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Accurate and reliable water resources planning and management to ensure sustainable use of watershed
resources cannot be achieved without precise and reliable models. Notwithstanding the highly stochastic
nature of hydrological processes, the development of models capable of describing such complex phe-
nomena is a growing area of research. Providing insight into the modeling of complex phenomena
through a thorough overview of the literature, current research, and expanding research horizons can
enhance the potential for accurate and well designed models.

The last couple of decades have seen remarkable progress in the ability to develop accurate hydrologic
models. Among various conceptual and black box models developed over this period, hybrid wavelet and
Artificial Intelligence (AI)-based models have been amongst the most promising in simulating hydrologic
processes. The present review focuses on defining hybrid modeling, the advantages of such combined
models, as well as the history and potential future of their application in hydrology to predict important
processes of the hydrologic cycle. Over the years, the use of wavelet–AI models in hydrology has steadily
increased and attracted interest given the robustness and accuracy of the approach. This is attributable to
the usefulness of wavelet transforms in multi-resolution analysis, de-noising, and edge effect detection
over a signal, as well as the strong capability of AI methods in optimization and prediction of processes.
Several ideas for future areas of research are also presented in this paper.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Characterized by high complexity, dynamism and non-stationa-
rity, hydrological and hydro-climatologic forecasting has always
presented a challenge to hydrologists who recognize its essential
role in environmental and water resources management as well
as in water-related disaster mitigation. Recent years have seen a
significant rise in the number of scientific approaches applied to
hydrologic modeling and forecasting, including the particularly
popular ‘data-based’ or ‘data-driven’ approaches. Such modeling
approaches involve mathematical equations drawn not from the
physical process in the watershed but from an analysis of concur-
rent input and output time series (Solomatine and Ostfeld, 2008).
Such models can be defined on the basis of connections between
the system state variables (input, internal and output variables)
with only a limited number of assumptions being made regarding
the physical behavior of the system. Typical examples of data-dri-
ven models are rating curves, the unit hydrograph method and var-
ious statistical models (Linear Regression; LR, multi-linear, Auto
Regressive Integrated Moving Average; ARIMA) and methods of
machine learning. The conventional black box time series models
such as ARIMA, ARIMA with exogenous input (ARIMAX) and Multi-
ple Linear Regression (MLR) are linear models and assume sta-
tionarity of the dataset. Such models are unable to handle non-
stationarity and non-linearity involved in hydrological processes.
As a result, many researchers have focused on developing models
that are able to model non-linear and non-stationary processes.

The data-driven methods of Artificial Intelligence (AI) have
shown promise in modeling and forecasting non-linear hydrologi-
cal processes and in handling large amounts of dynamicity and
noise concealed in datasets. Such properties of AI-based models
are well suited to hydrological modeling problems. Numerous AI
tools or techniques have been used, including versions of search
optimization, mathematical optimization, as well as logic-, classifi-
cation-, statistical learning- and probability-based methods (Luger,
2005). In particular, three sub-sets of AI have been widely used in
the hydro-climatologic and environmental fields:

(1) Evolutionary computation: A branch of optimization methods
that includes swarm intelligence algorithms such as Ant Col-
ony Optimization (ACO; Dorigo et al., 1996) or Particle
Swarm Optimization (PSO; Kennedy and Eberhart, 1995)
and evolutionary algorithms such as Genetic-Algorithms
(GA; Goldberg, 2000), Gene-Expression Programming
(GEP), and Genetic-Programming (GP; Koza, 1992).

(2) Fuzzy logic: Fuzzy systems (Zadeh, 1965) can be used for
uncertain reasoning, which provide a logic perspective in
AI techniques.

(3) Classifiers and statistical learning methods: These models
employ statistical and machine-learning approaches. The
most widely used classifiers are Neural Networks (NNs;
Haykin, 1994), kernel methods such as the Support Vector
Machine (SVM; Vapnik, 1995), k-nearest neighbor algo-
rithms such as Self-Organizing Map (SOM; Kohonen,
1997), Gaussian mixture model, naive Bayes classi-
fier, and decision tree. NNs, the predominant AI method,
are used in hydrology via two approaches: (i) supervised,
including acyclic or feed-forward NNs (where the signal
passes in only one direction) and recurrent NNs (which
allow feedback), and (ii) unsupervised (e.g., SOM).

Among the broader applications of AI methods, GA, GP, Fuzzy,
NNs, and SVM are widely used in different fields of hydrology.
Since their emergence in hydrology, the efficient performance of
AI techniques such as data-driven models has been reported over
a wide range of hydrological processes (e.g., precipitation,
stream-flow, rainfall–runoff, sediment load, groundwater, drought,
snowmelt, evapotranspiration, water quality, etc.). The number of
researchers active in this area has increased significantly over the
last decade, as has the number of publications. Several dozen suc-
cessful applications for hydrological process modeling (e.g.,
stream-flow, rainfall–runoff, sediment, groundwater, water qual-
ity) using ANN, Fuzzy, GP, GA, and SVM have been reported, with
some examples listed in Table 1.

Despite the flexibility and usefulness of AI-based methods in
modeling hydrological processes, they have some drawbacks with
highly non-stationary responses, i.e., which vary over a wide scale
of frequencies, from hourly to multi-decadal. In such instances of
‘seasonality’, a lack of input/output data pre/post-processing,
may not allow AI models to adequately handle non-stationary data.
Here, hybrid models which combine data pre/post-processing
schemes with AI techniques can play an important role.

Hybrid hydrological models may take advantage of black box
(here AI-based) models and their ability to efficiently describe
observed data in statistical terms, as well as other prior informa-
tion, concealed in observed records. The hybrid models discussed
here represent the joint application of AI-based methods with
the wavelet transform to enhance overall model performance.

As an advance in signal processing, wavelet transforms can reli-
ably obviate AI model shortcomings in dealing with non-stationary
behavior of signals. A mathematical technique useful in numerical
analysis and manipulation of multidimensional signal sets, wavelet
analysis provides a time-scale representation of the process and of
its relationships. Indeed, the main property of the wavelet trans-
form is its ability to provide a time-scale localization of a process.
The wavelet transform has attracted significant attention since its
theoretical development in 1984 (Grossmann and Morlet, 1984). A
number of recent hydrological studies have implemented wavelet
analysis (e.g., Adamowski and Sun, 2010; Kim and Valdes, 2003;
Kisi, 2009a,b, 2010; Nourani et al., 2009a,b, 2011; Maheswaran
and Khosa, 2012a; Partal and Kisi, 2007; Sang, 2012; Tiwari and
Chatterjee, 2010; Zhou et al., 2008).

The Wavelet transform is applicable in extracting nontrivial and
potentially useful information, or knowledge, from the large data
sets available in experimental sciences (historical records, reanaly-
sis, global climate model simulations, etc.). Providing explicit infor-
mation in a readable form, it can be used to solve diagnostic,
classification or forecasting problems. In a review of the applica-
tions of the wavelet transform in hydrologic time series modeling,
Sang (2013a) highlighted the multifaceted information that can be
drawn from such analysis: characterization and understanding of
hydrologic series’ multi-temporal scales, identification of seasonal-
ities and trends, and data de-noising. Therefore, the ability of
the wavelet transform to decompose non-stationary signals into



Table 1
Examples of some AI applications in hydrological process modeling.

Hydrologic process ANN Fuzzy GP GA SVM

Stream-flow
modeling

Sudheer et al. (2008) Chang and Chen
(2001)

Ni et al. (2010) Parasuraman and Elshorbagy
(2007)

Li et al. (2010)

Rainfall–runoff
modeling

Hsu et al. (1995) Savic et al. (1999) Gautam and Holz (2001) Cheng et al. (2002) Elshorbagy et al.
(2010)

Sediment modeling Sarangi et al. (2005) Aytek and Kisi
(2008)

Altunkaynak (2009) Rajaee et al. (2009) Misra et al. (2009)

Groundwater
modeling

Bhattacharjya and Datta
(2009)

He et al. (2008) Fallah-Mehdipour et al.
(2013)

Bhattacharjya and Datta (2009) Yoon et al. (2011)

Water quality
modeling

Singh et al. (2009) Pai et al. (2009) Eslamian and Lavaei (2009) Dhar and Datta (2009) Singh et al. (2011)
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sub-signals at different temporal scales (levels) is helpful in
better interpreting hydrological processes (Adamowski, 2008a,b;
Adamowski et al., 2009; Kisi, 2010; Mirbagheri et al., 2010;
Nason and Sachs, 1999; Sang, 2012).

Depending on wavelet and AI methods’ individual capacities, it
can be inferred that a hybrid model comprised of both would
simultaneously have the advantages of both techniques. The com-
bined wavelet–AI approach is a useful methodology, grounded on
both wavelet transform and various AI modeling techniques. It
allows for the construction of tractable joint models with such
broad applications in hydrology as de-noising, optimization, reme-
diation of active Artificial NN (ANN) functions, as well as hydrolog-
ical process forecasting. In the latter case, wavelet–AI models have
been explored by hydrologists, as the combination allows for a
detailed elucidation of signals, making the hybrid method an effec-
tive tool for predicting hydrological phenomena. In forecasting
tasks, the hybrid wavelet–AI method follows a two-step procedure
(Fig. 1):

(i) Use of the wavelet transform to pre-process input data. This
includes providing a time–frequency representation of a sig-
nal at different periods in the time domain, as well as con-
siderable information about the physical structure of the
data.

(ii) Extraction of features from the main signal to serve as AI
inputs, and allowing the full model to process the data.

The selection of an efficient mother wavelet and decomposition
level are two important issues in the first step. Appropriate selec-
tion of the mother wavelet constitutes the most important decision
associated with the first step; both in the case of discrete and con-
tinuous wavelet transforms (DWT and CWT, respectively). CWT
and DWT construct a time–frequency representation in the form
of a continuous or discrete signal, respectively. Detailed analyses
regarding the performance of different mother wavelets in
Fig. 1. Schematic diagram of hybrid
hydrological simulations have led to the conclusion that to deter-
mine the ideal mother wavelet for a given problem a variety of
mother wavelets should be tested through a trial and error process
(Maheswaran and Khosa, 2012a; Nalley et al., 2012; Nourani et al.,
2011; Sang, 2012). Nevertheless, similarity in shape between the
mother wavelet and the raw time-series is often the best guideline
in choosing a reliable mother wavelet. Generally, mother wavelets
with a compact support form (e.g., Daubechies-1, Haar; and Daube-
chies-4, db4) are the most effective in generating time localization
characteristics for time series which have a short memory and
short duration transient features. In contrast, mother wavelets
with a wide support form (e.g., Daubechies-2, db2) yield reliable
forecasts for time series with long term features (Maheswaran
and Khosa, 2012a).

Since DWT starts with a discrete set of data and considers a dya-
dic set of scales, it is compatible with the discrete observation of
hydrological signals. In order to study the signal, discretisation
comes first, and as a result decomposition levels follow. Although
appropriate selection of the maximum scale is also important in
CWT, it plays an essential role in DWT due to the decomposition
procedure and extraction of dominant sub-series which can not
be depicted as easily as with the CWT. Therefore, along with
mother wavelet type selection, determination of the appropriate
decomposition level (scale) is another important sub-step within
the first step when DWT is applied (Fig. 1.). In early studies, the
optimum decomposition level was usually determined through a
trial-and-error process, but afterwards a formula which relates
the minimum level of decomposition, L, to the number of data
points within the time series Ns, was introduced in the literature
(Aussem et al., 1998; Nourani et al., 2009b; Wang and Ding, 2003):

L ¼ int½log Ns� ð1Þ

Later, Nourani et al. (2011) criticized the outcome of this for-
mula, stating that, having been derived for fully autoregressive
(AR) signals, it only considers time series length, without paying
wavelet–AI forecasting model.
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any attention to seasonal effects. Since many seasonal characteris-
tics may be embedded in hydrological signals, a precise insight into
the process under study and attention to the periodicity of the
process might be helpful in the selection of an appropriate decom-
position level for dyadic DWT analysis. Decomposition level l
contains l details and as an example in the case of daily modeling
denotes 2n-day mode where n = 1, 2, . . ., l (e.g., 21-day mode, 22-day
mode, 23-day mode which is nearly weekly mode, 24-day mode,
25-day mode which is nearly monthly mode, etc.), therefore, the
seasonal and scale dependency of the process can be handled by
the model.Depending on the wavelet type, the decomposition level
and the type of AI method applied, several approaches can be
examined according to the aim in developing the hybrid wave-
let–AI model. In this context, AI methods can be seen to fall into
three basic categories: optimization, logic, classification and statis-
tical learning; based on the utilization of AI over one of these three
fields, different purposes for the hybrid wavelet–AI model can be
inferred. Generally, the collective application of optimization
methods and wavelet analysis leads to recognition of optimal
inputs for AI models (Kuo et al., 2010a,b; Wang et al., 2011a). Fea-
ture extraction and classification of dominant inputs to be used in
forecasting (Hsu and Li, 2010; Nourani et al., 2013, 2014) along
with seasonality detection (Nourani and Parhizkar, 2013;
Nourani et al., 2009a,b, 2011, 2012) as well as noise reduction/
removal from the hydrologic time series (Campisi et al., 2012;
Guo et al., 2011) are important elements contributing to better
forecasting for future planning through hybrid wavelet–AI
models.

