like) periodic signals, it is better to choose a lower value
of l (less stretching in time) to maintain a good time
resolution. In this study, a value of l D 6 was chosen,
but testing other values of l (e.g. l D 2 to l D 20) is
suggested for future studies to determine the best value
for a particular study.

The shifted and scaled Morlet mother wavelet is
defined as

 la,b�s� D �
� 1

4 �al�
� 1

2 e�i2�1
a �s�b�e

� 1
2
� s� b
al

�2
�2�

The relative bandwidth error is constant in all scales
and is, for l D 6: ¾1/6 D 0Ð16 D 16%. The wavelet
analysis technique used in this article is explained in
detail in Prokoph and Barthelmes (1996).

Due to the fact that one is dealing with finite-length
time series, errors will occur at the beginning and end of
the wavelet power spectrum, as the Fourier transform
assumes the data is cyclic. The wavelet coefficients
at the beginning and end of the data set are subject
to an ‘edge effect’ because only a half of the Morlet
wavelet lies inside the data set. For relatively long
wavelengths (e.g. wavelength a covers more than a half
of the whole data series), the edge effect approaches
zero as soon as the data points cover the complete
analysis window. The edge effects are wavelength and
location (time) dependent and are higher closer to the
ends of the time series than in the middle. This forms a
‘cone of influence’ (Torrence and Compo, 1998) where
the calculated wavelet coefficients are unreliable. The
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wavelet coefficients in the cone of influence belong
predominantly to large scales (low frequencies).

In this study the edge effects were eliminated to take
care of unreliable wavelet coefficients in the cone of influ-
ence. This was done by dividing the wavelet coefficient
of wavelength a extracted from Equation (1) by a stand-
ing sine wave of amplitude 1 and wavelength a. The
wavelet coefficients as functions of location shift b, scale
a, and stretching ratio of wavelet analysis window l, are
defined as W, (a, b). The matrix of the wavelet coef-
ficients Wl�a, b�, the so called ‘scalogram’, was coded
with shades of grey for superior graphical interpretation.
The wavelet coefficient matrix was sampled at a time
resolution to b D 1 month, which allows for simpli-
fied reconstruction of periodic signals and trends at the
original data interval of the analyzed streamflow data.

The only wavelet coefficients (i.e. amplitudes) and
phases that were extracted were those that showed per-
sistently strong magnitudes over time (at least 10% of the
average amplitude of the annual cycle, which is always
the strongest wavelength). Wavebands that only tem-
porarily exhibit strong signals in the records (i.e. ‘events’)
were not extracted as they are of no consequence for the
long-term trend pattern to be reconstructed. Details on
the extraction and its accuracy are explained in Prokoph
and Patterson (2004).

Reconstruction of periodic components

The original time series can be completely restored
(reconstructed) using the inverse WT (Grossmann and
Morlet, 1984; Holschneider et al., 1989)

x�s� D
∫ amax

0

∫ bmax

0
Wa�b�

[
�s� b�

a

]
db

da

a2 �3�

where a max D 2s, b max D s� 1, and Wa�b� is the
matrix of the wavelet coefficient extracted according to
a (scale) and b (time-shift).

In this study the objective was to reconstruct the signals
from a small number of wavebands that are essential
for trend reconstruction. As such, the reconstruction was
reduced to narrow wavebands f for a single component
centred at a

xa�s� D
∫ bmax

0
Wa�b�

[
�s� b�

a

]
db �4�

withWa�b� the matrix of the wavelet coefficient extracted
according to a (scale) and b (time shift). The reconstruc-
tion of a signal x�s� of component a was further simplified
by replacing the Morlet wavelet with the Fourier trans-
form. The wavelet coefficient Wa�b� is the modulus of
the WT and is set to be the equivalent of a Fourier ampli-
tude. To reconstruct the signal, the phase � of the signal
was also extracted from the real and imaginary part of
the transform. The inclusion of phase � at each time s
for waveband a in the reconstruction equation resulted in

xa�s� D Wa�b�[cos 2�s/aC �a�s�] �5�

with a as the frequency (or scale) at time s of the
extracted waveband.

To correct for edge effects, calibration coefficients
Ya�b� were determined for each component by calculat-
ing the wavelet coefficients of a cosine wave of frequency
a and amplitude 1 [Wcos,a �b�]. The value of Wcos,a �b�
can range between 0Ð5 (maximum edge effect) and 1
(no edge effect), resulting in the correction coefficient
Ya �b� D 1/Wcos,a �b�. This results in

xa�s� D Ya(b)Wa�b�[cos 2�s/aC �a�s�] �6�

Equation 6 is the reconstruction formula used for long-
term trend determination of selected wavebands centered
around a.