Given the rapidly evolving field of wavelet-AI approaches in
hydrology, it is important to survey what has been done with
wavelet–AI models and current research trends. Several review
papers (see Table 2) concerning particular sub-sets of AI models
used in hydrology or specifically on hydrological modeling have
explored this topic (Abrahart et al., 2012; ASCE, 2000; Dawson
and Wilby, 2001; Kalteh et al., 2008; Maier and Dandy, 2000;
Maier et al., 2010; Solomatine and Ostfeld, 2008). While general
reviews of wavelet applications in hydrology (Kumar and
Foufoula-Georgiou, 1997; Labat, 2005; Schaefli et al., 2007; Sang,
2013a) have surveyed wavelet analysis methods (see Table 2), no
reviews have centered on the specific use of wavelet–AI models.
Maier et al. (2010), in their review paper on methods used in devel-
oping NNs for the prediction of water resource variables in river
systems, suggested that
Table 2
Review papers concerning particular sub-sets of AI models and the wavelet transform use

Review subject Authors (year) Pape

Reviews on hydrological
applications of AI

ASCE Task Committee on Application of Artificial
Neural Networks in Hydrology (2000)

Artifi

Maier and Dandy (2000) Neur
revie

Govindaraju and Rao (2000) Artifi
Dawson and Wilby (2001) Hydr
Solomatine (2005) Data
Cherkassky et al. (2006) Com
Kalteh et al. (2008) Revie

appli
Solomatine and Ostfeld (2008) Data
Maier et al. (2010) Meth

resou
Abrahart et al. (2012) Two

netw

Reviews on hydrological
applications of wavelets

Kumar and Foufoula-Georgiou (1997) Wav
Labat (2005) Rece
Schaefli et al. (2007) Wha

spec
Sang (2013a) A rev
‘‘. . .work should continue on the development and evaluation of
hybrid model architectures that attempt to draw on the strengths
of alternative modeling approaches. Given the amount of work that
has already been done in this area, a review of this emerging field of
research would seem timely.’’

The lack of review papers evaluating the simultaneous applica-
tion of AI models and wavelets in hydrology led to the collective
preparation of the current review paper, which is an updated
assessment of coupled AI and wavelet applications in various fields
of hydrology. The advances in hydrological modeling and simula-
tion achieved through wavelet–AI models have largely outstripped
conventional models in terms of performance, and led to an
increase in associated research and resulting publication numbers
since 2003 (Fig. 2). While such publications remained low from
2003 until 2007, there was a 10-fold increase over the next two
years, which represents a turning point in wavelet–AI research.
Articles up to 2007 played an innovator role, with the paper of
Labat et al. in 2004 representing the pioneering work of wavelet
applications to hydrology (with 152 citations in Scopus) and Labat’s
review on the wavelet concept (with 114 citations) providing fur-
ther incentive to research the application of wavelet–AI systems
in hydrological modeling (Labat, 2005). In 2006, Partal and Küçük
(with 44 citations) demonstrated the merits of wavelet trend anal-
ysis in determining possible trends in annual total precipitation ser-
ies, while the work of Cannas et al. (with 38 citations) further
developed the hybrid wavelet–AI model. Since 2007, there has been
an increase in the number of papers dealing with wavelet-AI
modeling of hydrological processes, as can be seen from Fig. 2.

The principal objectives of the current review paper are to com-
prehensively categorize wavelet–AI models and enumerate their
novel applications in hydrology along with their benefits. In turn,
this assessment will provide some ideas on future areas of research
in the field. This review focuses on their extensive use in hydro-
climatology, and further restricts itself to the main hydrologic
parameters of interest, i.e., (i) precipitation, (ii) stream-flow, runoff,
(iii) rainfall–runoff, (iv) sediment, (v) groundwater, (vi) miscella-
neous: drought, snowmelt, evapotranspiration, water quality,
wave height, etc. These selected parameters of review were drawn
from a review of NN hydrological modeling undertaken by the
ASCE Task Committee (ASCE, 2000). The present sources consulted
were drawn from the Scopus abstract and citation database
(www.scopus.com). Conference proceedings are not included in
d in hydrology.

r/book title

cial neural networks in hydrology ii: hydrologic applications

al networks for the prediction and forecasting of water resources variables: a
w of modeling issues and applications
cial neural networks in hydrology
ological modeling using artificial neural networks
-driven modeling and computational intelligence methods in hydrology
putational intelligence in earth sciences and environmental applications
w of self-organizing map (SOM) in water resources: analysis, modeling, and
cation
-driven modeling: some past experiences and new approaches
ods used for the development of neural networks for the prediction of water
rce variables in river systems: Current status and future directions
decades of anarchy? Emerging themes and outstanding challenges for neural
ork river forecasting

elet analysis for geophysical applications
nt advances in wavelet analyses: Part 1. A review of concepts
t drives high flow events in the Swiss Alps? Recent developments in wavelet
tral analysis and their application to hydrology
iew on the applications of wavelet transform in hydrology time series analysis

http://www.scopus.com


Fig. 2. Number of published papers regarding wavelet–AI applications in hydro-climatology (indexed in Scopus) with respect to year of publication.
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this review. Details of the selected papers, including year of publi-
cation, authors, AI methods used and variables predicted are given
in Table 3. This is followed by sections on the basic concepts of the
wavelet transform (Section 2), and the applications of hybrid mod-
els in various fields of hydrology (Section 3). A summary and sug-
gestions for future avenues of research are presented in the last
sections of the paper.
2. Wavelet transform

The wavelet transform has increased in usage and popularity in
recent years since its inception in the early 1980s, yet it is still not
as widely used as the Fourier transform. However, Fourier analysis
has a significant drawback: a signal’s Fourier transform into the
frequency domain results in the loss of time information, such that
it becomes impossible to tell when a particular event took place. In
contrast, wavelet analysis allows for the use of long time intervals
when more precise low-frequency information is needed, and
shorter regions when high-frequency information is of interest.

In the field of earth sciences, Grossmann and Morlet (1984),
who worked especially on geophysical seismic signals, introduced
the wavelet transform. A comprehensive literature survey of wave-
let use in the geosciences can be found in Foufoula-Georgiou and
Kumar (1995) and most recent contributions are cited by Labat
(2005). As there are many good books and articles introducing
the wavelet transform, this paper will not delve into the theory
behind wavelets and only present the main concepts of the trans-
form; recommended literature for more information on the wave-
let transform includes Mallat (1998) or Labat et al. (2000).

The time-scale wavelet transform of a continuous time signal,
x(t), is defined as (Mallat, 1998):

Tða; bÞ ¼ 1ffiffiffi
a
p

Z þ1

�1
g�

t � b
a

� �
xðtÞ � dt ð2Þ

where a is a dilation factor, b is the temporal translation of the func-
tion g(t), which allows for the study of the signal around b, ⁄ corre-
sponds to the complex conjugate and g(t) is the wavelet function or
mother wavelet.

The main property of the wavelet transform, which is derived
from the compact support of its basic function, is to provide a
time-scale localization of processes. This is in contrast to the
classical trigonometric functions of Fourier analysis. The wavelet
transform searches for correlations between the signal and wavelet
function. This calculation is done at different scales of a and locally
around the time of b. The result is a wavelet coefficient (T(a,b))
contour map known as a scalogram. In order to be classified as a
wavelet, a function must have finite energy, and it must satisfy
the following ‘‘admissibility conditions’’ (Mallat, 1998):
Z þ1

�1
gðtÞdt ¼ 0; Cg ¼

Z þ1

�1

jĝðwÞj2

jwj dw <1 ð3Þ

where ĝðwÞ is Fourier transform of g(t); i.e., the wavelet must have
no zero frequency component.

In order to obtain a reconstruction formula for the studied sig-
nal, it is necessary to add ‘‘regularity conditions’’ to the previous
conditions (Mallat, 1998):
Z þ1

�1
tkgðtÞdt ¼ 0 where k ¼ 1;2; . . . ;n� 1 ð4Þ

So the original signal may be reconstructed using the inverse
wavelet transform as (Mallat, 1998):

xðtÞ ¼ 1
cg

Z þ1

�1

Z 1

0

1ffiffiffi
a
p g

t � b
a

� �
Tða; bÞda � db

a2 ð5Þ

For practical applications, the hydrologist does not have at their
disposal a continuous-time signal process but rather a discrete-
time signal. A discretization of Eq. (2) based on the trapezoidal rule
may be the simplest discretization of the continuous wavelet
transform, producing N2 coefficients from a data set of length N.
Redundant information is therefore locked up within the coeffi-
cients, which may or may not be a desirable property (Addison
et al., 2001).

To overcome this redundancy, a logarithmically uniform spac-
ing can be used for the a scale discretization with a correspond-
ingly coarser resolution of the b locations, which allows for N
transform coefficients to completely describe a signal of length N.
Such a discrete wavelet has the form (Mallat, 1998):

gm;nðtÞ ¼
1ffiffiffiffiffiffi
am

0

p g
t � nb0am

0

am
0

� �
ð6Þ

where a0 is the specified fine dilation, where a0 > 1, with a0 usually
equal to 2, b0 is the location parameter, where b0 > 0, with b0 usually
equal to 1, and m and n are integers that control the wavelet
dilation and translation respectively.



Table 3
Details of the surveyed papers, including year of publication, authors, where hybrid wavelet–AI methods were used to predict hydrological variables.

Paper
No.

Author (year) Type of AI
technique

Wavelet transform
type

Variables Time scale

9 Mwale and Gan (2005) ANN, GA CWT Precipitation Monthly
Mwale et al. (2007) ANN, GA CWT Precipitation Monthly
Partal and Kisi (2007) ANFIS DWT Precipitation Daily
Nourani et al. (2009a) ANN DWT Precipitation Monthly
Partal and Cigizoglu (2009) ANN DWT Precipitation Daily
Kuo et al. (2010a) ANN, GA CWT Precipitation Seasonal
Kisi and Shiri (2011) GEP, NF DWT Precipitation Daily
Kisi and Cimen (2012) SVM DWT Precipitation Daily
Ramana et al. (2013) ANN DWT Precipitation Monthly

35 Cannas et al. (2006) ANN DWT,CWT Runoff Monthly
Kisi (2008) ANN DWT Stream-flow Monthly
Wang et al. (2009) ANN DWT Runoff Daily, annually
Wu et al. (2009) ANN DWT Runoff Daily
Adamowski (2008a) ANN CWT Stream-flow, meteorological data Daily
Zhou et al. (2008) ANN DWT Discharge Monthly
Kisi (2009a) ANN DWT Stream-flow Daily
Partal (2009a) ANN DWT Stream-flow Monthly
Mwale and Gan (2010) ANN, GA CWT Runoff Monthly
Adamowski and Sun (2010) ANN DWT Stream-flow Daily
Kuo et al. (2010b) ANN,GA CWT Stream-flow, rainfall, air temperature Seasonal, daily
Pramanik et al. (2010) ANN DWT Stream-flow Daily
Tiwari and Chatterjee (2010) ANN- Bootstrap DWT River water level Hourly
Shiri and Kisi (2010) ANFIS DWT Stream-flow Daily, monthly, yearly
Wang et al. (2011a,b) Statistical

method
DWT Streamflow Daily

Kisi (2011a) ANN DWT Stream-flow Monthly
Kisi and Partal (2011) NF DWT Stream-flow Monthly
Guo et al. (2011) SVM DWT Stream-flow Monthly
Kisi and Cimen (2011) SVM DWT Stream-flow Monthly
Tiwari and Chatterjee (2011) ANN-Bootstrap DWT Discharge Daily
Krishna et al. (2011) ANN DWT Stream-flow Daily
Tiwari et al. (2012) ANN, SOM DWT Discharge Daily
Kalteh (2013) SVR, ANN DWT Stream-flow Monthly
Wei et al. (2012) ANN DWT River discharge Monthly
Ren et al. (2011) ANFIS DWT, CWT Runoff Monthly
Adamowski and Prokoph
(2013)

ANN CWT Stream-flow Daily

Maheswaran and Khosa
(2013a)

ANN DWT, WVC Stream-flow Daily

Maheswaran and Khosa
(2012b)

ANN DWT, WVC Stream-flow Monthly

Krishna (2013) ANN DWT Inflow Daily
Badrzadeh et al. (2013) ANN, ANFIS DWT River flow Daily
Danandeh Mehr et al.
(2013a)

ANN, GP DWT Stream-flow Monthly

Danandeh Mehr et al.
(2013b)

ANN DWT Stream-flow Monthly

Sahay and Srivastava (2013) ANN, GA DWT Flood Daily
Sang (2013b) WMF DWT Rainfall, runoff Monthly, daily
Maheswaran et al. (2013) ANN DWT, WVC Stream-flow Daily, weekly, monthly

12 Anctil and Tape (2004) ANN CWT Stream-flow, rainfall, evapotranspiration Daily
Remesan et al. (2009) ANN DWT Rainfall, runoff Daily
Nourani et al. (2009b) ANN DWT Rainfall, runoff Daily
Nourani et al. (2011) ANN, ANFIS DWT Rainfall, runoff Daily, monthly
Wang et al. (2011a,b) ANN, GA DWT Rainfall, stream-flow Hourly
Adamowski et al. (2011) ANN-MARS DWT Morphological data, rainfall, runoff Daily
Nourani et al. (2012) ANN, GP DWT Rainfall, runoff Daily, monthly
Adamowski and Prasher
(2012)

SVR, ANN DWT Rainfall, runoff Daily

Nayak et al. (2013) ANN DWT Rainfall, discharge, evaporation Daily
Nourani et al. (2013) ANN, SOM DWT Rainfall, runoff Daily
Kamruzzaman et al. (2013) AR DWT Rainfall, stream
Nourani and Parhizkar
(2013)

ANN, SOM DWT,CWT Rainfall, runoff Daily, monthly

10 Partal and Cigizoglu (2008) ANN DWT SSL Daily
Mirbagheri et al. (2010) ANN, NF DWT SSL, discharge Daily
Kisi (2010) ANN DWT SSL Daily
Rajaee (2010) NF DWT SSL Daily
Rajaee et al. (2010) NF DWT SSL Daily
Rajaee et al. (2009) ANN,NF DWT SSL Daily
Rajaee et al. (2011) ANN DWT SSL Daily
Shiri and Kisi (2012) ANN, GEP, NF DWT SSL, discharge Daily

(continued on next page)
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Table 3 (continued)

Paper
No.

Author (year) Type of AI
technique

Wavelet transform
type

Variables Time scale

Liu et al. (2013a,b) ANN DWT SSC Daily
Nourani et al. (2014) ANN DWT Stream-flow, SSL Daily

5 Adamowski and Chan (2011) ANN DWT GWL Monthly
Maheswaran and Khosa
(2013b)

ANN WVC GWL Monthly

Kisi and Shiri (2012) ANFIS DWT GWL Daily
Moosavi et al. (2013a) ANN, ANFIS DWT GWL Monthly
Moosavi et al. (2013b) ANN, ANFIS DWT GWL Monthly

32 Kim and Valdes (2003) ANN DWT Drought Monthly
Belayneh and Adamowski
(2013)

AN DWT SPI, drought Monthly

Belayneh et al. (2014) ANN, SVR DWT SPI, drought Monthly
Shirmohammadi et al.
(2013)

ANN, ANFIS DWT Drought Monthly

Wang and Ding (2003) ANN DWT Shallow GWL, discharge Daily, monthly
Lauzon et al. (2004) SOM CWT Soil moisture-precipitation-flow Daily
Deng et al. (2011) SVM DWT Soil water content, precipitation, temperature,

evaporation
Daily

Adamowski (2008b) ANN CWT Snowmelt river flood Daily
Noori et al. (2009) ANN, ANFIS CWT Waste Generation Weekly
Partal (2009b) ANN DWT Evapotranspiration Daily
Shankar et al. (2011) Fuzzy DWT Land cover –
Abghari et al. (2012) ANN Active function Evapotranspiration Daily
Adamowski et al. (2012) ANN DWT Urban water demand, precipitation, temperature Daily
Kisi (2009b) ANN DWT Lake level Monthly
Campisi et al. (2012) ANN DWT Urban water demand Monthly
Tiwari and Adamowski
(2013)

Bootstrap-ANN DWT Urban water demand Daily, monthly

Ozger (2010) ANN, ANFIS CWT Wave height Hourly
Kisi (2011b) ANN DWT River-stage Daily
Deka and Prahlada (2012) ANN DWT Wave height Hourly
Shekarrizfard et al. (2012) ANN DWT Meteorological data Daily
Siwek and Osowski (2012) ANN, SVM DWT Meteorological data Daily
Najah et al. (2012) ANFIS DWT Water quality parameters Monthly
Karran et al. (2013) ANN,SVR DWT Climate regimes Daily
Yu et al. (2013) NF DWT Hydro-meteorological data Daily
Nalley et al. (2013) Trend test DWT Air temperature Monthly, seasonally,

annually
Pingale et al. (2013) Trend test DWT Temperature, rainfall Monthly, seasonally,

annually
Eynard et al. (2011) ANN DWT Temperature and thermal power consumption Monthly
Liu et al. (2013a) GA, PSO DWT Wind speed Sampling
Liu et al. (2013b) ANN DWT, Packet Wind speed Sampling
Liu et al. (2014) SVM DWT Wind speed Sampling
Evrendilek (2012) ANN DWT Heat fluxes, evapotranspiration Sampling
Wang et al. (2013) ANN, ARIMA DWT Water quality properties Monthly
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This power of two logarithmic scaling of the translation and dila-
tion is known as the dyadic grid arrangement. The dyadic wavelet
can be written in more compact notation as (Mallat, 1998):

gm;nðtÞ ¼ 2�m=2gð2�mt � nÞ ð7Þ

Discrete dyadic wavelets of this form are commonly chosen to
be orthonormal; i.e., (Mallat, 1998):
Z þ1

�1
gm;nðtÞgm0 ;n0 ðtÞdt ¼ dm;m0dn;n0 ð8Þ

where d is the Kronecker delta.
This allows for the complete regeneration of the original signal

as an expansion of a linear combination of translates and dilates of
orthonormal wavelets.

For a discrete time series, xi, the dyadic wavelet transform
becomes (Mallat, 1998):

Tm;n ¼ 2�m=2
XN�1

i¼0

gð2�mi� nÞxi ð9Þ

where Tm,n is the wavelet coefficient for the discrete wavelet of scale
a = 2m and location b = 2mn. Eq. (9) considers a finite time series, xi,
where i = 0, 1, 2, . . ., N � 1; and N is an integer power of 2, i.e.,
N = 2M. This gives the ranges of m and n as, respectively,
0 < n < 2M�m � 1 and 1 < m < M. At the largest wavelet scale (i.e.,
2m when m = M) only one wavelet is required to cover the time
interval, and only one coefficient is produced. At the next scale
(2m�1), two wavelets cover the time interval, hence two coefficients
are produced, and so on down to m = 1. At this point, the a scale is
21, i.e., 2M�1 or N/2 coefficients are required to describe the signal at
this scale. The total number of wavelet coefficients for a discrete
time series of length N = 2M is then 1 + 2 + 4 + 8 + � � � + 2M�1 = N � 1.

In addition to this, a signal smoothed component,T, remains,
which is termed the signal mean. Thus, a time series of length N
is broken into N components, i.e., with zero redundancy. The
inverse discrete transform is given by (Mallat, 1998):

xi ¼ T þ
XM

m¼1

X2M�m�1

n¼0

Tm;n2�m=2gð2�mi� nÞ ð10Þ

or in a simpler format as (Mallat, 1998):

xi ¼ TðtÞ þ
XM

m¼1

WmðtÞ ð11Þ
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where TðtÞ is the approximation sub-signal at level M, representing
the background information of data, and Wm(t) are wavelet coeffi-
cients which provide the detail sub-signals at levels m = 1, 2, . . ., M
and can capture small features of interpretational value in the data.

Because of the simplicity of W1(t), W2(t), . . ., WM(t), TðtÞ, some
interesting characteristics, such as period, hidden period, depen-
dence and jump can be diagnosed easily through wavelet
components.
3. Hydro-climatologic applications of wavelet–AI models

This review is a complement to recent surveys such as Maier
et al. (2010) and Abrahart et al. (2012) who mainly focused on
either technical or historical reviews of the use of ANNs in the
prediction of water resource variables in river systems and river
forecasting, respectively. The current review deals with various
hydro-climatologic processes. Moreover, it goes through applica-
tions of not only the ANN technique but also other data-driven AI
techniques (e.g., SOM, Fuzzy logic, GA, GP, SVM, etc.) coupled with
wavelet transform. Approximately 105 papers on the subject of
wavelet–AI for several hydro-climatologic issues were investigated.
Table 3 compares the type of utilized AI techniques, wavelet types,
applied hydrological variables and time scales of the reviewed
papers.
3.1. Topic 1: Wavelet–AI approach for precipitation modeling

Precipitation is needed to replenish water to the earth and is
important because it helps maintain the atmospheric balance.
The amount and duration of precipitation events affect both water
level and water quality. Precipitation can also be damaging; for
example, too much rain can cause severe flooding. Therefore, an
accurate estimate of precipitation is essential in water resources
management, particularly with respect to flood mitigation. How-
ever, the wide spatiotemporal variation in rainfall makes its pre-
diction particularly challenging. Numerous numerical, physical
and data-driven-based models have been developed to provide
an accurate estimation model for precipitation. Mwale and Gan
(2005) used wavelet spectra information to identify and analyze
the variety in space, time and frequency of dominant oscillations
in the rainfall of East Africa, along with the relationships existing
between September–November rainfall in that region and Sea Sur-
face Temperature (SST) of the Indian and South Atlantic Oceans.
Their wavelet-based analysis discerned homogeneous zones of
rainfall variability over various parts of the Oceans. In order to
accurately predict rainfall with a 2-month lead time, linear (i.e.,
canonical correlation analysis) and non-linear (i.e., ANN–GA) sta-
tistical tele-connection models were applied. A non-linear ANN–
GA model was the most accurate in predicting rainfall over most
of East Africa, whereas a model based on linear canonical correla-
tion analysis performed poorly over the same region. Mwale et al.
(2007) then expanded their models two years later using wavelet
empirical orthogonal functions of space–time-Frequency regimes
for examining the predictability of southern Africa summer
rainfall.

Partal and Kisi (2007) proposed a wavelet–NF method to predict
precipitation values. As choosing appropriate model inputs is one
of the most critical steps in building an accurate forecasting model,
DWT was used to present the original precipitation signal under
different resolution intervals, such that daily, monthly, and annual
sub-series’ characteristics could be more clearly delineated than in
the original signal. Subsequently, the correlation coefficients
between sub-series and the original precipitation series provided
information for the selection of the NF model inputs and for the
determination of the effective wavelet components to use in
predicting precipitation values at a daily scale. Their wavelet–NF
model provided a good fit with the observed data, especially for
time series which had zero precipitation in the summer months
as well as for the peaks within the testing period. This result was
interesting since classical NF models have usually faced difficulties
in forecasting extreme values of observed precipitation series.
Nourani et al. (2009a) linked wavelet analysis to a non-linear
inter-extrapolator ANN for monthly precipitation prediction. A
wavelet transform, capable of capturing signals’ multi-scale fea-
tures, served to decompose the precipitation time series into
sub-signals. Using an ANN model with a non-linear kernel to
reconstruct the signal better simulated the non-linear behavior of
the phenomenon than did other linear models such as seasonal
ARIMA. This was largely because the dominant seasonalities
extracted via wavelet analysis were assigned greater weights. Fur-
thermore, in investigating the effect of wavelet transform type and
optimum decomposition level on model performance, they con-
firmed the model’s accuracy in forecasting short- (one month
ahead) and long-term precipitation events. A similar methodology
was also followed by Ramana et al. (2013) to model monthly rain-
fall values using both rainfall and temperature data as inputs for a
WANN model.

Partal and Cigizoglu (2009) predicted daily precipitation via a
wavelet–NN method, which provided a good fit with observed
data. Kisi and Shiri (2011) used the advantage of several AI-based
methods in order to model daily precipitation. They compared
the abilities of single GEP, NF models, with the linked form of
GEP and NF with wavelet analysis. The results of daily precipitation
forecasts via single GEP and NF were weak, and the use of wavelet
coefficients did not satisfactorily improve the forecasting results,
although the accuracies increased to a great extent. Finally, they
obtained good precipitation forecasting results by merging the best
single and hybrid models’ inputs and introducing them as the
model inputs. Among the outcomes of later models, the hybrid
wavelet–GEP model had superior performance in forecasting daily
precipitation than the wavelet–NF model which was unable to
learn the non-linear nature of the process.