EXAMPLE FROM COMPUTER GENERATED
MODEL

A computer generated time series x(s) was created to
highlight the extraction and reconstruction capabilities of
the proposed methodology. The model consists of 100
equidistant time intervals referred to as ‘years’ with an
11-year sinusoidal signal with exponentially increasing
amplitude. An 11-year cyclicity in the computer gener-
ated model was chosen for two reasons: (1) this cycle is
long enough to emphasize the influence of edge effects
in the cone of influence and the approach of visual cor-
rection, and (2) this cycle can be related to the sunspot
cyclicity that is considered to partially influence stream-
flows (Reddy et al., 1989).

High frequency noise resulting in a signal to noise ratio
(SNR) of 3 : 1 was superimposed and strongly dimin-
ished the visual detection of the underlying cyclicity
(Figure 1A). Wavelet scalograms and phase diagrams
permit an easy identification of the 11-year waveband and
periodicity in the phase changes, but also show reduced
(light grey) wavelet coefficients on the edges at the begin-
ning and end of the record, as well as in the middle
(Figure 1B and C).

Figure 1D shows the extracted parameter at b D 1
(year), including the stability of the periodicity (between
10Ð4 and 11Ð6 years), the 11-year unit amplitude of the
calibration wave, and the amplitude (wavelet coefficient)
of the 11-year cycle from the model. The phase changes
are gradual with phase jumps from �� to C� as
predetermined by the modeling. The reconstruction of
the 11-year component using Equation (6) indicates a
good fit to the 11-year model input with the exception
of an amplitude between 0 and 20 years, that is too
high, and a slight phase shift at 70–100 years. Both
of these inaccuracies are predominantly due to the
Heisenberg frequency–time uncertainty that affects both
the amplitude and phase in the reconstruction. As a
result, these remnants of the edge effects indicate that
it is important to carefully evaluate the amplitudes of
waveband specific trends at both ends of the time series
(i.e. by cutting off or neglecting the first and last
10% of the reconstructed signal of the waveband for
interpretations).
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Figure 1. (A) Synthetic 11-year sinusoidal cycle superimposed white noise at SNR of 3/1; (B) Wavelet scalogram using analysis window scale factor
l D 6 and Morlet wavelet, wavelet coefficient equivalent to Fourier Amplitude (black D maximum, white D 0); (C) Phase diagram from �p (white)
to Cp (black). Note asymmetry of phase pattern at short wavelength due to noise; (D) Parameter extracted by WT necessary to reconstruct the

9–12-year waveband; (E) Comparison of original modeled 11-year signal and its reconstruction

RESULTS AND DISCUSSION

Data from station S4 of Belly River near Mountain View
(Southern Alberta, Canada) extends from November 1911
to December 1997, and provides the most complete and
longest record in this study (Figure 2A). Overview WT
analysis demonstrated that signals with durations in semi-
annual (4–6 months) and annual (10–13 months) wave-
bands dominated the record (Figure 2B). Less strong and
persistent signals of ¾5 years (4–7 years), ¾11 years
(9–10 years), ¾22 years (18–25 years), and ¾55 years
(50–65 years) wavebands were superimposed.

The edge-effect corrected wavelet coefficients of these
wavebands indicate that the annual signals are about 5 to
7 times, and the semiannual signals about 2 to 5 times,
stronger than multi-annual signals (Figure 2C). It is also
noticeable that the magnitude of these signals fluctuates
over time.

The semiannual and annual signals were reconstructed
using Equation 6, and were combined (Figure 2D). This
reconstruction of the two signals has a variance of
18Ð5 m4/s2 and explains 60Ð3% of the variance of

the original record. This essentially means that the
streamflow data mainly exhibit intra-annual and annual
oscillations, and relatively fewer interannual or higher
oscillations. In Canadian rivers, annual and intra-annual
fluctuations dominate the streamflow variability and sub-
due the underlying trend. Nevertheless, the CWT method
efficiently detects and eliminates high frequency variabil-
ity, in contrast to a pure Fourier transform approach that
is unable to remove the temporal variability in the ampli-
tudes of the high frequency fluctuations and to add them
to the trend. As a result, the variability that remains in
the trend (e.g. the slope of the linear trend) appears small
but robust.