Kuo et al. (2010a) investigated the seasonal predictability of
rainfall via the wavelet–AI approach. Wavelet analysis was
employed on seasonal rainfall and Pacific Ocean SST data, and
the results revealed strong 2–4-year cycles in rainfall data as well
as high wavelet coherence between the selected SST and seasonal
rainfall. They went on to use an ANN-GA model to predict seasonal
precipitation with a one-season lead time, using the GA to calibrate
ANN parameters. As a result, model parameters and coefficients for
the different layers were optimized by minimizing an objective
function that, in turn, maximized the correlation between simu-
lated and observed seasonal rainfall values. Their study demon-
strated a strong relationship between seasonal Pacific SST
anomalies and seasonal rainfall at the study site, and this link
was effectively captured by an ANN–GA model.

Kisi and Cimen (2012) used a joint wavelet–SVM model for the
prediction of daily precipitation and found that the hybrid method
could increase the forecasting accuracy of one-day-ahead precipi-
tation better than single SVM and ANN models.

An assessment of the various studies on precipitation modeling
revealed two issues regarding AI and wavelet transforms,
respectively:

(i) Since an averaged value of the pointy measured rainfalls of
the rain gauges over a watershed is usually assigned to the
whole of the watershed, the data and subsequently the
model used for forecasting and simulation of the rainfall
process usually contain uncertainties. In such uncertain sit-
uations, Fuzzy-based models may be employed in the esti-
mation of uncertainties in real world problems.
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(ii) It can be deduced that although the data pre-processing pro-
cess by the wavelet transform can improve the precipitation
modeling performance at different time scales, this improve-
ment is greater for large scales such as monthly or seasonal
data compared to hourly, daily or weekly. Such an outcome
is reasonable because the seasonality pattern in large time
scales are more highlighted compared to the small time
scales. In other words, the Auto Regressive (AR) or
Markovian property of precipitation is more significant in
small time scales such as the daily scale in which the process
does not present a strong Markov chain, whereas the season-
ality feature is the dominant factor in large time scales such
as monthly or seasonal. In such cases precipitation forecast-
ing at a daily scale might not result in useful outcomes. On
the other hand, precipitation time series analysis via
wavelets is not only considered a temporal pre-processing
technique, but it also reveals effective information about
the precipitation background of a specific area. Accordingly,
the scalogram of CWT specifies the dominant daily, monthly,
seasonal and yearly periods, as well as the failure or increase
in the precipitation. In this way, droughts and floods can be
distinguished clearly. Thus, in using the hybrid wavelet–AI
models for rainfall prediction, more refined time steps can
be recognized and used to drive certain hydrologic models
in order to predict droughts and floods according to the
declining and rising trends of rainfall values. Such informa-
tion should benefit the water resources management of
any watershed.

3.2. Topic 2: Wavelet–AI models for flow forecasting

Simulations and predictions of stream-flow is one of the most
active research areas in surface water hydrology. Given its poten-
tial consequences (e.g., flooding, erosion), stream-flow is the gener-
ated component of the rainfall–runoff process and needs precise
prediction; therefore, short- and long-term forecasting models
are extremely important for the sustainable management of water
resources. Given the influence of such varied phenomena as pre-
cipitation, evaporation, and temperature in stream-flow genera-
tion, the relevant observed time series tend to be non-linear,
temporally variable and indeterminate. The underlying mecha-
nisms of stream-flow generation are likely to be quite different
during low, medium, and high flow periods, especially when
extreme events occur. It is therefore very difficult to forecast
stream-flow (Guo et al., 2011). In several studies the efficiency
and accuracy of stream-flow models using a wavelet–AI approach
has been compared to those of single AI or conventional regres-
sion-based models. Typically, such models first decompose a time
series into multiple levels of detail, and then implement a multi-
resolution analysis which can effectively diagnose the signal’s
main frequency components, as well as abstract local information
from the time series. Subsequently, the appropriate sub-series are
utilized in the AI model.

Cannas et al. (2006) investigated the effects of wavelet-based
data pre-processing on NNs’ ability to predict the hydrologic
behavior of runoff. Employing DWT and CWT to account for non-
stationarity and seasonal irregularity of runoff time series, they
showed that networks trained with pre-processed data performed
better in predicting monthly runoff than did networks trained with
non-decomposed, noisy raw signals.

Adamowski (2008a) developed short-term river flood forecast-
ing models based on wavelet and cross-wavelet components and
evaluated their accuracy, compared with ANN models and simple
perseverance models, in forecasting daily stream-flows with lead
times of 1, 3, and 7 days. The wavelet based models showed great
accuracy as a stand-alone forecasting method for 1- and
3-day lead times river flood forecasting, provided no significant
trends in the amplitude occurred for the same Julian day year-to-
year, and a relatively stable phase shift existed between the flow
and meteorological time series. However, such river flood forecast-
ing models, based on wavelet and cross-wavelet constituent com-
ponents, were not accurate for longer lead time forecasting (e.g.,
7 days).

In order to forecast monthly stream-flows, Kisi (2008) used a
neuro-wavelet model. Comparing these results with those of a
Multi-Layer Perceptron (MLP), a MLR and AR models, he found
the neuro-wavelet model outperformed the MLP, MLR and AR
models.

In a further study, Wang et al. (2009) applied the multi-resolu-
tion characteristic of wavelet analysis and the non-linear capability
of ANN to predict inflow of Three Gorges Dam in Yangtze River,
China. Using both a wavelet network model and a type of threshold
AR model to predict short- and long-term runoffs, they found the
wavelet network model to be more accurate, leading them to sug-
gest that future research should focus on functional and feasible
wavelet network models.

In another study, Wu et al. (2009) explored the efficiency of var-
ious methods in improving the ANN performance in daily flow pre-
diction. The objective of their research was to determine whether
data pre-processing techniques such as Moving Average (MA), Sin-
gular Spectrum Analysis (SSA), and Wavelet Multi-Resolution
Analysis (WMRA), coupled with ANN, might improve the estima-
tion accuracy of daily flows. These data pre-processing techniques
were used to improve and highlight the mapping relationship
between inputs and output of the ANN model by smoothing raw
flow data. The hybrid models showed noticeable improved perfor-
mance over the ANN model and considering the performance and
complexity of the linkage of ANN to the data pre-processing meth-
ods, MA, SSA and WMRA yielded better efficiency, respectively.

Zhou et al. (2008) used a wavelet predictor–corrector model to
decompose a time series into an approximation series and several
stationary detailed sub-series. Each sub-series was then predicted
individually using an ARMA model, and a correction procedure was
implemented for the sum of the prediction results. Finally, simulat-
ing monthly discharge with ARMA, seasonal ARIMA, and an ANN
model, they found the wavelet predictor–corrector model to have
the greatest prediction accuracy. In addition, the decomposition
scale showed no obvious effect on the prediction for the monthly
discharge time series.

Kisi (2009a), comparing the ability of a joint wavelet–ANN
model to an ANN alone in predicting 1-day-ahead intermittent
stream-flow, tested the models by applying different input combi-
nations of decomposed time series. He ultimately showed that the
wavelet–ANN provided significantly better forecasting accuracy
than the ANN alone, particularly for high flow estimates.

Partal (2009a) evaluated the efficiency of several ANNs (i.e., feed
forward back propagation, generalized regression NN, radial based
function-based NN) combined with a wavelet transform to predict
river flow in future months. Periodic components obtained via
wavelet decomposition were fed to the NNs to improve river flow
forecasting. The combination of hybrid wavelet and the feed for-
ward back propagation model outperformed all other models
examined in the study.

Adamowski and Sun (2010) coupled DWT and ANN for flow
forecasting in non-perennial rivers in semi-arid watersheds. The
decomposition process of original flow time series into sub-series
was iterated, with successive approximation signals being decom-
posed in turn, so that the original flow time series were broken
down into many lower resolution components. The sub-series used
in the ANN model led to efficient forecasting outcomes. WANN
models were found to provide more accurate flow forecasts than
the regular ANN models, since wavelet transforms provided useful
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decompositions of the original time series, and the wavelet-trans-
formed data improved the ability of the ANN forecasting model by
capturing useful information on various resolution levels.

Using a wavelet-based ANN–GA model, Kuo et al. (2010b) pre-
dicted stream-flow with a one season (3-month) lead time-based
on SST. Wavelet analysis was first applied to select sectors of SST
that were related to the rainfall data of the study sites at a seasonal
time scale, and then the selected SST was used as predictors in the
ANN–GA model to predict seasonal rainfall at a one-season lead
time. The GA portion of the model served to calibrate the parame-
ters of the ANN with a feed forward structure and three layers. This
resulted in an efficient stream-flow prediction methodology.

Pramanik et al. (2010) concluded that advance time step
stream-flow forecasting was of critical importance in controlling
flood damage, while applying a hybrid wavelet–AI model to
stream-flow forecasting. They proposed models which used DWT
functions to pre-process the flow time series into wavelet coeffi-
cients of different frequency bands, leading to the creations of
WANN models with 1-, 2- and 3-day lead times to forecast flow.
The hybrid models were trained using the Levenberg–Marquardt
algorithm and results were compared with simple ANN models.
Confirming previous studies’ results, the WANN models provided
better prediction of peaks in stream-flow than individual ANN
models.

In order to develop an accurate and reliable ANN model for
hourly flood forecasting, the potential of wavelet and bootstrap-
ping techniques linked to ANN (WBANN) was explored by Tiwari
and Chatterjee (2010). To capture useful information, the time ser-
ies was decomposed into different components and then appropri-
ate sub-series were added up to develop new time series. Finally a
bootstrap-based ANN model was constructed. Overall, the WBANN
model was found to be accurate and reliable in simulating peak
water levels, and outperformed the ANN, WANN and BANN mod-
els, indicating that while wavelet decomposition improved the
performance of ANN models, the bootstrap re-sampling technique
produced more consistent and stable solutions.

To study short- and long-term stream-flow forecasting, Shiri
and Kisi (2010) used recorded stream-flow values to compare the
performance of a combined wavelet–NF model, which took into
account the periodicity of the data, to an unenhanced NF model.
The comparison of results showed that adding the periodicity com-
ponent into the input layer generally increased modeling accuracy;
such the wavelet–NF model can be considered as an appropriate
model to simulate daily, monthly and especially yearly stream-
flows.

Synthetic generation of daily streamflow sequences via the
wavelet transform was explored by Wang et al. (2011b). The
method firstly decomposes the daily streamflow sequences with
different frequency components into the series of wavelet coeffi-
cients W1(t), W2(t), . . ., WP(t) and scale coefficients (the residual)
CP(t) at a specific resolution of P. Secondly, the series of W1(t),
W2(t), . . ., WP(t) and CP(t) are divided into a number of sub-series
based on a yearly period. Thirdly, random sampling is performed
from sub-series of W1(t), W2(t), . . ., WP(t) and CP(t), respectively.
Finally, based on these sampled sub-series, a large number of syn-
thetic daily streamflow sequences are obtained using the wavelet
reconstruction algorithm. Regarding the advantages of the devel-
oped method, Wang et al. (2011b) indicated that: (1) the approach
is nonparametric; (2) it is able to avoid assumptions of probability
distribution types (Normal or Pearson Type III) and of dependence
structure (linear or non-linear); (3) it is not sensitive to the original
data length and suitable for any hydrological sequences; and (4)
the generated sequences by the method could capture the depen-
dence structure and statistical properties presented in the data.

The ability of a combined model, Wavelet–Generalized Regres-
sion NN (WGRNN), was investigated by Kisi (2011a) for prediction
of one-month-ahead stream-flow. The WGRNN, by combining
DWT and GRNN, performed better than the GRNN and feed for-
ward NN models for forecasting monthly stream-flow. Since sev-
eral features of the original signal, such as its daily, monthly and
annual periods, could be discerned more clearly than in the origi-
nal signal, therefore, estimates were more accurate than those
obtained directly by the original signals. Through a similar study,
Kisi and Partal (2011) developed a forecasting model for monthly
stream-flow via NF coupled to DWT. Comparison results indicated
that the wavelet–NF model was superior to the classical NF
method, especially in detecting the peak values of stream-flow.

Guo et al. (2011) used an SVM model improved by the addition
of an adaptive insensitive factor to improve the performance of the
SVM in predicting monthly stream-flow. Considering the presence
of noise in the runoff time series and its potential negative influ-
ence on model performance, a wavelet de-noising method was
applied to reduce or eliminate the noise. Furthermore, given the
PSO algorithm’s strong searching ability, an improved PSO was
applied to optimize the parameters of the forecasting model. The
improved SVM model combined with wavelet analysis was able
to process a complex hydrological data series (e.g., monthly
stream-flow) better than ANN and conventional SVM models.

In a similar study, Kisi and Cimen (2011) investigated the accu-
racy of a combined wavelet and SVM model in forecasting monthly
stream-flow. They implemented their study in 5 steps: (i) wavelet
de-noising, (ii) determination of best delay time and embedding
dimension, (iii) phase-space reconstruction, (iv) model fitting, (v)
stream-flow forecasting with different models. With an ANN
model serving as the basis of comparison for conventional and
improved SVM models, they found that coupling with a DWT sig-
nificantly increased the accuracy of the Support Vector Regression
(SVR) model in forecasting monthly stream-flow.

With the goal of forecasting daily discharge, Tiwari and
Chatterjee (2011) explored a WBANN model, comparing its perfor-
mance to that of a traditional ANN, WANN and bootstrap-based
ANN. The WBANN and WANN models produced significantly better
results than the traditional ANN and bootstrap-based ANN models,
particularly in terms of peak discharge forecasting. Similarly,
Krishna et al. (2011) employed a hybrid WANN model to forecast
daily river flow, achieving good forecasting accuracy, especially
with respect to peak points.

Ren et al. (2011) used the advantage of localized characteristics
of wavelet transform and approximation function of an Adaptive
Neuro-Fuzzy Inference System (ANFIS) in order to establish a com-
bined wavelet–ANFIS (WANFIS) model for monthly runoff predic-
tion. Issues arising from the large amplitude of intra- and inter-
annual variation in monthly runoff were avoided through the use
of a wavelet analysis-based resolving and reconstruction technique
allowing the decomposition of signals with different frequencies.
Based on a comparison of measured and simulated values this
modeling approach produced acceptable predictions.

Tiwari et al. (2012) investigated AI-based (i.e., NN and SOM) and
wavelet-based daily river discharge forecasting models. SOM was
used to homogeneously classify the data sets, while the NN models
served for prediction. The NN models were supplemented by a
wavelet approach, which served to enhance forecasting performance
with respect to long datasets. The SOM’s effectiveness in clustering
data into different groups and the superiority in forecasting river
flow of WBANN models over simple NN models were noted.

In a recent study, Kalteh (2013) forecasted monthly river flow
by using the capabilities of AI-based (i.e., SVR and ANN) models
coupled with the wavelet transform. Coupled with a wavelet
transform process, ANN and SVR models provided more accurate
forecasts than non-coupled ANN or SVR models. The performance
of the hybrid wavelet–SVR model exhibited greater reliability than
the WANN model.
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In order to accurately simulate and predict the dynamic behav-
ior of river discharge over a wide range of time intervals, Wei et al.
(2012) proposed a hybrid WANN method capable of reliably cap-
turing the high-frequency characteristics of river discharge on a
monthly time scale. As a basis for comparison, the WANN model
was used to predict river discharge 48 months in advance. The
WANN model decomposed by db5 mother wavelet at level 4
resulted in the most accurate river discharge predictions.

To forecast daily inflow with lead times of 1–5 days,
Maheswaran and Khosa (2013a) established a multi-scale non-lin-
ear model based on coupling a DWT and a second-order Volterra
(WVC) model, and compared its performance to that of conven-
tional ANN and WANN models, as well as other baseline models.
The WVC performed well in short-term flow forecasting, especially
when compared with the WANN model. This may be attributed to
the ability of the former approach to provide a better scale-specific
description of the original time series. It is noted that Maheswaran
and Khosa (2012b) extended the 1-month ahead streamflow fore-
casting method using the wavelet based multi-scale non-linear
model linked to the second order non-linear Volterra kernel esti-
mated by Kalman filter formulation. The proposed model was com-
pared with wavelet based linear regression models and other non-
linear approaches such as WANN based models, and was found to
provide the best performance.

Adamowski and Prokoph (2013) used the multi-scale resolution
features of CWT analysis and cross wavelet analysis to determine
the amplitude and timing of stream-flow discontinuities for spe-
cific wavebands. The cross wavelet-based method was able to
detect the strength and timing of abrupt shifts to new stream-flow
levels, gaps in data records longer than the waveband of interest, as
well as a sinusoidal discontinuity curve following an underlying
modeled annual signal at ±0.5 year uncertainty. Parameter testing
of the time–frequency resolution demonstrated that high temporal
resolution using narrow analysis windows was favorable to high-
frequency resolution for detection of waveband-related disconti-
nuities. Discontinuity analysis on observed daily stream-flow
records showed that there was at least one discontinuity-year
related to the annual spring flood in each record studied, and that
neighboring stream-flows had similar discontinuity patterns.

Badrzadeh et al. (2013) investigated WANN and WANFIS models
provided originally by Nourani et al. (2011), for river flow forecast-
ing. Outcomes indicated that the hybrid WANN model produced bet-
ter results, especially for the peak values and longer lead-times.

Krishna (2013) explored the capability of two pre-processing
techniques of wavelets and MA in combination with ANN and
MLR models for prediction of daily inflow values. The study dem-
onstrated the superiority of the wavelet pre-processing technique
and owing to the model performance, the wavelet–MLR was con-
sidered better than the WANN model.

Danandeh Mehr et al. (2013a) applied WANN and linear GP
techniques to forecast monthly streamflow values. In contrast to
the results of the majority of previous research studies, in this
study, WANN model performed poorly in comparison to linear
GP. An explicit linear GP model constructed by only basic arithme-
tic functions including one month-lagged records of both target
and upstream stations resulted in the best prediction model for
the study catchment. In another similar study, Danandeh Mehr
et al. (2013b) explored the prediction of monthly streamflow at
successive stations using the WANN model.

The comprehensive study of Sang (2013b) led to an improved
Wavelet Modeling Framework in conjunction with AI-based black
box models for precipitation and discharge time series forecasting.
He developed a method for DWT decomposition of time series
termed the Wavelet Modeling Framework (WMF). In this light,
Sang firstly separated different deterministic components and
removed noise involved in the original time series using DWT to
obtain deterministic forecasting results; then, he forecasted the
former and quantitatively described noise’s random characteristics
to estimate uncertainty and then summed them up to attain the
final forecasting result. He applied the WMF to four hydrologic
cases and found that wavelet-based AI models perform more effec-
tively than single AI models.

Sahay and Srivastava (2013) developed a wavelet–GA–NN
model for forecasting 1-day-ahead monsoon river flows which
are difficult to model due to the irregularly spaced spiky large
events and sustained flows of varying duration. In this regard, GA
was used for optimizing the initial parameters of an ANN training
scheme. The results indicated that wavelet–GA–NN model could
outperform the AR and GA-optimized ANN models, which used ori-
ginal streamflow time series as inputs.

Although the majority of wavelet–AI-based models in stream-
flow forecasting used a particular set of wavelet decomposition
sub-series as the ‘optimal’ wavelet transform to be used for fore-
casting purposes, relying on a specific wavelet sub-series often
leads to predictions that capture some phenomena at the expenses
of others. However, different sub-series play different roles in cap-
turing the different characteristics of a particular hydrological pro-
cess. Therefore, ensemble approaches based on the use of multiple
different wavelets, in conjunction with a multi-model setup, could
potentially improve the modeling performance and also allow for
uncertainty estimation. This was a novel idea in the wavelet–AI
field developed by Maheswaran et al. (2013) which involved pro-
posing a new multi-wavelet based ensemble method for the wave-
let Volterra coupled model. The ensemble-based multi-wavelet
Volterra approach was applied for forecasting streamflow at differ-
ent scales (daily, weekly and monthly) and the outcomes revealed
the superiority of the new approach in comparison to non-ensem-
ble wavelet Volterra models.

An assessment of the various papers that have been reviewed in
this sub-section reveals the following:

(i) Single AI-based models with short-term memory can usually
handle the AR property of the process; thus, in modeling,
each value of a series can only be related to the prior values,
and subsequently, the peak and maximum values of flow
which are important in water resources management and
particularly in flood mitigation are underestimated. Combin-
ing wavelet and AI methods can help handle long term sea-
sonality and reveal proper outcomes for peak flows. It is
noted that classic models such as seasonal ARIMA can also
handle the long term seasonality, but the advantage of
wavelet–AI models is the simultaneous consideration of sev-
eral short- and long-term seasonalities in the modeling pro-
cess, which may lead to better estimation of peak points.

(ii) Hydrologic time series in general, and flow time series in
particular, consist of measurement and/or dynamical noise.
In this regard, the wavelet transform is capable of de-noising
the time series to improve the AI-based modeling perfor-
mance, in addition to extracting dynamic and multi-scale
features of the non-stationary time series.

(iii) According to Table 3, among the reviewed papers, the DWT
has been applied more than CWT for flow forecasting. This
can be related to the nature of flow which is less stochastic,
so, the Markovian property of flow time series is more per-
ceptible in comparison to rainfall. In this way, application
of DWT at specific levels which refer to daily, weekly,
monthly, and yearly seasonalities appears to be more useful
than application of CWT which exhibits much more redun-
dant seasonalities.

(iv) One of the important concerns in flow forecasting is the
selection of a proper lead time. At a daily time scale it is
considered that longer lead times (e.g., 7 days) for flow
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forecasting using wavelet-Al approaches could not lead to
accurate forecasting results, while 1-, 2- or 3-day ahead fore-
casting was usually more effective.

3.3. Topic 3: Wavelet–AI models for rainfall–runoff modeling

For any watershed, accurate rainfall–runoff modeling is a key
issue in water resource planning, as it provides vital information
for flood mitigation, the design of hydraulic structures, and overall
watershed management. The highly complex, dynamic and non-
linear nature of the process on both spatial and temporal scales
has led to the scientific investigation of hybrid models.

In a preliminary study, Anctil and Tape (2004) explored the use
of an ANN rainfall–runoff model combined with wavelet decompo-
sition in an effort to forecast next-day stream-flow, based on
stream-flow, rainfall, and potential evapotranspiration time series.
Three wavelet decomposed components (i.e., short, intermediate,
and long wavelet periods) were used to depict the rainfall–runoff
process. An ANN was then trained for each wavelet sub-series.
Short wavelet periods were found to be ultimately responsible
for most of the WANN hybrid forecasting error. The slight advan-
tage in performance of the WANN over non wavelet-assisted mod-
els might be attributed to a better usage of the evapotranspiration
time series.

Later, Remesan et al. (2009) described a new hybrid model
based on the Gamma Test, ANN and DWT, evaluated for daily rain-
fall–runoff modeling. They identified input combinations com-
posed of antecedent rainfall and runoff values using Gamma Test
analysis. The proposed hybrid model outperformed other popular
AI models (i.e., local LR, NNAR with exogenous input and ANFIS
models), as well as basic benchmark models (i.e., a naive model
in which the predicted runoff value is equal to the latest measured
value) and a trend model (in which the predicted runoff value is
based on a linear extrapolation of the two previous runoff values).
They observed significant modeling improvement by purposely
decomposing input signals into different frequency bands to be
modeled separately, although it has been known for decades that
hydrological catchments can act as low-pass filters in converting
high frequency rainfall signals into low frequency river flows.
The wider implication of their study in the field of hydrological
modeling was that its general framework could be applied to other
model combinations in which the model engine could consist of
other AI techniques, such as SVM, NF systems, or even a conceptual
model.

Mwale and Gan (2010) integrated wavelet empirical orthogonal
function analysis, GA driven ANN, statistical disaggregation and
hydrologic modeling into a hydrologic framework to a model
weekly rainfall–runoff process. They found that the statistical
properties of the hydro-climatic process in their case study are
approximately stationary, and so statistically generated rainfall
values may be used to predict the basin runoff with considerable
skill.

In developing a WANN model to simulate flooding on an arid
flood plain, Wang et al. (2011a) implemented a GA in order to gain
the ability to achieve a global optimum and avoid a local optimum.
This hybrid GA-WANN model showed a strong capacity for rain-
fall–runoff mapping and computational efficiency as well as being
suitable for flood simulation in arid areas.

Nourani et al. (2009b) coupled wavelets and ANN to model the
rainfall–runoff process. Given the extraction via wavelets of the
time series’ multi-scale characteristics, the model was capable of
predicting both short and long term runoffs. In a further study,
Nourani et al. (2011) investigated the rainfall–runoff process using
two hybrid wavelet–AI models (i.e., WANN and WANFIS) and found
that considering seasonality effects extracted through wavelet
decomposition, the hybrid WANFIS model outperformed individual
AI-based models. They attributed this to the strength of wavelet
analysis in extracting dominant frequencies, and fuzzy analysis in
handling the uncertainties involved in the relevant phenomena.