In contrast, the Fourier transform requires annual,
semiannual, and quarterly wavelengths (Figure 2E) to
represent just 52Ð3% of the original record. In addition,
single-window spectral analysis is not capable of extract-
ing trends and other temporal magnitude changes (Davis,
1986).

Wavelet analysis of monthly minimum flow records
of four stations from other eco-zones (Table I) indicate
that semiannual and annual signals with four weaker

Copyright  2009 John Wiley & Sons, Ltd. Hydrol. Process. 23, 2686–2696 (2009)
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reconstruction of annual and semiannual components
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Figure 2. (A) Measured monthly minimum flow data for station 4 (Belly River, Alberta, Canada); (B) Wavelet scalogram (for explanation see
Figure 1); (C) Wavelet coefficients (corrected for edge effects) D amplitudes of strongest wavebands; note dominance of annual and semiannual
signals; (D) Reconstruction of original dataset using only annual and semiannual components; note temporal variability in amplitude; (E) Power
spectrum from same dataset; note that temporal variability cannot be reconstructed and at least four frequencies have to be used to reconstruct the

original dataset to obtain the same percentage of variance as two wavelet components

multi-annual wavebands dominate in southern Canada
(Figure 3). Additional short-term ‘high minimum flow’
events (such as in 1927) in station 244, led to short-term
spikes in all high frequency wavebands as indicated by
the vertical dark grey stripes in the wavelet scalograms
(Figure 3). Thus, the same wavebands as for station 4
(Figure 2C) were extracted for reconstruction for the four
other stations.

The amplitudes of the semiannual and annual cycles
are approximately five times stronger than the multi-
decadal cycles, and show similar temporal variability
as those from station 4 (Figure 4). In addition, for all
stations, the amplitude of the 11-year signal was about
twice as high in the 1920s as it was in the 1960s.

Furthermore, the magnitude ratio between the annual and
semiannual signal ranges from ¾3 : 2 in continental eco-
zones (stations S4, S127), to over ¾1 : 1 for the Pacific
Canada Realm (S165) and the Mixedwood plain along
the St. Lawrence River (S244), to ¾1 : 2 for the Cape
Breton peninsula (S127) in Atlantic Canada (Figures 2
and 4).

In this paper, the focus was on extraction and interpre-
tation of linear trends, determined by linear regression
of the amplitudes for the interval from 1925 to 1994,
that were common for all datasets (Table II). Most of
the trends do not appear to be very significant when
measured per year compared to the overall variability at
each station. For example, a decrease of the amplitude in
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Figure 3. Four monthly minimum flow datasets from the Pacific Coast in the West of Canada (top) to the Atlantic Coast in the East (bottom) with
corresponding wavelet scalogram (for explanation see Figure 1)

streamflow related to the 11-year cycle at station S29 of
0Ð0654 m2/s/year, which is approximately equivalent to a
4Ð5 m2/s decrease over the ¾70-year measurement inter-
val, is ¾1% of the extrema of the streamflow increase for
this time interval. Consequently, the trend values are sim-
ilar in their relativity to predicted global warming trends
(¾0Ð5 °C/100 years), in the presence of extreme regional
annual temperature variations of up to 50 °C.

For all stations, the linear trend for semiannual and
annual variability was found to be decreasing. This
indicates that, in general, the seasonality between dryer
and less dry periods has decreased over the last century.
This means that seasonal droughts cannot be compensated
for, by more wet periods during the duration of a year.

The linear trend pattern for multi-decadal cycles is less
consistent for different stations (Table II). Regionally,

and for all wavebands, the stations near the Pacific
and Atlantic coasts exhibit slightly linear decreasing
amplitudes. The Boreal Plain section (S127) in south-
central Canada exhibits very strong decreasing linear
trends in semiannual and annual variability (Figure 5).
However, multi-decadal variability is strongly linearly
increasing, which suggests that long periods of droughts
were more common at the end of the 20th century than
at the beginning.