Given the complexity of rainfall–runoff relationships in moun-
tainous watersheds and the lack of hydrological data in such
watersheds, process-based models have a limited applicability
for runoff forecasting. In light of this, Adamowski et al. (2011) pro-
posed a methodology where extensive data sets were not required
for runoff forecasting in mountainous watersheds; Multivariate
Adaptive Regression Spline (MARS), WANN, and regular ANN mod-
els were developed and compared for runoff forecasting applica-
tions in a mountainous watershed with limited data. The best
WANN and MARS models were found to be comparable in terms
of forecasting accuracy, both providing very accurate runoff fore-
casts compared to the best ANN model, particularly in the case of
short-term runoff. Adamowski and Prasher (2012) employed SVR
and WANN for daily runoff forecasting in a mountainous region
supported by antecedent precipitation index, rainfall, and day of
the year data. Both methods provided accurate results, with the
best WANN model slightly outperforming the best SVR model in
terms of accuracy, leading them to suggest that to further assess
the suitability in forecasting runoff these methods should be tested
in other mountainous watersheds where only limited data are
available.

Nourani et al. (2012) investigated the linkage of wavelet analysis
to GP in constructing a hybrid model to detect seasonality patterns
in rainfall–runoff. The hybrid model was useful in forecasting run-
off. Nourani et al. (2013) went on to confirm the superiority of a
SOM–ANN model coupled with wavelet transform in rainfall–run-
off modeling using satellite data. A two-level SOM clustering tech-
nique served to identify spatially homogeneous clusters of satellite
precipitation data, and the most operative and effective data were
selected for the ANN to model the rainfall–runoff process on daily
and multi-step scales. Besides removing noise, the wavelet trans-
form served to extract dynamic and multi-scale features from the
non-stationary runoff time series. Spatiotemporal pre-processing
of ANN model inputs led to a promising improvement in the perfor-
mance of rainfall–runoff forecasting compared to ANN and simple
WANN models. The forecasting outcomes indicated that the ANN
forecasting model coupled with the SOM clustering method
decreased the dimensionality of the input variables and conse-
quently the complexity of the ANN model. On the other hand, by
removing noise and revealing the dominant periods, wavelet trans-
formation of runoff data increased the forecasting performance of
the model, particularly with respect to peak runoff values. Using a
wavelet transform to capture multi-scale features of the rainfall–
runoff process, a SOM to classify the extracted features and select
the dominant ones and an ANN to predict runoff discharge,
Nourani and Parhizkar (2013) applied the resultant wavelet–
SOM–ANN model for modeling the rainfall–runoff process. The
two-stage procedure (i.e., data pre-processing and model building
stages) was implemented in the rainfall–runoff forecasting model.
Since one of the essential steps in any ANN-based model is determi-
nation of dominant input variables, independent rainfall and runoff
sub-series obtained via wavelet analysis were evaluated and classi-
fied with SOM, a strong non-linear classifier. The newly developed
model led to better predictions, especially for peak points.

Nayak et al. (2013) demonstrated the potential use of WANN for
daily river flow forecasting by developing a rainfall–runoff model
and compared the WANN with the single ANN and the NAM (i.e.,
NAM describes the behavior of each individual component in the
hydrological cycle, at catchment level, using a group of intercon-
nected conceptual elements) models. The WANN model performed
better compared to the ANN and NAM model which includes
physical elements such as moisture content in estimating the
hydrograph characteristics such as the flow duration curve.
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Kamruzzaman et al. (2013) considered a novel aspect, which
exploits the relationship between stream flow on day t and a
DWT of the rainfall from day t back as far as day t–k. Then, a
multi-scale transform is also included in the modeling framework
as a moving DWT. Although the authors indicated that their aim
was to find relatively few wavelet coefficients based on rainfall
back as far as day t–k that could be used as linear predictors for
stream flow on day t, the application of the moving method to
the decomposed wavelet time series appears not to be a good
approach, since each value of the wavelet coefficient time series
denotes a specific period of the process.

The review of papers in this sub-section showed that:

(i) The majority of researchers applied a daily time scale in
order to model the rainfall–runoff process. Rainfall–runoff
models are used extensively in flood studies and forecasting,
and that is why it is important to investigate the rainfall–
runoff process at short-term scales such as daily. Since the
Markovian property of runoff is more perceptible in compar-
ison to rainfall, the combination of runoff antecedents and
rainfall data can appropriately produce rainfall–runoff
patterns.

(ii) Moreover, comparison of both daily and monthly time scales
for rainfall–runoff modeling in a watershed revealed that the
determination coefficients for peak values were more pre-
cise at a monthly time scale compared to a daily time scale.
Since at the monthly scale modeling the AR characteristic of
the time series is decreased by averaging the time series
data over a month, the seasonal pattern is highlighted as
the main characteristic of the time series which can be cap-
tured by wavelet analysis in terms of sub-signals.

(iii) Rainfall–runoff model performances for various watersheds
with similar climate and markedly distinct topography con-
ditions are different. The properties of a flat sub-basin can be
handled with simple AI models such as ANN; however, a
‘wild’ watershed (i.e., a more steep and large watershed with
elevation variety) can be more accurately modeled via
ANFIS. In addition to uncertainties relevant to pointy rainfall
measurement and spatiotemporal variation over the study
area, wild watersheds involve more uncertain and ambigu-
ous hydrological characteristics. Therefore, models based
on the fuzzy theory concept might lead to more reliable
results than other AI models. The application of wavelets
which provide dominant sub-series as inputs to the model
to have insight into the physics of the process, can effec-
tively decrease the undesirable effects of topographic variety
of the study area. From the point of uncertainty view, the
WANFIS model seems to perform more effectively than
other wavelet–AI models in modeling ‘wild’ watersheds.

(iv) One of the important issues in rainfall–runoff models is the
accurate modeling of peak values in order to designs an
appropriate flood alert and management system. The wave-
let-based seasonal models are more efficient than only AR
models (i.e., ANN and ANFIS) in monitoring peak values. It
is evident that extreme or peak values in the rainfall and
runoff time series, which occur in a periodic pattern, can
be detected by the seasonal models accurately. When com-
paring flat and ‘wild’ watersheds, the wild watershed shows
quicker responses for a precipitation event towards a
watershed with a mild slope and fairly small area, so, more
instantaneous jumps may appear in the wild watershed’s
time series. WANFIS can model such extreme values more
accurately due to being compatible with the uncertainty
involved. By employing fuzzy and wavelet concepts linked
to the ANN framework, the uncertainty and seasonality of
the phenomena can respectively be better handled.
3.4. Topic 4: Wavelet–AI models for sediment modeling

In terms of assessing sediment impacts on design and manage-
ment of water resources projects, the estimation and simulation of
Suspended Sediment Load (SSL) at a watershed outlet is vital to
water and environmental engineers. Unlike many chemical pollu-
tants, sediment is a vital natural component of water bodies; how-
ever, particularly in excessive amounts, they can be of concern,
either as a contaminant affecting water quality, or by interfering
with the efficient performance of hydraulic structures such as
dams.

Partal and Cigizoglu (2008) estimated the SSL in rivers via a
hybrid WANN method. The dominant wavelet components
obtained via DWT were summed up and served as an input for
the ANN model. The WANN model provided a good fit to observed
data, particularly in the case of peak values and cumulative sedi-
ment loads. Rajaee (2010) compared NF, wavelet–NF (WNF),
MLR, and Sediment Rating Curve (SRC) models in forecasting SSL.
The observed time series of river flow discharge and SSL were
decomposed into sub-series via DWT, and the effective sub-series
were added together and used as inputs to the NF model for
daily SSL prediction. The results illustrated the efficiency of WNF
model, while NF, MLR, and SRC models provided unacceptable pre-
dictions. In a similar study, Rajaee et al. (2010) explored the effi-
ciency of WNF model for SSL forecasting in a larger study area
with a lower discharge and SSL amount and achieved promising
results in a ‘wild’ watershed. The observed time series of river dis-
charge and SSL were decomposed by the db4 wavelet and the use-
ful wavelet components were summed and used in the NF model.
Results showed that the WNF model performance was better in
prediction compared to the NF and SRC models, particularly in
extreme value prediction. Moreover, the model could be employed
to simulate the hysteresis phenomenon, while the SRC method was
not able to handle the involved hysteresis.

Using a coupled WANN, NF model and a conventional SRC,
Mirbagheri et al. (2010) forecasted SSL. Their WNF model satisfac-
torily predicted sediment loads underestimated by ANN, NF and
SRC models alone. Besides being good at predicting load, the
WNF model was successful in reproducing the hysteresis phenome-
non. Hysteresis is a secondary relationship between sediment and
river discharge values which can be detected in a scatter plot of dis-
charge vs. sediment, where above a certain threshold, increasing the
discharge diminishes sediment loads. The WNF model was capable
of simulating this hysteresis and while its simulation yielded loads
rather unlike those measured, the SRC method was unable to model
this behavior, and the ANN and NF models were only somewhat
able to regenerating the hysteresis effect. Overall, the WNF model,
which used decomposed data to extract important characteristics
embedded in the Suspended Sediment Concentration (SSC) signal,
outperformed other models that employed raw data.

Applying a WANN technique for modeling the daily suspended
sediment-discharge relationship, Kisi (2010) showed that the
hybrid model could increase estimation accuracy. Considering
WANN, MLR, and SRC models for daily SSL modeling, Rajaee et al.
(2011) showed that the WANN model outperformed the other
models, generated reasonable predictions for extreme sediment
loads, acceptably simulated the hysteresis phenomenon, and satis-
factorily estimated the cumulative SSL.

Employing GEP, NF, and ANN techniques to estimate SSL using
daily river discharge and sediment load records, Shiri and Kisi
(2012) showed that the GEP model outperformed the NF and
ANN models. Combining these models with DWT analysis
improved all model performances while the wavelet–GEP model
outperformed the wavelet–NF and WANN models.

Due to the complexity of the relationship between SSC and river
discharge, Liu et al. (2013c) constructed a WANN model to predict



V. Nourani et al. / Journal of Hydrology 514 (2014) 358–377 371
next day SSC. Observed river discharge and SSC time series were
decomposed into seven sub-series via the DWT using the db4
mother wavelet. Effective sub-series were selected by cross-corre-
lation analysis and summed to reconstruct noise-free time series to
serve as ANN inputs for SSC prediction. The WANN model was bet-
ter able to predict the highly non-linear and non-stationary SSC
time series than ANN or SRC models. Noise removal using the
WANN approach dramatically improved the fit of the predicted
SSC time series to the observations. Additionally, error autocorrela-
tion and the correlation between input and error time series in the
WANN model showed it to be more robust than either the SRC or
ANN models.

Nourani et al. (2014) developed an ANN-based stream-flow-
sediment model by focusing on a wavelet-based global soft thres-
holding method to de-noise hydrological time series at the daily
scale. Since the appropriate selection of the decomposition level
and mother wavelet type are important in thresholding results,
sensitivity analysis was performed over different levels and several
Daubechies type mother wavelets (Haar, db2, db3, db4 and db5) to
choose the proper variables. De-noised time series were applied to
the ANN model to forecast flow discharge and sediment values. The
results indicated that, the wavelet-based de-noising approach, as a
pre-processing method, could improve the ANN-based stream-
flow-sediment forecasting models; in addition, the wavelet de-
noising was significantly dependent on the chosen mother wavelet
whereas forecasting results varied with the alteration of mother
wavelets.

According to the reviewed papers regarding sediment model-
ing, one of the important issues in sediment modeling is the hys-
teresis phenomenon in which the SSL depends not only on the
water discharge amount and flow capability, but also on the load
availability, which is complexly related to the season or month of
occurrence. Thus, the application of a solely AR model such as var-
ious AI methods (e.g., ANN, ANFIS) that relates discharge and SSL to
their antecedents is not sufficient in the presence of factors such as
hysteresis. In this regard, the application of the wavelet transform
which considers the seasonality of the process in order to handle
hysteresis is advantageous.

3.5. Topic 5: Wavelet–AI models for groundwater modeling

In many watersheds, groundwater is often one of the major
sources of water supply for domestic, agricultural and industrial
users. In many such regions, groundwater has been withdrawn at
rates far in excess of recharge, leading to harmful environmental
side effects such as major water-level declines, drying up of wells,
reduction of water in streams and lakes, water-quality degrada-
tion, increased pumping costs, land subsidence, and decreased well
yields (Adamowski and Chan, 2011). To effectively manage
groundwater, the ability to predict Groundwater Level (GWL) fluc-
tuations and quantify environmental threats (e.g., contamination,
salinization) and their potential to expand are key hydrological
issues.