The 55-year (50–65 year) components for all stations
were completely reconstructed from their wavelet coeffi-
cients (amplitudes), phases, and wavelengths as given by
Equation 6, and compared with meteorological indexes
of known multi-decadal variability. Figure 6 shows that
all ¾55-year cycles from all stations are approximately in
phase with each other, with the exception of station 244.
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Figure 4. Wavelet coefficients (corrected for edge effects) D amplitudes of strongest wavebands from minimum monthly flow datasets of southern
Canada (Figure 3); note changes in the dominance of annual and semiannual signals

Table II. Linear Trends 1925–1994

Station ID Waveband

0.5yr 1yr 5yr 11yr 22yr 55yr

S165 �0Ð0075 �4.00E-05 �0Ð0077 0Ð0031 �0Ð0072 0Ð0003
S4 �0Ð0061 �0Ð0114 �0Ð0057 0Ð0011 0Ð0001 �0Ð0005
S29 �0Ð0105 �0Ð0389 0Ð0406 �0Ð0654 0Ð0103 0Ð0086
S244 �0Ð0438 �0Ð0661 �0Ð014 �0Ð0181 �0Ð0059 �0Ð0059
S127 �0Ð0065 �0Ð0054 0Ð0001 0Ð0001 �8.00E-05 0Ð0018

Unit: m2/�sŁyears�

Station 244 is characterized by decreasing amplitude, and
thus negative trend, in all wavebands, which is also evi-
dent in the obvious drop of large streamflow sessions in
the data starting in ca 1965. It is possible that the flow
of this stream had been influenced by an undocumented
natural or anthropogenic event at that time that led to the
drop in the flow.

The 55-year minimum monthly flow record from
the 55-year waveband varies approximately opposite
to the 10-year moving average of the Pacific Decadal
Oscillation (PDO) index and to a lesser degree to the
North Atlantic Oscillation (NAO) index. In particular,
the strong ¾55-year ‘monthly minimum flow’ cycle of
the Mid-continent station S29 corresponds very well to
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Figure 6. (A) Reconstruction of the 45–60-year signal for five monthly minimum flow datasets; note that with the exception of station S244 the
signals are in phase; (B) 10-year moving averages of North Atlantic Oscillation Index (NAO) and Pacific Decadal Oscillation Index (PDO) from

Biondi et al. (2001). Note that the indices are inverted for visual comparison

the PDO cycle but not to the NAO cycle (Figure 6).
Consequently, it is possible that changes in the PDO have
a strong influence on the climate and therefore drought
and river flows in central Canada. A more comprehensive
study that also includes GIS would be necessary to verify
the above hypothesis.

In the future, it would be very useful to compare
the proposed CWT methodology with other approaches
currently used to detect trends. It can be seen from the

results of this study that the proposed CWT methodology
does, to a certain degree, enhance the detection of trends
which would otherwise be hidden. It should be noted
that the robustness of the linear trends of the amplitudes
of specific wavebands detected by the CWT method is
also related to the time interval over which it is valid
(which is ¾70 years in this study). For example, the
drop in amplitude of �0Ð0654 m3/s/yr relative to extreme
events of ¾75 mm/s, is similar to the trend projected for
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global warming during the 21st century (¾0Ð02 °C/yr)
compared to the extreme annual amplitudes of ¾30 °C
between summer and winter in continental climate zones
(Nakicenovic, 2000).

CONCLUSION

A CWT based method was developed and applied to
extract waveband specific signals, including long-term
trends from hydrological time-series. Testing of the
method with a computer generated model showed that
nonlinear fluctuating long-term signals can be reliably
reconstructed, but that some uncertainty in amplitude,
phase, and wavelengths due to Heisenberg’s uncertainty
principle cannot be avoided. The proposed CWT method
is more efficient at reconstructing highly variable time-
series from a few wavebands than spectral analysis.

Application of the proposed method to the analysis
of minimum monthly flow records from five eco-zones
in southern Canada, demonstrated that nonlinear vary-
ing high frequency (semiannual and annual) signals can
be effectively separated from weaker multi-annual sig-
nals. Trend analysis on these signals indicated decreasing
seasonality of minimum monthly flow over the last cen-
tury in southern Canada, while multi-annual variability
increased in south-central Canada. Changes in seasonal-
ity and in multi-annual variability found in this study are
consistent with other reported findings. Several studies
have reported a tendency toward decreasing low flows
and changes in timing (Hodgkins et al., 2003). Multi-
annual variability may reflect several factors such as
solar forcing and volcanic activity (Khaliq et al., 2008).
Knowledge of changes in seasonality and variability of
river flows provides a better understanding of possible
impacts (e.g. economic) of climate variability on water
resources management.

A reconstructed weak, but persistent ¾55-year signal
was found to be well-correlated to the PDO. The CWT
based methodology presented in this study could be
extended to identify climate or anthropogenic forced
changes on hydrological systems and to forecast drought
or flood trends from hydrological records. It would also
be useful to test the use of a variety of different CWT
‘mother wavelets’ (such as the Mexican Hat wavelet) to
assess their effect on the robustness of the proposed CWT
method.
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