Adamowski and Chan (2011) developed a one month-ahead
GWL forecasting model using a coupled DWT–ANN method. The
DWT decomposed each original data series into information bear-
ing component series, which then served as inputs to the ANN-
based forecasting portion of the model. The DWT allowed most
of the ‘noisy’ data to be removed and facilitated the extraction of
quasi-periodic and periodic signals from the original time series.

Maheswaran and Khosa (2013b) compared the GWL forecasting
abilities of three hybrid wavelet models; WVC, WANN, and wave-
let–LR as well as ANN and dynamic AR models. Compared to
the wavelet–LR and WANN models, the WVC model performed
better in forecasting GWL characterized by non-linearity and
non-stationarity. With an increase in lead time, the wavelet
based models performed progressively better than the regular
models. Overall, accurate long term GWL forecasting was best
provided using the WVC model.

Investigating the ability of a joint wavelet and NF model to per-
form one-, two- and three-day-ahead groundwater depth forecast-
ing, Kisi and Shiri (2012) found that the joint model outperformed
the NF model, particularly for two- and three-day-ahead forecasts.

Moosavi et al. (2013a) compared several data-driven models
(i.e., ANN, ANFIS, WANN and WANFIS models) for forecasting
GWL at a monthly scale. The comparison of results demonstrated
that the WANFIS model outperformed the other models since it
could handle both uncertainty and seasonality involved in the
process.

The low number of papers on groundwater modeling via wave-
let–AI demonstrates the need to consider groundwater and rele-
vant issues. Meanwhile, it can be inferred that the monthly time
scale or any long-term scale is the appropriate scale for modeling
groundwater, since such scales coincide with the nature of the
process, notwithstanding the study of Kisi and Shiri (2012) who
performed daily groundwater modeling.

Through a comparative study, Moosavi et al. (2013b) investi-
gated the optimum structures of WANN and WANFIS models for
GWL forecasting. Their research revealed that transfer functions
of ANN and membership function types of ANFIS besides the
mother wavelet type are the most important factors in the perfor-
mance of WANN and WANFIS models, respectively. Comparison of
optimal WANN and WANFIS demonstrated the better performance
of WANFIS.

Since groundwater is recharged by flow or any precipitation
that seeps into the ground, the periodic characteristic of ground-
water is relevant to rainfall and runoff processes as well as climatic
parameters. Therefore, it is suggested that wavelet-AI methods be
explored in order to determine the lags, correlation and interaction
between climatic parameters and GWL as well as groundwater
quality factors. On the other hand, because groundwater is suscep-
tible to pollutants which may follow a periodic pattern to soak into
the underground, the wavelet–AI approach can simulate and
extract effective features and patterns among GWL, climatic
parameters and contaminants.

3.6. Topic 6: Other hydro-climatologic applications of wavelet–AI
models

Besides the detailed investigations of wavelet–AI model appli-
cations to forecast various hydrological processes, they have been
also successfully applied to model other hydro-climatologic pro-
cesses (i.e., shallow watertable depths, drought, snowmelt, evapo-
transpiration, etc.)

Wang and Ding (2003) proposed hybrid WANN models to pre-
dict monthly mean water table depths and daily discharge. In
terms of prediction accuracy, the hybrid model outperformed
ARMA and threshold AR models, trained with the GA optimization
technique. The results implied that when the forecasting horizon
was extended the fitting and testing precision of the hybrid model
outstripped that of the other models.

Kim and Valdes (2003) linked dyadic wavelet transforms and
NNs to generate a WANN model capable of forecasting the Palmer
drought severity index at various lead times. In order to reduce the
inconsistency of the sub-signal, a wavelet transform based on the
dyadic algorithm was used. They concluded that the hybrid
approach enhanced the ability of NNs to forecast the indexed
regional drought. Moreover, based on several accuracy statistics,
the forecasting skill of the hybrid model for lead times up to
6 months was much better (4–60%) compared to the other statisti-
cal prediction methods. Following the previous study, Belayneh
and Adamowski (2013) and Belayneh et al. (2014) investigated
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the ability of data driven models such as ARIMA, ANN, and SVR and
WTs to forecast long-term (6 and 12 months lead times) drought.
Belayneh et al. (2014) proposed the wavelet–SVR model in addi-
tion to WANN model to forecast long term drought. They applied
Standard Precipitation Index (SPI) 12 and 24 as indicators of
long-term drought conditions. The forecast results for WANN and
wavelet–SVR models were improved compared to models without
any wavelet based pre-processing, and the WANN model was bet-
ter than the WSVR model.

This study indicated that the approximation time series compo-
nent in wavelet decomposition is the most effective component in
forecasting SPI time series, which adequately de-noises the data
and avoids any discontinuities within the SPI time series.

Another study which modeled drought was conducted by
Shirmohammadi et al. (2013). The research was carried out to eval-
uate the ability of WANN and ANFIS techniques for meteorological
drought forecasting at one, two, and three time steps (6 months)
ahead. WANFIS was found to be more accurate than the WANN
model.

Given the importance and advantage of considering soil mois-
ture information in a variety of hydrologic models, Lauzon et al.
(2004) proposed the analysis of soil moisture conditions based
on wavelet analysis and SOM through Kohonen NNs. Through
these techniques, the influence of soil moisture on the hydrologic
regime could be assessed and relevant information could be
extracted for the development of a stream-flow model. Based on
results inferred from wavelet analysis, soil moisture supported
the annual cycle in observed flows. The links between precipitation
events, the short-term behavior of soil moisture and the inflow
regime could be clearly seen through wavelet analysis. A compre-
hensive description of the soil moisture profile, its evolution over
time, and its relation to precipitation, temperature and flow obser-
vations were performed via wavelet analysis and SOM.

Since seasonal drought usually originates from low availability
of soil moisture, Deng et al. (2011) predicted the dynamic changes
of soil water in the field via daily soil water content simulated by
least squares SVM with meteorological factors. Wavelet-based
de-noising was applied to pre-process the original chaotic soil
water signal and the results of the prediction showed improve-
ment of the model in comparison to ANN and ANFIS models.

Adamowski (2008b) proposed a method of stand-alone short-
term spring snowmelt river flood forecasting based on wavelet
and cross-wavelet analysis. The accuracy in forecasting daily
stream-flows with lead-times of 1, 2, and 6 days of the new wave-
let forecasting method was compared to that of MLR analysis,
ARIMA analysis, and ANN. The wavelet-based forecasting method
was shown to accurately forecast river flooding for 1 and 2-day
lead-times, but was not particularly accurate for longer lead-time
forecasts (e.g., 6 days).

Accurate prediction of solid waste generation is an important
issue in the planning and design of municipal water purification
systems. Noori et al. (2009) applied hybrid WANFIS and WANN
models to predict the weekly waste generation from a municipal
solid waste management system. Input data pre-processing via
wavelet analysis clearly improved prediction accuracy. Of the
two models tested, the WANFIS model, by reason of its effective
handling of uncertainties involved in the process, exhibited a bet-
ter performance than the WANN model.

Evapotranspiration is a complex process affected by a variety of
climatologic factors. Hybrid wavelet–NN models provide an alter-
native way of exploring the underlying mechanisms of evapotrans-
piration. In consideration of this, Partal (2009b) tested the ability of
a WANN model in estimating reference evapotranspiration. Apply-
ing wavelet analysis to raw data of climatic data (i.e., air tempera-
ture, solar radiation, wind speed, relative humidity) as a
pre-processing approach allowed the ANN model to equal or
outperform a MLR and the empirical Hargreaves method in daily
evapotranspiration forecasting. This confirmed that the hybrid
WANN method could be successfully applied to model reference
evapotranspiration based on climatic data.

In another study, the use of wavelet analysis in conjunction
with AI was employed to predict daily evaporation (Abghari
et al., 2012). Mexican Hat and poly WOG1 mother wavelet activa-
tion functions were used in an ANN instead of the commonly used
Sigmoid function, and differences in terms of daily pan evaporation
predictions were noted. In terms of the accuracy of daily pan evap-
oration forecasts, the WANN model outperformed any single ANN
model.

Applying a hybrid WANN model to 1- and 6-month-ahead fore-
casting of mean monthly lake levels, Kisi (2009b) found that
WANN significantly increased the short- and long-term forecast
accuracy over wavelet-free models.

Campisi et al. (2012) explored the problem of forecasting urban
water demand by means of a back-propagation ANN coupled with
a wavelet de-noising technique. The forecasting horizon varied
from 1 to 6 months and the impact of five different wavelet fil-
ter-banks on ANN outcomes was explored. ANNs coupled with
Haar and db2 and db3 filter-banks outperformed non-coupled
ANN, MLR and ANN models coupled with db4 and db5 filters. Over-
all, they found that the de-noising impact gained via wavelet-
attributable reduction in training set variance could improve fore-
casting accuracy; however an oversimplification of the input-
matrix could lead to a deterioration in the forecasting accuracy
and induce network instability.

Short term (1, 3, and 5 days; 1 and 2 weeks; and 1 and
2 months) urban water demand forecasting was also explored by
Tiwari and Adamowski (2013) via a WBANN model. The results
demonstrated that the hybrid WBANN and WANN models produce
significantly more accurate forecasting results than the traditional
NN, BNN, ARIMA, and ARIMAX models. It was also found that the
WBANN model reduces the uncertainty associated with the fore-
casts, and the performance of WBANN forecasted confidence bands
were found to be more accurate and reliable than BNN forecasted
confidence bands.

For coastal and ocean engineering applications, Ozger (2010)
employed a combination of wavelet and fuzzy logic approaches
to forecast wave heights and periods with lead times up to 48 h.
A wavelet technique was used to separate time series into spectral
bands, which were subsequently estimated individually through
a fuzzy logic approach. The hybrid wavelet-fuzzy logic model
outperformed the single fuzzy logic, ANN and ARMA models. The
superiority of the wavelet-fuzzy logic model in terms of model per-
formance was particularly notable for longer lead times (e.g., 48 h).

Kisi (2011b) compared the performance of a Wavelet Regres-
sion (WR) technique with ANN models for daily river-stage fore-
casting. In order to create the forecasting models, two different
WR models were developed using the stage sub-time series. The
sum of effective decomposed details and the approximation com-
ponents were used as inputs to the WR1 model, while in the
WR2 model, the effective details and the approximation compo-
nents were used as separate inputs. Under these circumstances,
the WR models outperformed the single ANN models, and the
WR2 model outperformed the WR1 model.

Adamowski et al. (2012) proposed an urban water demand fore-
casting method based on coupling a DWT and ANN for a lead time of
one day over the summer months (May–August). The key variables
used to develop and validate the models were daily total precipita-
tion, daily maximum temperature, and daily water demand data.
The WANN model was found to provide more accurate urban water
demand forecasts than the MLR, MNLR, ARIMA or ANN models.

Deka and Prahlada (2012) employed a WANN model to forecast
the occurrence of waves of significant height reaching the west
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coast of India for lead times up to 48 h. A WANN drawing on a
multi-resolution time series for input data to its ANN component
provided more accurate forecasts than a single ANN.

Land cover assessment as a hydro-climatologic related field has
been considered in various hydrological studies. In this light, a
wavelet feature based supervised scheme for fuzzy classification
of land cover multispectral remote sensing images was proposed
by Shankar et al. (2011). In a distinct application of wavelet trans-
forms, the obtained wavelet features from land cover images pro-
vided important information about the spatial and spectral
characteristics of image pixels and hence could be used in fuzzy
based land cover classification. The classification results compared
to original spectral feature based methods demonstrated the high
efficiency of wavelet-based fuzzy classification of land cover.

A wavelet-based NN model was developed by Shekarrizfard
et al. (2012) in order to model the relationship between PM10 (a
major air pollutant) levels and meteorological data including sev-
eral parameters, such as wind speed, wind direction, moisture,
and temperature. Due to the reduction in the noise inherent in
most meteorological data by means of the wavelet transform, the
wavelet-enhanced ANN generated accurate predictions of PM10

levels, compared to a wavelet-free ANN method. They concluded
that the proposed WANN model was generally an effective method
for PM10 level prediction. In a similar parameter prediction, Siwek
and Osowski (2012) used several AI methods (i.e., MLP, radial
basis function, Elman network and SVM) as well as a linear AR
model in conjunction with DWT to forecast the daily average con-
centration of PM10. Application of wavelets and an ensemble of
many individual prediction results led to an accurate method of
prediction.

Karran et al. (2013) conducted an exploration of how well
wavelet–AI models perform in different climate regimes with dif-
fering hydrological characteristics and studied the performance
of such models for lead times of less than one month. Their study
compared the use of ANNs, SVR, WANN, and wavelet–SVR in Med-
iterranean, Oceanic, and Hemiboreal watersheds. The results indi-
cated that SVR based models overall performed well, but no one
model outperformed the others in more than one watershed, sug-
gesting that some models may be more suitable for certain types of
data. Overall, model performance varied greatly between climate
regimes and they suggested that higher persistence and slower
hydrological processes (i.e., snowmelt, glacial runoff, and subsur-
face flow) support reliable forecasting in daily and multi-day lead
times.

Water quality modeling via hybrid wavelet–AI models has not
been explored in much detail in the literature. In Najah et al.
(2012), monthly water quality parameters of a river were predicted
utilizing an ANFIS model. Since the observational water quality
data might be polluted by noise owing to systematic and random
errors, the wavelet de-noising technique in conjunction with the
ANFIS model was applied.

Overall, based on the reviewed studies, the application of wave-
lets as a pre-processing technique, usually improves modeling per-
formance after decomposition of the main signal to seasonal sub-
series at different scales via one of three scenarios:

(i) Use of all decomposed time series as inputs of the AI model.
(ii) Use of only the dominant sub-series as inputs of the AI

model.
(iii) Use of the original signal as the input of the AI model, recon-

structed by using only selected dominant sub-series.

Comparison of the reported results in the reviewed papers dem-
onstrates that the application of the second scenario due to the sim-
plicity of the structure and reduction of redundant and non-relevant
data as well as accurate performance, may lead to more accurate
results in hydro-climatologic applications of wavelet–AI methods.

4. Summary and conclusions

Since the emergence of AI techniques in hydro-climatology,
research activity in the field of modeling, analyzing, forecasting
and prediction of water quantity and quality variables has
increased dramatically. Wavelet–AI applications have increased
in modeling various hydrological processes such as rainfall–runoff,
stream-flow, precipitation, sediment, groundwater and others.
Among the processes involved in the hydrologic cycle, extensive
research has been conducted on stream-flow modeling, with fewer
papers focused on other processes of the hydrologic cycle, and even
fewer have focused on water quality and water resources manage-
ment issues.

Given, on the one hand, the capacity and robustness of AI mod-
els in coping with the non-linear and dynamic nature of hydrologic
processes, and on the other hand the ability of wavelet analysis to
extract the prominent periodicities and seasonalities from a time
series, a greater understanding and ability to predict various
hydrological processes can be achieved. The results of many of
the studies explored in this review paper have revealed the relative
efficiency of wavelet–AI models compared with other methods in
accurately forecasting hydrological variables. These improvements
in hydrological forecasting can lead to a better interpretation of
phenomena and inform the development of appropriate water
and environmental resource planning and management policies.

In the current review paper several papers were investigated
and compared that used wavelet–AI based models with great oper-
ation or forecasting ability in order to model several hydro-climate
processes. One of the more important issues was exploring which
AI method can best fit the specific hydro-climate process. A lack of
attention regarding this issue has led to the use of various AI meth-
ods without any consideration as to the appropriateness of the
model. As an example (see Table 3), among 34 papers that modeled
flow, 25 of them solely used ANN, as the appropriate AI method.
The other 9 papers used GP, SVM, SVR and ANFIS. Based on the
review conducted in this study, it appears that for applications
with high levels of uncertainty, the ANFIS approach can provide
better results. Rainfall–runoff modeling in a very large watershed
with sparse sampling gauges, or sediment amount prediction in
various watersheds with different beds, are examples of modeling
in situations of high uncertainty where the ANFIS approach might
be useful to explore.

It was also found that, wavelet-based seasonal models are more
efficient than AR models (i.e., ANN and ANFIS) in monitoring peak
values. It is evident that extreme or peak values in the rainfall, run-
off or sediment time series, which occur in periodic patterns, can
be detected by the seasonal models more accurately. For short
term real time forecasting or for modeling at a fine time resolution
(e.g., hourly, daily), an AR model or WANN model with low decom-
position levels which uses current and only a few previous state
values of the process as inputs is likely to be the most useful
model. But for long term, seasonal forecasting or modeling in
monthly or seasonal time scales, a hybrid wavelet–AI model which
decomposes the time series at high levels can detect the long term
memory of the process. Furthermore, the study parameter has a
significant role in the selection of a reliable modeling tool. For
example, for modeling a highly stochastic process (e.g., event-
based precipitation) probabilistic-based pre-processing (e.g., boot-
strapping-based simulation) could also be helpful.

Maier and Dandy (2000) identified the adoption of appropriate
input determination approaches, as one of the main concerns in
hydro-climatologic models. Moreover, Maier et al. (2010), in a recent
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review on ANN methods indicated two deficiencies of ANN-based
hydrologic modeling; firstly, evaluating the relationship between
input variables with the model output, secondly, investigating input
independence and avoiding redundant inputs even if they help the
performance of an ANN model, since they might increase model
complexity and parameter uncertainty. If these two issues are
addressed in other AI-based models in addition to ANN, increased
attention should be devoted to reduce the uncertainty surrounding
model outputs and to enable AI-based models to extract more
confident knowledge from the data. In this way, wavelet-based
pre-processing as well as various AI-based optimization techniques
are capable of addressing the aforementioned two issues by:

(i) Wavelet transform breaks down the signal into periods
involved in the process, then via an AI-based optimization
technique (e.g., GA) the potential sub-signals having a signif-
icant relationship with the model output can be determined.
Thus, the use of a wavelet–AI approach not only tackles non-
linear model input selection, but also provides pre-process-
ing on each input signal via wavelet analysis.

(ii) Application of the wavelet transform leads to identification
of various periods as sub-signals, subsequently, the selection
of dominant sub-signals (as inputs to the AI models) having
an insight into model scale or entity, prevents the interfer-
ence of redundant information and reduces the uncertainty
surrounding AI-based model output.

The future of predicting hydrological processes through wave-
let–AI approaches can be anticipated if one looks at how the field
evolved over the past decade. Firstly, in almost all hydrologic sig-
nals, the underlying complex non-linear seasonalities and relation-
ships have been extracted through the implementation of the
wavelet transform. Secondly, according to the task at hand (e.g.,
forecasting, optimization, or classification), one or another AI-
based technique can be applied in order to fulfill the purpose of
modeling. In general, it can be concluded that recently imple-
mented wavelet-based models have principally focused on
improving the accuracy of hydrologic process modeling. Through
the application of a hybrid wavelet–AI model to improve modeling
performance, the classic concerns of data-driven modeling (i.e.,
well established data division to have the requisite training and
validation sub-sets, optimal network structure of the AI technique,
etc.) should be regarded to acquire a precise hybrid model.

According to Table 3, the dominant field of application of hybrid
wavelet–AI models in hydrological studies is forecasting and pre-
diction. Stream-flow forecasting via wavelet–AI models has been
the focus of several studies, whereas their use in predicting water
quality parameters has attracted less attention. There is therefore a
need to broaden the range of application of wavelet–AI models to
focus on other predictive variables, especially those concerned
with water quality. However, one factor limiting the application
of wavelet–AI models in water quality modeling could be the lack
of good quality, long-term data to detect the long-term seasonality
signature of the process.

Among the reviewed papers, only about 20% of studies used the
CWT for decomposing hydrological time series, and the majority of
studies utilized the DWT. This is because real world observed hydro-
logic time series are measured and gathered in discrete form rather
in a continuous format. So, the dyadic DWT is more suitable for decom-
position of time series into trend and detail sub-signals comprising
high frequencies and fast events, and also to reconstruct the original
time series from sub-signals. Each resolution level in DWT represents
a dyadic period based on the scale of data. Considering a set of daily
data, DWT decomposition leads to 2n-day mode resolutions
(e.g., 21 -day mode, 22-day mode, 23-day mode which is nearly weekly
mode, 24-day mode, 25-day mode which is nearly monthly mode, and
. . ., 26-day mode which is nearly yearly mode, etc.) which approxi-
mately denote the periodicity of a hydrologic process. Although 23

day mode and 25-day mode are fairly accurate for the weekly and
monthly periods, 28-day mode represents the yearly periodicity with
a 30% error. Therefore, it is unlikely that DWT can represent the yearly
periodicity as well as CWT which is able to depict exact periods. On the
other hand, although CWT provides a time–frequency representation
of a signal at many different and exact periods in the time domain,
redundant information is locked up within the coefficients, which
may or may not be a desirable property. Thus, it is inferred that accord-
ing to the considered hydrologic time series and its scale, the DWT or
CWT should be selected and applied.

In the majority of reviewed papers, the Nash-Sutcliff evaluation
criterion (Nash and Sutcliffe, 1970) was applied in addition to other
efficiency criteria (e.g., Mean Absolute Error; MAE, Root Mean Square
Error; RMSE) to evaluate the model performance. According to
Legates and McCabe (1999) a good evaluation of model performance
should include at least one ‘goodness-of-fit’ or relative error mea-
sure (e.g., Nash-Sutcliff criterion) and at least one absolute error
measure (e.g., RMSE or MAE), thus, a hydrological model can be suf-
ficiently evaluated by Nash-Sutcliff and RMSE but due to the impor-
tance of peak and extreme values in hydrologic processes other
criteria (e.g., Ratio of Absolute Error of Peak value) may also be
applied. For the design of a disaster alert system (e.g., flood alert sys-
tem), in addition to the measure of peak value error (error between
observed and computed peak values), the occurrence time of such
extreme conditions should also be regarded. In this regard,
Dawson et al. (2007) developed a scope to evaluate metrics for the
standardized assessment of hydrological forecasts.

In spite of the black box nature of AI methods, the use of wave-
let analysis with AI methods makes it possible to provide some
insight into the physics of the process in both time and space.
For example, due to urbanization and land use/cover changes, a
watershed’s lag time and response to the inputs (e.g., rainfall)
may be changed and in turn, the calibrated parameters of the
employed wavelet–AI model (e.g., decomposition level, mother
wavelet, input lags, etc.) can change. To monitor such changes,
the time series of the studied process should be split into specific
sub-series and by comparing the calibrated parameters of the
model by sub-series, the trend in land cover/use can be detected.
A similar methodology can be used to detect spatial changes of
land uses by dividing the watershed into sub-basins.
5. Recommendations for future research

Based on the review of almost 105 papers regarding applica-
tions of wavelet–AI methods in hydro-climatology, the following
recommendations for future research are provided:

1. Given the discrete nature of hydrologic time series, applications
of the wavelet transform in hydrology mainly concentrate on
the use of DWT. A broader use of CWT is suggested in order
to exploit its properties over all time scales, such as with dyadic
scales in DWT.

2. Considering the importance of the wavelet transform for tem-
poral pre-processing, it is a useful tool in extracting the under-
lying features and de-noising time series. While such
applications have been explored in hydrological modeling in
recent years, it could be useful to explore the use of the wavelet
transform for pre-processing of spatial data (e.g., digital eleva-
tion model) employed in hydrological models.
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3. The main concerns regarding wavelet-based models are the
appropriate selection of the mother wavelet and decomposition
level according to the hydrological process and the scale of the
process. While Nourani et al. (2011, 2013) stated that similarity
in shape between the mother wavelet and that of the time ser-
ies under study is the best guideline in choosing the proper
mother wavelet, it would be useful to investigate similarities
from another point of view than form (e.g., energy). Although
the selection of mother wavelet and decomposition level have
been studied (Nourani et al., 2011; Sang, 2012), a more thor-
ough investigation could lead to the selection of a specific
mother wavelet according to the nature of the hydrologic pro-
cess investigated, and the use of an algorithm based on histor-
ical data length to select the decomposition level.

4. Due to the low number of papers in the field of groundwater
and water quality modeling via wavelet–AI models, it is sug-
gested that additional research be conducted on this topic.

5. In addition to the suggestion of Abrahart et al. (2012) to create
benchmark data sets, it would be useful to develop an archive of
appropriate wavelet–AI models for specific hydro-climatologic
processes, with transparency in the application of different
types of wavelet transforms (i.e., DWT, CWT), efficient mother
wavelet type and finally appropriate AI techniques for each
hydro-climatologic process at a desired time scale.

6. In addition to the ability of wavelet–AI models for black box
modeling of hydrological processes, they can also be linked to
physically-based models (e.g., TOPMODEL; Beven and
Kirkby,1979) to develop integrated modular models. For this
purpose, the geomorphologic characteristics of the study area
at a sub-grid scale can be extracted and represented via geo-
graphic information system tools, pre-processed by wavelets,
and then used in the model to estimate the spatiotemporal
variability of parameters (e.g., soil moisture, GWL, recharge,
transmissivity). In a similar way, other AI methods such as
SOM-based spatial clustering of grids into homogeneous zones
can also be used.

7. It would also be useful to prepare other review papers to survey
hydro-climatologic applications of different hybrid models con-
structed via the conjunction of AI models with other commonly
used data pre/post-processing techniques.
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